JP3720361B2 - Method and means for producing hyaluronic acid - Google Patents

Method and means for producing hyaluronic acid Download PDF

Info

Publication number
JP3720361B2
JP3720361B2 JP50073796A JP50073796A JP3720361B2 JP 3720361 B2 JP3720361 B2 JP 3720361B2 JP 50073796 A JP50073796 A JP 50073796A JP 50073796 A JP50073796 A JP 50073796A JP 3720361 B2 JP3720361 B2 JP 3720361B2
Authority
JP
Japan
Prior art keywords
hyaluronic acid
molecular weight
strain
equi
weight greater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50073796A
Other languages
Japanese (ja)
Other versions
JPH10501128A (en
Inventor
ストール,ステン
Original Assignee
フアーマシア・アー・ベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フアーマシア・アー・ベー filed Critical フアーマシア・アー・ベー
Publication of JPH10501128A publication Critical patent/JPH10501128A/en
Application granted granted Critical
Publication of JP3720361B2 publication Critical patent/JP3720361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/885Streptococcus

Abstract

Isolated strains of supercapsulated streptococci band at a density of no greater than 1.03 g/cm<SUP>3 </SUP>in a Percoll gradient and are capable of producing hyaluronic acid with molecular weight exceeding 6 million Da. Methods of producing high molecular weight hyaluronic acid employ a supercapsulated strain of streptococcus which bands at a density of no greater than 1.03 g/cm<SUP>3 </SUP>in a Percoll gradient. Methods of selecting streptococcus strains capable of producing hyaluronic acid with a molecular weight exceeding 6 million Da comprise, inter alia, cultivating supercapsulated strains of streptococci which band at a density of no greater than 1.03 g/cm<SUP>3 </SUP>in a Percoll gradient.

Description

本発明は、ストレプトコッカスの超莢膜株(supercapsulated strain)を使用する発酵による高分子量のヒアルロン酸の生産方法に関する。本発明はまた、超莢膜変異株の選別方法、上記のようなヒアルロン酸を高収量で生産する変異株に関する。
ヒアルロン酸(HA)即ちヒアルロナンは、交互に結合するD−グルクロン酸分子とN−アセチルグルコサミン分子の繰返し二糖類からなるグリコサミノグルカンである。これらの分子はβ(1,3)−D結合によって結合し、グルクロン酸に対するグルコサミンの結合はβ(1,4)−Dである。
ヒアルロン酸にはいくつかの源があり、その分子量は源によりかなり異なる。関節滑液で見出されるHAの分子量は約100〜800万であり、ヒトの臍帯では分子量約360〜450万であり、雄鶏とさかのHAは非常に大きい値、例えば1200〜1400万まで又はもっと大きいこともあり得る。ヒアルロン酸の化学組成は、その源にかかわらず同一であり、ヒアルロン酸は非免疫原性であるので、医学においていくつかの適用がある(BrimacombeとWebber(1964)。HAの有効性は、分子量に相関する弾性特性と粘性特性の独特の組合せの結果である。そのため、早くからできるだけ高分子量を得ることに関心があった。
それ故、文献には、非常に高分子量のHAの多数の例があるが、これらの値は、非常にしばしば源の原料に関する値である。しかし、雄鶏のとさかのような生物システムで生産されるHAは、タンパク質及び、例えばコンドロイチン硫酸などの他のグリコサミノグリカンに結合しているので、広範囲にわたって精製する必要があるということに注意すべきである。非常に高性能の精製及び滅菌方法が開発されたとしても、これらの工程で分子量が減少し、大部分の場合に、最終生成物の分子量がかなり小さいことは不可能である。
現在、市販の主要なHA製品は、分子量が約350万のHealon▲R▼(ファルマシアAB、ウプサラ、スウェーデン)である。この製品は、米国特許第4141973号の開示内容に基づく方法により雄鶏とさかから調製される。同一源から、分子量約500万のHA製品Healon▲R▼GV(ファルマシAB)が調製される。これらの分子量は滅菌製品の分子量であり、このことは、滅菌工程前の製品は、それぞれの分子量が約500万、約700万であるに違いないことを意味する。
例えば眼科などのいくつかの医学的処置におけるHAの有用性が十分に証明されているにもかかわらず、高分子量のHA製品はほとんど市販されていない。この理由の一つは、恐らくは上記の源、特に雄鶏とさかからHAの分子鎖をあまりに大きく分解させずに純品を得るために複雑な精製方法が必要だからである。それ故、よく制御され、簡単な精製方法が適用できる代替の源又は生産システムが必要である。
種々の細菌システムにおけるHA生産に関する多数の論文と特許出願が発行されてきた。HAのバイオテクノロジーによる生産における細菌の使用が、いくつかの理由、即ち技術的、経済的、倫理的理由から提唱されてきた。Streptococcus種による生産が50年以上前から知られたが、開示されたシステムの大部分はストレプトコッカスのA群とC群に関するようである。例えば、ヒトの病原体であるStreptococcus pyogenes(A群)の莢膜株(Kendallら,(1937))、動物の病原体であるStreptococcus equiStreptococcus equisimilis(C群)の莢膜株である。これらの病原体における主要な莢膜多糖としてのヒアルロン酸の合成は、宿主防御を逃れる一つの方法である(Robertsら(1989))。
細菌におけるHA合成の生化学によると、今までに知られている限りは2つの遺伝子の作用がある。即ち、内在性膜タンパク質であるシンターゼをコードするAであり、UDP−グルコースをUDP−グルクロン酸に変換するUDP−グルコースデヒドロゲナーゼをコードするBである。更に、UDP−グルコースはUDP−N−アセチルグルコサミンに変換される必要がある。後者は細胞壁生合成に必要である(Doughertyとvan de Rijn(1992,1993)及びde Angelisら(1993)参照)。合成の制御、例えば何がHA合成を開始させ、何がHA合成を終了させるのかについてほとんど知られていない。しかし、合成の化学量論によりフィード(feed)と培地の組成のある種のガイドラインが与えられる。
細菌によるHA生産システムの開発に関する努力は、細菌の選別と適当な培養培地に集中してきた。莢膜中の実際の分子量はやや大きいかも知れないということが文献に記載されているけれども(van de Rijn(1983)参照)、莢膜野生型株は、発酵培養液に約500万を超える分子量のHAを放出しないことは早くから明白であった。しかし、特許を含む文献と市販のサンプルから判断すると、細菌生産HAの分子量は、現在雄鶏とさかから生産されるものよりずっと小さい(上記参照)。文献に示される高分子量値(所望の結果を表す)と実際に得られた値にしばしば非常に明白な差があるということを更に注意すべきである。
細菌システムで得られた最大値は約400万であるようである。例えば、米国特許第4784990号(Bio-Technology General)200〜350万のHA、国際公開第9208799号(Fermentech)100〜300万のHA、日本特許第2058502号(Chisso Corp)200〜300万のHA、日本特許第63129991号と第63028398(電気化学工業(株))200〜400万のHA、欧州特許第144019号(Miles Laboratories,Mobay Chemical Corp)200〜400万のHAを参照。
更に、上記の値は、滅菌されなかったHA産物に関するということを注意すべきである。それ故に、これらの原料は、滅菌後、上記のHealon▲R▼製品と同等の分子量を有するHA製品の製造に使用できないことは明白である。
ストレプトコッカスの全ての株は耐気性嫌気性生物である。即ち、酸素の存在下で生育できるが、電子受容体として酸素を利用できない。それ故、空気の重要性に関する、先行論文と特許における考察又は推測は、HA生産について決定的に重要なパラメーターを与えないように考えられる。
HA生産の適切な培地と条件は、生産に関する論文の大部分で考察されている。この分野の特許又は特許出願の更なる例として、日本特許第63141594号と第63123392号(電気化学工業(株))、米国特許第4897349号(MedChem Products Inc)を挙げることができる。
上記の多数の刊行物にかかわらず、高分子量のHA産物のための有効な細菌による生産システムの必要性が依然としてある。この関連での、“高分子量”は600万を超える値、特に800万を超える値、とりわけ900万を超える値又はより大きい値を意味する。何故ならば、このような原料は、Healon▲R▼GV型製品の製造に適しているであろうからである。
本発明者は今や、高分子量のHAがストレプトコッカスの超莢膜変異株により生産されることを発見した。本発明の一面は、発酵システムにおける上記のような株の使用であり、次に精製して、分子量が600万を超える、特に800又は900万を超えるHAを得ることである。
本発明の別の一面は、適切な超莢膜細菌株の調製と選別である。
実験は主に、寒天プレートでムコイドコロニーを形成し、液体培地でHAを生産する野生型S.equi ss equi CCUG 22971に基づいた。この種から、無莢膜対照変異株と超莢膜変異株を得た。パーコール勾配で、無莢膜変異株は密度1.09g/cm3、ムコイド野性型は密度1.05g/cm3、超莢膜株は密度1.03g/cm3未満、より正確には約1.03-1.02g/cm3でバンドを形成した(明細書の実験の部分を参照)。
本発明で使用する細菌株はストレプトコッカスであり、特にA群及びC群のストレプトコッカスであり、更に特に、最適条件下での生育中の細胞の位相差顕微鏡とインジアインク染色から判断して莢膜野生型株の大きさの少なくとも約2倍の莢膜を有する超莢膜種であって、密度1.03g/cm3以下、例えば1.02-1.03g/cm3の範囲でバンドを形成し、600万を超える、特に800万を超える又は最も好ましくは900万を超える分子量のHAを生産するStreptococcus equi ss equiの変異株である。
該細菌株の生産方法は、ランスフィールドのC群ストレプトコッカスの野生型株、例えば現在最も好ましい株、S.equi ss equi CCUG 22971などの細菌株を変異誘発させ、特に固体培地で化学変異誘発させる段階を含む。この方法は、液体培地でのより煩わしい変異誘発方法を避け、莢膜はまた変異原性で毒性の化学物質に対して保護するという点で超ムコイドコロニーの生育を促進し、密度勾配中での超莢膜細胞のより小さい密度によって密度勾配において最終的に富化(enrichment)及び選別を促進する。Streptococcus equiは、いくつかの他の化膿性で溶血性のストレプトコッカスと共に現在分類されるウマの病原菌であり、ランスフィールドC群に属する。ヒト又は動物に病原性の他のC群ストレプトコッカスは、主に炭水化物発酵パターンからS.equisimilis又はS.zooepidemicusとして分類されている。これらの株の分類学的関係は、今まで満足のいくように研究されなかった。それらは、Berger's Manual of Systematic Bacteriology第1版でタクソンStreptococcus種として分類されただけである。対照的に、S.dysgalactiaeはα−溶血性であり、正当な種として認められた。それは、S.equisimilisと最も関係が深い可能性がある。S.zooepidemicusS.equiの亜種ということがまた提案された。それ故、Streptococcus equiS.equi ss equiと命名されるべきである。
HAの生産方法は以下の段階を含む。(i)600万を超える、特に800又は900万を超える分子量のHAを生産する能力を有する超莢膜ストレプトコッカス株を選別する段階、(ii)温度35℃以下、好ましくは30〜35℃の範囲で、特に31〜33℃で、pH値約6.2以下、例えば5.6〜6.2、好ましくは5.80〜5.95の範囲で適切な培地の存在下、バイオリアクターで該株を培養する段階、(iii)粗混合物から生成物を精製する段階。
使用する培地は、ヒアルロン酸の連続的合成を可能としなければならないし、細胞の生育速度を最適化しようと試みるならば現れる非莢膜細胞を選別してはいけない。培地は、鉄及び銅イオンなどのHAの分解を促進するいずれの金属イオンを含むべきでないし、リアクターから放出させるべきでない。
一般的に、培地の組成は2つの必要条件を満たすべきである。即ち、(i)ストレプトコッカスの細胞の構築のために基本元素(C,N,O,H,P,S)と必要な生長因子を正しい割合で供給すること、及び(ii)十分な量と正しい割合でHA合成のための元素と化合物を供給すること。フィード(feed)の組成も必要条件(ii)を満たすべきである。生育培地の組成は微生物細胞の組成から、フィード組成はHA合成の化学量論から計算された。発酵槽培養の基本的液体培地を表Iに示す(下記の実験部分も参照)。

Figure 0003720361
リアクターには、広範囲の乱流を起すいかなる型のバッフルも内部構成部材も装着させるべきでないし、撹拌は、例えば、せん断力を発生させないでよく混合できる気体上昇又は他のタイプの回転翼(impeller)によって非常に温和な方法でされねばならない。このことは、非常に高い分子量を得るために決定的に重要であるが、米国特許第4784990号での勧告“強く撹拌しながらストレプトコッカス属の微生物を生育させること……”に反している。
種々の代替の培養法を試験し、例えばバッチ培養、流加培養、半連続流加培養、連続培養が有効であることが知見された。
培 地
使用した標準寒天プレートはBlood Agar,BA(the Central Bacteriological Laboratory,LUにおいてウマ血液から調製)、Bacto Todd Hewitt Agar,THA(Difco)、及びバクトトリプトン(Difco)10g/l、バクト酵母エキス(Difco)1g/l、リン酸水素二ナトリウム(Merck,PA)1.6g/l、炭酸水素ナトリウム(Merck,PA)2g/l、硫酸マグネシウム(Merck,PA)0.1g/l、バクトアガー(Difco)20g/l、スクロース(BDH)8g/lから作製されたTYSAであった。初めの試験用の液体培地は、上記のバクト酵母エキスを補充したTodd Hewitt Broth(Difco)であった。
変異誘発
ニトロソグアニジン(Sigma)による化学変異誘発(Cerda Olmedo IE及びHanwalt PC(1968))を使用した。野生型株をTYSAプレートに塗り広げた。ニトロソグアニジンの数個の結晶を中心に置いた。インキュベーション後、透明な阻害ゾーンがニトロソグアニジンの結晶のまわりで明白であった。ゾーンの端に近接しているところで生育しているムコイドコロニーを選別し、それについて更なる試験を行なった。
勾配遠心分離
THB中での生育後、該生物を遠心分離で回収し、0.15M塩化ナトリウムで一度洗浄し、塩化ナトリウムに再懸濁した。0.15M塩化ナトリウム中の25-50%パーコール10mlを固定型アングルローターで15000gav、4℃で30分間遠心して、パーコール勾配を予め形成した。密度マーカービース(Pharmacia LKB Biotechnology AB,ウプサラ、スウェーデン)を内部密度値標準として加えた。細胞懸濁液50μlを予め形成された勾配液の各々に加え、その後スイングローターで500〜16000gav、4℃で20分間遠心した(Percoll:Methodology and applications.Pharmacia Laboratory Separation Division)。
HA分子量の評価
ルーチンに使用した方法の一つは、雄鶏とさかから調製した種々の分子量のHA参照品(Pharmacia Ophthalmics)を使用する比較電気泳動を含む。約1.1-1.2mg/ml含むように参照品を希釈し、フリーザー中に−20℃で保存した。0.7-0.9%アガロースを使用して、ゲルを作製した。緩衝液はリン酸−EDTA(2000ml、10倍濃縮液はNa2HPO4 57.5g、NaH2PO4 13.1g、Na2EDTA 3.7gを含む)であった。参照品とサンプルをブロモフェノールブルー/グリセロールと混合し、ゲルにかけた。20mAの一定電流で、サンプルをウェルからゲルに進入させ、その後約20時間、30Vの一定電圧をかけて、ゲル電気泳動を行った。最後にゲルをトルイジンブルーO溶液(0.4%)で30分間染色した。ゲルを3%HAcで15分間、1%HAcで15分間(3〜4回)脱色した。
使用した別の方法はSEC-Lalls(サイズ排除クロマトグラフィー−低アングルレーザー光散乱)であった。約600万まで上記2つの方法でよく一致し、より大きい値では変動は約10%であった。
超莢膜株
高分子量ヒアルロン酸の生産に好ましいシステムを選別するために、上記の段階を含む多数の一連の実験を行ない、基本的段階は超莢膜化する必要のある細菌の選別であることが知見された。この特徴は勿論種々のパラメーターを使用して記載できるが、本発明者らは、本発明の株の定義として選別株がバンドを形成する密度値を使用することに決めた。上記のように該株は密度1.03g/cm3以下、例えば1.02-1.03g/cm3の範囲でバンドを形成する。勿論この定義は、密度勾配遠心分離以外の方法を株の選別のために使用する場合にも有効である。
超莢膜株はまた、高度にムコイド性のコロニー形態を有する。8g/lスクロースを含むTYSAに塗布したときは、非常に大きな(直径>>5mm)ねばねばしたコロニーが生育する。位相差顕微鏡で測定すると、莢膜の厚さは、莢膜株よりも超莢膜株の場合にずっと大きい。細胞の直径は1.0±0.2μmであるが、莢膜の直径は>>4μmである。以下で更に考察する2つの超莢膜株であるH22とその誘導株H22NOは両方とも非溶血性であり、それぞれ約750万と約950万までの分子量のHAを生産することが知見された。
本発明の超莢膜化は更に、細胞丸ごとの近赤外スペクトルの多変量データ解析で測定できる。本方法のサンプルの解析は周知の技術であり、例えばJolliffe IT(1986)、Massartら(1990)、Boxら(1978)、Mark及びWorkman(1991)、Marshall及びVerdun(1990)、Kalias及びLang(1994)を参照されたい。
第1主要コンポーネント(the first principal component)(PC1)は莢膜化の程度に関連する。CCUG 23255、CCUG 27365、CCUG 27366(ここでは参照株という)などの弱莢膜株で測定した第1主要コンポーネントと比較して、超莢膜株は、0.4以上、好ましくは0.5より大、特に0.7より大の第1主要コンポーネントを有する。この主要コンポーネントの絶対値は株のタイプに依存する。試験すると、変異株H22(下記)は第1主要コンポーネント0.3±0.1を有し、H22NOの対応値は+0.4±0.05であった。同一の実験条件下、参照株のPC1は−0.2〜−0.3であった。
サンプル調製は、37℃で血液寒天での生育、数個のコロニーの0.9%、NaCl 1.5mlへの溶解、その後、細胞懸濁液 100μlを対物レンズ上で25×25mmに広げ、クリーンベンチで乾燥することを含む。NIRスペクトルは、InfraAlyzer 500、Bran & Luebbeを使用して反射率モード(1100-2500nm)で集めた。
実施例1
超莢膜変異株S.equi ss equi H22株を、大きな表面積をもつ改変回転翼を装えたBraun Melsungen発酵槽中の培地1000ml容量での流加培養で培養した。培養温度は33℃で、炭酸ナトリウム溶液の添加によりpHを6.0に維持した。対数期の初め(4時間目)にフィードを開始し、3時間続けた。フィード速度は希釈速度D=0.02h-1に対応した。このフィード速度は、他の実験で知見された最大分子量のためには最適ではない。培地組成は上記表Iのものであった。フィードはスクロース25g/l、グルコース10g/l、マンノース0.1g/l、K2HPO4 3g/l、酵母エキス4g/lを含んでいた。
Figure 0003720361
実施例2
S.equi ss equi H22株を、以下のトリプトンをベースとした培地(濃度g/l)を用いて、温度37℃で空気上昇型リアクターで培養した。
Figure 0003720361
生育が始まった時、以下の組成物(濃度g/l)の“フィード”を加えた:酵母エキス(3)、トリプトン(8)、K2HPO4(5)、スクロース(350)。
フィード容量は1100mlで、それを10時間で加えた。リアクターの操作容量は4500mlで、それをレベルチューブ(level tube)に連結し高速で作動するポンプにより一定に維持した。半連続培養操作の時間中、2M Na2CO3の添加によりpH値を7.1に保った。それから空気を止め、主にHA分解をモニターするために、リアクター中の変化を更に24.5時間追跡した。最も興味深いパラメーターの解析により、次の結果を得た。
Figure 0003720361
それ故、フィード速度もpHも、高分子量生成に最適ではなかったけれども、分子量は600万を超えた。
実施例3:超莢膜株H22NOの連続培養研究
本実験では、温度33℃、pH6.0、一定の希釈速度0.10h-1を使用した。本実験で使用した、各種の定常状態での培地を以下のように変化させた。
Figure 0003720361
連続培養の結果は次の通りであった。
Figure 0003720361
各種の定常状態の分子量は大きく、最大値は9.1MDaであったことが結果から明白である。この特定例の収量はかなり小さかったが、他の一連の実験では、最高約350mg/lが達成された。リン酸レベルを増加させてもより高収量は得られないが、代わりに分子量の増加が観察される。このことは、収量と分子量の間に逆の関係がしばしばあるという知見を証明している。
培養の1週間の間、該株は安定に非溶血性であった。
新規超莢膜株が、以前に細菌システムで達成されたものよりずっと大きい分子量のHAを生産できることは、上記の実験から明白である。それ故、HA生産の非常に有望な道具が開発された。
Figure 0003720361
The present invention relates to a method for producing high molecular weight hyaluronic acid by fermentation using a supercapsulated strain of Streptococcus. The present invention also relates to a method for selecting a supercapsular mutant and a mutant that produces hyaluronic acid as described above in a high yield.
Hyaluronic acid (HA), or hyaluronan, is a glycosaminoglucan consisting of repeating disaccharides of D-glucuronic acid molecules and N-acetylglucosamine molecules that bind alternately. These molecules are linked by β (1,3) -D bonds, and the binding of glucosamine to glucuronic acid is β (1,4) -D.
There are several sources of hyaluronic acid, and their molecular weight varies considerably depending on the source. The molecular weight of HA found in synovial fluid is about 1-8 million, the human umbilical cord has a molecular weight of about 3.6-4.5 million, and rooster and caudal HA is a very large value, for example, 12-14 million or higher It can happen. The chemical composition of hyaluronic acid is the same regardless of its source, and since hyaluronic acid is non-immunogenic, it has several applications in medicine (Brimacombe and Webber (1964). The effectiveness of HA depends on molecular weight. This is the result of a unique combination of elastic and viscous properties that correlate with, so there was an interest in obtaining high molecular weight as early as possible.
Therefore, there are numerous examples of very high molecular weight HA in the literature, but these values are very often values for the source material. However, it should be noted that HA produced in biological systems such as roosters needs to be extensively purified because it is bound to proteins and other glycosaminoglycans such as chondroitin sulfate. Should. Even if very high performance purification and sterilization methods are developed, these steps reduce the molecular weight and in most cases it is impossible for the final product to have a much lower molecular weight.
Currently, commercially available major HA product is Healon molecular weight of about 3.5 million ▲ R ▼ (Pharmacia AB, Uppsala, Sweden). This product is prepared from rooster and fish by a method based on the disclosure of US Pat. No. 4141973. From the same source, a molecular weight of about 5,000,000 HA product Healon ▲ R ▼ GV (Pharmacia AB) is prepared. These molecular weights are those of the sterilized product, which means that the product before the sterilization process must have a molecular weight of about 5 million and about 7 million, respectively.
Despite the well-proven HA's usefulness in some medical procedures such as ophthalmology, few high molecular weight HA products are commercially available. One reason for this is probably because complex purification methods are required to obtain pure products from the above sources, particularly roosters and scabs, without degrading the molecular chains of HA too much. Therefore, there is a need for an alternative source or production system that is well controlled and where simple purification methods can be applied.
Numerous papers and patent applications have been published on HA production in various bacterial systems. The use of bacteria in the biotechnological production of HA has been advocated for several reasons: technical, economic and ethical reasons. Although production by Streptococcus species has been known for over 50 years, most of the disclosed systems appear to relate to Streptococcus group A and C. For example, the capsular strain of Streptococcus pyogenes (Group A), which is a human pathogen (Kendall et al., (1937)), and the capsular strains of Streptococcus equi and Streptococcus equisimilis (Group C), which are animal pathogens. Synthesis of hyaluronic acid as the major capsular polysaccharide in these pathogens is one way to escape host defense (Roberts et al. (1989)).
According to the biochemistry of HA synthesis in bacteria, there are two gene effects as far as is known. That is, it is A that encodes a synthase that is an integral membrane protein, and B that encodes UDP-glucose dehydrogenase that converts UDP-glucose into UDP-glucuronic acid. Furthermore, UDP-glucose needs to be converted to UDP-N-acetylglucosamine. The latter is required for cell wall biosynthesis (see Dougherty and van de Rijn (1992, 1993) and de Angelis et al. (1993)). Little is known about the control of synthesis, for example, what initiates HA synthesis and what terminates HA synthesis. However, the synthetic stoichiometry gives some guidelines for feed and medium composition.
Efforts to develop bacterial HA production systems have focused on bacterial selection and appropriate culture media. Although the literature states that the actual molecular weight in the capsule may be slightly higher (see van de Rijn (1983)), capsular wild type strains have a molecular weight in excess of about 5 million in the fermentation broth. It was clear from early on that no HA was released. However, judging from literature, including patents, and commercially available samples, the molecular weight of bacterially produced HA is much lower than that currently produced from roosters and scabs (see above). It should be further noted that there are often very obvious differences between the high molecular weight values shown in the literature (representing the desired result) and the values actually obtained.
The maximum value obtained with the bacterial system seems to be about 4 million. For example, US Patent No. 4784990 (Bio-Technology General) 2 to 3.5 million HA, International Publication No. 9287799 (Fermentech) 1 to 3 million HA, Japanese Patent No. 2085502 (Chisso Corp) 2 to 3 million HA See Japanese Patent Nos. 63129991 and 63,28398 (Electrochemical Industry Co., Ltd.) 2 to 4 million HA, European Patent No. 144019 (Miles Laboratories, Mobay Chemical Corp) 2 to 4 million HA.
Furthermore, it should be noted that the above values relate to HA products that have not been sterilized. Therefore, these materials after sterilization, can not be used in the manufacture of HA products with Healon ▲ R ▼ product equivalent molecular weight of above are obvious.
All strains of Streptococcus are anaerobic anaerobes. That is, it can grow in the presence of oxygen, but oxygen cannot be used as an electron acceptor. Therefore, considerations or inferences in previous papers and patents regarding the importance of air do not seem to give critical parameters for HA production.
Appropriate media and conditions for HA production are discussed in most of the production papers. Further examples of patents or patent applications in this field include Japanese Patent Nos. 63141594 and 63123392 (Electrochemical Industry Co., Ltd.) and US Patent No. 4897349 (MedChem Products Inc).
Despite the numerous publications listed above, there remains a need for an effective bacterial production system for high molecular weight HA products. “High molecular weight” in this context means a value greater than 6 million, in particular a value greater than 8 million, in particular a value greater than 9 million or greater. Because such material is that the would be suitable for the production of Healon ▲ R ▼ GV type products.
The inventor has now discovered that high molecular weight HA is produced by a supercapsular mutant of Streptococcus. One aspect of the invention is the use of a strain as described above in a fermentation system, which is then purified to obtain HA with a molecular weight of over 6 million, in particular over 8 or 9 million.
Another aspect of the present invention is the preparation and selection of suitable hypercapsular bacterial strains.
The experiment was mainly based on wild type S. equi ss equi CCUG 22971, which forms mucoid colonies on agar plates and produces HA on liquid medium. From this species, a non-capsular control mutant and a supercapsular mutant were obtained. Percoll gradient, non-capsular mutant has a density of 1.09 g / cm 3 , mucoid wild type has a density of 1.05 g / cm 3 , ultracapsular strain has a density of less than 1.03 g / cm 3 , more precisely about 1.03-1.02 g A band was formed at / cm 3 (see experimental part of the description).
The bacterial strain used in the present invention is Streptococcus, particularly the Streptococcus of Group A and Group C, and more particularly, the capsule as judged from phase contrast microscopy and india ink staining of growing cells under optimal conditions. a super capsule species having at least about 2 times the capsule of size of the wild-type strain, density 1.03 g / cm 3 or less, to form a band in the range of, for example, 1.02-1.03g / cm 3, 600 million in A variant of Streptococcus equi ss equi that produces HA with a molecular weight greater than 1, in particular greater than 8 million or most preferably greater than 9 million.
The method for producing said bacterial strain comprises mutagenizing a wild type strain of Lancefield group C Streptococcus, such as the presently most preferred strain, S. equi ss equi CCUG 22971, in particular a chemical mutagenesis step on a solid medium. including. This method avoids more cumbersome mutagenesis methods in liquid media, and the capsule also promotes the growth of ultramucoid colonies in that it protects against mutagenic and toxic chemicals, and in a density gradient. The smaller density of ultracapsular cells ultimately facilitates enrichment and sorting in the density gradient. Streptococcus equi is an equine pathogen currently classified along with several other purulent and hemolytic Streptococcus, belonging to Lancefield C group. Other group C Streptococcus pathogenic to humans or animals are classified as S. equisimilis or S. zooepidemicus mainly due to carbohydrate fermentation patterns. The taxonomic relationships of these strains have not been satisfactorily studied so far. They were only classified as Taxon Streptococcus species in the first edition of Berger's Manual of Systematic Bacteriology. In contrast, S. dysgalactiae was α-hemolytic and was recognized as a valid species. It may be most closely related to S.equisimilis . It was also proposed that S.zooepidemicus is a variant of S.equi . Therefore, Streptococcus equi should be named S.equi ss equi .
The production method of HA includes the following steps. (I) selecting a supercapsular Streptococcus strain having the ability to produce HA with a molecular weight of more than 6 million, especially more than 8 or 9 million, (ii) a temperature of 35 ° C. or less, preferably in the range of 30 to 35 ° C. Culturing the strain in a bioreactor in the presence of a suitable medium, particularly at 31-33 ° C., in the presence of a suitable medium at a pH value of about 6.2 or less, for example in the range of 5.6-6.2, preferably 5.80-5.95, (iii) crude mixture Purifying the product from
The medium used must allow continuous synthesis of hyaluronic acid and should not screen for non-encapsulated cells that appear if an attempt is made to optimize the growth rate of the cells. The medium should not contain any metal ions that promote the degradation of HA, such as iron and copper ions, and should not be released from the reactor.
In general, the composition of the medium should meet two requirements. (I) supply the basic elements (C, N, O, H, P, S) and the necessary growth factors in the correct proportions for the construction of Streptococcus cells; and (ii) a sufficient amount and correct Supply elements and compounds for HA synthesis in proportions. The composition of the feed should also meet requirement (ii). The composition of the growth medium was calculated from the composition of the microbial cells and the feed composition was calculated from the stoichiometry of HA synthesis. The basic liquid medium for fermenter culture is shown in Table I (see also experimental part below).
Figure 0003720361
The reactor should not be fitted with any type of baffles or internal components that cause a wide range of turbulence, and agitation can be achieved by, for example, gas rising or other types of impellers that can be mixed well without generating shear forces. ) Must be done in a very mild way. This is critically important for obtaining very high molecular weights, but contrary to the recommendation in US Pat. No. 4,784,990 “Growing Streptococcus microorganisms with vigorous stirring”.
Various alternative culture methods have been tested and found to be effective, for example, batch culture, fed-batch culture, semi-continuous fed-batch culture, and continuous culture.
Media Standard agar plates used were Blood Agar, BA (prepared from equine blood at the Central Bacteriological Laboratory, LU), Bacto Todd Hewitt Agar, THA (Difco), and Bactotryptone (Difco) 10 g / l. , Bacto yeast extract (Difco) 1 g / l, disodium hydrogen phosphate (Merck, PA) 1.6 g / l, sodium hydrogen carbonate (Merck, PA) 2 g / l, magnesium sulfate (Merck, PA) 0.1 g / l, It was a TYSA made from 20 g / l Bactogar (Difco) and 8 g / l sucrose (BDH). The initial liquid medium for testing was Todd Hewitt Broth (Difco) supplemented with the above Bact yeast extract.
Mutagenesis Chemical mutagenesis with nitrosoguanidine (Sigma) (Cerda Olmedo IE and Hanwalt PC (1968)) was used. Wild type strains were spread on TYSA plates. Centered on several crystals of nitrosoguanidine. After incubation, a clear zone of inhibition was evident around the nitrosoguanidine crystals. A mucoid colony growing near the edge of the zone was selected and further tested on it.
After growth in gradient centrifugation THB, the organisms were collected by centrifugation, washed once with 0.15 M sodium chloride and resuspended in sodium chloride. A Percoll gradient was pre-formed by centrifuging 10 ml of 25-50% percoll in 0.15 M sodium chloride with a fixed angle rotor at 15000 g av for 30 minutes at 4 ° C. Density marker beads (Pharmacia LKB Biotechnology AB, Uppsala, Sweden) were added as an internal density value standard. 50 μl of cell suspension was added to each of the preformed gradients, followed by centrifugation at 500-16000 g av at 4 ° C. for 20 minutes in a swing rotor (Percoll: Methodology and applications. Pharmacia Laboratory Separation Division).
Assessment of HA molecular weight One of the routinely used methods involves comparative electrophoresis using various molecular weight HA references (Pharmacia Ophthalmics) prepared from rooster and scabs. The reference product was diluted to contain approximately 1.1-1.2 mg / ml and stored at −20 ° C. in a freezer. Gels were made using 0.7-0.9% agarose. The buffer was phosphate-EDTA (2000 ml, 10-fold concentrated solution containing 57.5 g Na 2 HPO 4 , 13.1 g NaH 2 PO 4 , and 3.7 g Na 2 EDTA). The reference and sample were mixed with bromophenol blue / glycerol and run on a gel. The sample was allowed to enter the gel from the well at a constant current of 20 mA, and then gel electrophoresis was performed by applying a constant voltage of 30 V for about 20 hours. Finally, the gel was stained with toluidine blue O solution (0.4%) for 30 minutes. The gel was decolorized with 3% HAc for 15 minutes and 1% HAc for 15 minutes (3-4 times).
Another method used was SEC-Lalls (size exclusion chromatography-low angle laser light scattering). The above two methods agreed well up to about 6 million, and the variation was about 10% at larger values.
Supercapsular strains To screen for a preferred system for the production of high molecular weight hyaluronic acid, a number of series of experiments including the above steps were performed, the basic steps being It was found to be sorting. This feature can of course be described using various parameters, but we decided to use the density value at which the selected strain forms a band as the definition of the strain of the present invention. Strain as described above density 1.03 g / cm 3 or less, to form a band in the range of, for example, 1.02-1.03g / cm 3. Of course, this definition is also valid when methods other than density gradient centrifugation are used for strain selection.
Supercapsular strains also have a highly mucoid colony morphology. When applied to TYSA containing 8 g / l sucrose, very large (diameter >> 5 mm) sticky colonies grow. When measured with a phase contrast microscope, the thickness of the capsule is much greater in the supercapsular strain than in the capsule strain. The cell diameter is 1.0 ± 0.2 μm while the capsule diameter is >> 4 μm. The two supercapsular strains discussed further below, H22 and its derived strain H22NO, were both non-hemolytic and were found to produce HA with molecular weights up to about 7.5 million and up to about 9.5 million, respectively.
The supercapsulation of the present invention can be further measured by multivariate data analysis of the near-infrared spectrum of the whole cell. Analysis of the samples of this method is a well-known technique such as Jolliffe IT (1986), Massart et al. (1990), Box et al. (1978), Mark and Workman (1991), Marshall and Verdun (1990), Kalias and Lang ( 1994).
The first principal component (PC1) is related to the degree of capsulation. Compared to the first major component measured in weak capsular strains such as CCUG 23255, CCUG 27365, CCUG 27366 (herein referred to as reference strain), the supercapsular strain is 0.4 or more, preferably greater than 0.5, in particular 0.7 It has a larger first major component. The absolute value of this main component depends on the stock type. When tested, mutant H22 (below) had a first major component of 0.3 ± 0.1 and the corresponding value for H22NO was + 0.4 ± 0.05. Under the same experimental conditions, the PC1 of the reference strain was -0.2 to -0.3.
Sample preparation was performed on blood agar at 37 ° C, 0.9% of several colonies, dissolved in 1.5 ml of NaCl, and then 100 µl of cell suspension was spread on an objective lens to 25 x 25 mm and dried on a clean bench Including doing. NIR spectra were collected in reflectance mode (1100-2500 nm) using an InfraAlyzer 500, Bran & Luebbe.
Example 1
The supercapsular mutant S. equi ss equi H22 was cultured in a fed-batch culture in a 1000 ml medium in a Braun Melsungen fermentor equipped with a modified rotor blade with a large surface area. The culture temperature was 33 ° C., and the pH was maintained at 6.0 by adding sodium carbonate solution. Feeding started at the beginning of the log phase (4 hours) and continued for 3 hours. The feed rate corresponded to the dilution rate D = 0.02 h −1 . This feed rate is not optimal for the maximum molecular weight found in other experiments. The medium composition was that of Table I above. The feed contained sucrose 25 g / l, glucose 10 g / l, mannose 0.1 g / l, K 2 HPO 4 3 g / l and yeast extract 4 g / l.
Figure 0003720361
Example 2
The S. equi ss equi H22 strain was cultured in an air-rising reactor at a temperature of 37 ° C. using the following tryptone-based medium (concentration g / l).
Figure 0003720361
When growth began, the following composition (concentration g / l) "feed" was added: yeast extract (3), tryptone (8), K 2 HPO 4 (5), sucrose (350).
The feed volume was 1100 ml and it was added in 10 hours. The operating volume of the reactor was 4500 ml, which was kept constant by a pump operating at high speed connected to a level tube. During the semi-continuous culture operation, the pH value was kept at 7.1 by the addition of 2M Na 2 CO 3 . The change in the reactor was then followed for an additional 24.5 hours in order to stop the air and mainly monitor the HA degradation. Analysis of the most interesting parameters gave the following results:
Figure 0003720361
Therefore, although the feed rate and pH were not optimal for high molecular weight production, the molecular weight exceeded 6 million.
Example 3 Continuous Culture Study of Supercapsular Strains H22NO In this experiment, a temperature of 33 ° C., pH 6.0, and a constant dilution rate of 0.10 h −1 were used. Various steady-state media used in this experiment were changed as follows.
Figure 0003720361
The results of continuous culture were as follows.
Figure 0003720361
It is clear from the results that the molecular weights of the various steady states were large and the maximum value was 9.1 MDa. Although the yield of this particular example was quite small, in other series of experiments, up to about 350 mg / l was achieved. Increasing the phosphate level does not yield higher yields, but instead increases in molecular weight are observed. This proves the finding that there is often an inverse relationship between yield and molecular weight.
During one week of culture, the strain was stably non-hemolytic.
It is clear from the above experiments that the novel ultracapsular strain can produce much higher molecular weight HA than previously achieved with bacterial systems. Therefore, a very promising tool for HA production has been developed.
Figure 0003720361

Claims (9)

ムコイド形態およびパーコール勾配で1.03g/cm3以下の密度を有し、4μm以上の直径を有する莢膜を形成することができ、ならびに6×10 6 Daを超える分子量を有するヒアルロン酸を生産する能力を有するストレプトコッカス・エキ(Streptococcus equi)の超莢膜変異株である単離株であって、
前記超莢膜変移株は、
(i)ストレプトコッカス・エキを変異誘発に付して超莢膜変異株を得る段階、
(ii)パーコール勾配で1.03g/cm3以下の密度においてバンドを形成し、および4μm以上の直径を有する莢膜を形成することができる超莢膜変異株を、個別に、ヒアルロン酸の分解を促進する金属イオンを含まずヒアルロン酸の分解を促進する金属イオンをリアクターから放出させない培養培地中に培養する段階、
(iii)段階(ii)において生産されたヒアルロン酸の分子量を測定する段階、ならびに
(iv)段階(iii)において6×10 6 Daを超える分子量を有するヒアルロン酸を生産した超莢膜変異株を選別する段階
を含む方法により選別されることを特徴とする
前記単離株。
Capable of forming a capsule with a mucoid morphology and a Percoll gradient of 1.03 g / cm 3 or less, having a diameter of 4 μm or more, and producing hyaluronic acid having a molecular weight greater than 6 × 10 6 Da An isolated strain that is a hypercapsular variant of Streptococcus equi with the ability to:
The supercapsular transformant is
(I) subjecting Streptococcus equi to mutagenesis to obtain a hypercapsular mutant,
(Ii) A hypercapsular mutant strain capable of forming a band at a density of 1.03 g / cm 3 or less with a Percoll gradient and forming a capsule having a diameter of 4 μm or more is separately decomposed into hyaluronic acid. Culturing in a culture medium that does not contain metal ions that promote the degradation of hyaluronic acid and that does not release the metal ions from the reactor;
(Iii) measuring the molecular weight of the hyaluronic acid produced in step (ii), and (iv) a hypercapsular mutant that produced hyaluronic acid having a molecular weight of more than 6 × 10 6 Da in step (iii) The isolated strain, which is selected by a method including a step of selecting.
前記変異誘発が化学変異誘発である請求項1に記載の単離株。2. The isolate of claim 1 wherein the mutagenesis is chemical mutagenesis. 前記ヒアルロン酸が8×10 6 Daを超える分子量を有する請求項1に記載の単離株。2. The isolate according to claim 1, wherein the hyaluronic acid has a molecular weight greater than 8 × 10 6 Da . 前記ヒアルロン酸が9×10 6 Daを超える分子量を有する請求項1に記載の単離株。2. The isolate according to claim 1, wherein the hyaluronic acid has a molecular weight greater than 9 x 10 < 6 > Da . 前記培養培地が鉄および銅を含まない請求項1から4のいずれか一項に記載の単離株。The isolated strain according to any one of claims 1 to 4, wherein the culture medium does not contain iron and copper. 前記培養培地が5.6から5.95の範囲のpHを有する請求項1から5のいずれか一項に記載の単離株。6. The isolate according to any one of claims 1 to 5, wherein the culture medium has a pH in the range of 5.6 to 5.95. 前記株の培養段階が30℃から35℃の範囲の温度で行われる請求項1から6のいずれか一項に記載の単離株。The isolated strain according to any one of claims 1 to 6, wherein the culturing step of the strain is performed at a temperature in the range of 30 ° C to 35 ° C. 前記ストレプトコッカス・エキが寒天プレート上にコイドコロニーを形成しおよび液体培地中にヒアルロン酸を生産するストレプトコッカス・エキ亜種エキ(Srteptococcus equi ss equi)の株である請求項1から7のいずれか一項に記載の単離株。Any one of Streptococcus equi subsp equi (Srteptococcus equi ss equi) is a strain of claims 1 to 7, wherein said Streptococcus equi to produce hyaluronic acid in form of Koidokoroni and liquid medium on agar plates The isolated strain described in 1. (i)請求項1から8のいずれか一項に記載の単離株を、リアクター中、30℃から35℃の温度で、実質的にせん断力のない撹拌条件下、ヒアルロン酸の分解を促進する金属イオンを含まずヒアルロン酸の分解を促進する金属イオンをリアクターから放出させない、および5.6から6.2の範囲のpHを有する培養培地中にて培養して、6×10 6 Daを超える分子量を有するヒアルロン酸を生成せしめる段階、
(ii)段階(i)において生成したヒアルロン酸を培養培地から精製して、6×10 6 Daを超える分子量を有するヒアルロン酸を得る段階
を含む、6×10 6 Daを超える分子量を有するヒアルロン酸を生産する方法。
(I) the isolates according to any one of claims 1 to 8, the reactor, at a temperature of 35 ° C. from 30 ° C., without stirring under a substantially shear, promoting the degradation of hyaluronic acid Culturing in a culture medium that does not contain metal ions that promote the degradation of hyaluronic acid and that does not release from the reactor and has a pH in the range of 5.6 to 6.2, 6 × 10 6 Da Generating hyaluronic acid having a molecular weight greater than,
(Ii) purifying the hyaluronic acid formed in step (i) from the culture medium, comprising obtaining a hyaluronic acid having a molecular weight greater than 6 × 10 6 Da, hyaluronic acid having a molecular weight greater than 6 × 10 6 Da How to produce.
JP50073796A 1994-05-26 1995-05-24 Method and means for producing hyaluronic acid Expired - Lifetime JP3720361B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9401806-6 1994-05-26
SE9401806A SE9401806D0 (en) 1994-05-26 1994-05-26 Method and means for the production of hyaluronic acid
PCT/SE1995/000585 WO1995033067A1 (en) 1994-05-26 1995-05-24 Method and means for the production of hyaluronic acid

Publications (2)

Publication Number Publication Date
JPH10501128A JPH10501128A (en) 1998-02-03
JP3720361B2 true JP3720361B2 (en) 2005-11-24

Family

ID=20394129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50073796A Expired - Lifetime JP3720361B2 (en) 1994-05-26 1995-05-24 Method and means for producing hyaluronic acid

Country Status (13)

Country Link
US (3) US6090596A (en)
EP (1) EP0760863B1 (en)
JP (1) JP3720361B2 (en)
AT (1) ATE221576T1 (en)
AU (1) AU699404B2 (en)
CA (1) CA2191197C (en)
DE (1) DE69527626T2 (en)
DK (1) DK0760863T3 (en)
ES (1) ES2180639T3 (en)
NZ (1) NZ287583A (en)
PT (1) PT760863E (en)
SE (1) SE9401806D0 (en)
WO (1) WO1995033067A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110421A1 (en) 2015-12-24 2017-06-29 キッコーマン株式会社 Method for producing macromolecular hyaluronic acid

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9401806D0 (en) * 1994-05-26 1994-05-26 Pharmacia Ab Method and means for the production of hyaluronic acid
US7091008B1 (en) 1994-07-01 2006-08-15 The Board Of Regents Of The University Of Oklahoma Hyaluronan synthase genes and expression thereof in Bacillus hosts
US6951743B2 (en) 1997-10-31 2005-10-04 University Of Oklahoma Board Of Regents Hyaluronan synthase genes and expression thereof in bacillus hosts
US6455304B1 (en) 1994-07-01 2002-09-24 The Board Of Regents Of The University Of Oklahoma Hyaluronate synthase gene and uses thereof
AU762036B2 (en) 1997-10-31 2003-06-19 Board Of Regents Of The University Of Oklahoma, The Hyaluronan synthase gene and uses thereof
CN101113436B (en) 1997-10-31 2013-02-06 俄克拉何马大学董事会 Hyaluronan synthase gene and uses thereof
US20060188966A1 (en) 1998-04-02 2006-08-24 Deangelis Paul L Natural, chimeric and hybrid glycosaminoglycan polymers and methods of making and using same
US6987023B2 (en) 1998-04-02 2006-01-17 The Board Of Regents Of The University Of Oklahoma DNA encoding hyaluronan synthase from Pasteurella multocida and methods of use
US7223571B2 (en) 1998-04-02 2007-05-29 The Board Of Regents Of The Universtiy Of Oklahoma Targeted glycosaminoglycan polymers by polymer grafting and methods of making and using same
US7094581B2 (en) 1998-10-26 2006-08-22 The Board Of Regents Of The University Of Oklahoma Hyaluronan synthases and methods of making and using same
US6610666B1 (en) * 1999-11-08 2003-08-26 Bio-Hyos Ab Hyaluronan product and process for manufacturing thereof
RU2005102604A (en) * 2002-07-03 2005-09-10 Перикор Сайенс, Инк. (Us) COMPOSITION OF HYALURONIC ACID AND METHODS OF APPLICATION
KR100472007B1 (en) * 2002-08-19 2005-03-10 주식회사 코오롱 Microorganism producing hyaluronic acid and method of producing hyalironic acid using thereof
ATE543899T1 (en) 2002-08-19 2012-02-15 Kolon Life Science Inc HYALURONIC ACID PRODUCING MICROORGANISM AND PURIFICATION PROCESS FOR HYALURONIC ACID
US6946551B2 (en) 2003-03-12 2005-09-20 New Life Resources, Llc Preparation of hyaluronic acid from eggshell membrane
US20040180025A1 (en) * 2003-03-12 2004-09-16 New Life Resources, Llc Therapeutic, nutraceutical and cosmetic applications for eggshell membrane and processed eggshell membrane preparations
US20080063677A1 (en) * 2004-03-10 2008-03-13 New Life Resources, Llc Therapeutic, nutraceutical and cosmetic applications for eggshell membrane and processed eggshell membrane preparations
US8580315B2 (en) * 2004-03-10 2013-11-12 Esm Technologies, Llc Anti-inflammatory activity of eggshell membrane and processed eggshell membrane preparations
US7002007B2 (en) * 2004-05-28 2006-02-21 Calcigen Corporation Production of high molecular weight hyaluronates
US8802651B2 (en) 2004-06-30 2014-08-12 Abbott Medical Optics Inc. Hyaluronic acid in the enhancement of lens regeneration
WO2006032538A1 (en) 2004-09-23 2006-03-30 Bayer Cropscience Gmbh Methods and means for producing hyaluronan
EP1640457A1 (en) * 2004-09-23 2006-03-29 Bayer CropScience GmbH Process and means for the production of hyaluronan
EP1772052A1 (en) 2005-10-05 2007-04-11 Bayer CropScience GmbH Improved methods and means for production of hyaluronic acid
WO2007089677A2 (en) * 2006-01-27 2007-08-09 University Of Massachusetts Systems and methods for producing biofuels and related materials
US7674781B2 (en) * 2006-04-28 2010-03-09 Heather Sheardown Hyaluronic acid-retaining polymers
KR101509139B1 (en) * 2006-11-23 2015-04-08 주식회사 엘지생명과학 Method for purifying hyaluronic acid
US9579341B2 (en) 2007-05-16 2017-02-28 Johnson & Johnson Consumer Inc. Preserved compositions containing hyaluronic acid or a pharmaceutically-acceptable salt thereof and related methods
US8609634B2 (en) 2007-05-16 2013-12-17 Mcneil-Ppc, Inc. Preserved compositions containing hyaluronic acid or a pharmaceutically-acceptable salt thereof and related methods
KR101322227B1 (en) 2011-09-30 2013-10-28 일동제약주식회사 Streptococcus dysgalactiae ID9103 and method for production of hyaluronic acid using the same
JP7444370B2 (en) * 2017-08-04 2024-03-06 株式会社明治 Cultivation method of lactic acid bacteria
US11129862B2 (en) 2017-08-30 2021-09-28 Johnson & Johnson Consumer Inc. Ophthalmic compositions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141973A (en) * 1975-10-17 1979-02-27 Biotrics, Inc. Ultrapure hyaluronic acid and the use thereof
US4517295A (en) * 1983-02-18 1985-05-14 Diagnostic, Inc. Hyaluronic acid from bacterial culture
NO161573C (en) * 1983-11-25 1989-08-30 Miles Inc PROCEDURE FOR THE PREPARATION OF HYALURONIC ACID.
US4784990A (en) * 1985-01-18 1988-11-15 Bio-Technology General Corporation High molecular weight sodium hyaluronate
CA1328841C (en) 1987-06-12 1994-04-26 Karen K. Brown Method for the microbiological production of non-antigenic hyaluronic acid
JPS6467196A (en) * 1987-09-08 1989-03-13 Yakult Honsha Kk Production of hyaluronic acid and strain used therefor
JPH07116243B2 (en) * 1988-12-21 1995-12-13 理研ビタミン株式会社 Method for producing hyaluronic acid beads
SE8900422D0 (en) * 1989-02-08 1989-02-08 Pharmacia Ab CIRCULATED HYALURONATE GELS AND PROCEDURES FOR PREPARING THESE
US5015577A (en) * 1989-08-29 1991-05-14 Board Of Regents, The University Of Texas System DNA encoding hyaluronate synthase
GB9024223D0 (en) * 1990-11-07 1990-12-19 Fermentech Ltd Production of hyaluronic acid
US5681825A (en) 1993-03-15 1997-10-28 Lindqvist; Bengt Surgical method
SE9401806D0 (en) 1994-05-26 1994-05-26 Pharmacia Ab Method and means for the production of hyaluronic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110421A1 (en) 2015-12-24 2017-06-29 キッコーマン株式会社 Method for producing macromolecular hyaluronic acid

Also Published As

Publication number Publication date
ATE221576T1 (en) 2002-08-15
US20030134393A1 (en) 2003-07-17
US7323329B2 (en) 2008-01-29
EP0760863A1 (en) 1997-03-12
JPH10501128A (en) 1998-02-03
AU2633595A (en) 1995-12-21
US6537795B1 (en) 2003-03-25
EP0760863B1 (en) 2002-07-31
CA2191197A1 (en) 1995-12-07
US6090596A (en) 2000-07-18
DE69527626D1 (en) 2002-09-05
ES2180639T3 (en) 2003-02-16
DK0760863T3 (en) 2002-11-25
SE9401806D0 (en) 1994-05-26
PT760863E (en) 2002-11-29
WO1995033067A1 (en) 1995-12-07
NZ287583A (en) 1998-02-26
AU699404B2 (en) 1998-12-03
DE69527626T2 (en) 2003-02-13
CA2191197C (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP3720361B2 (en) Method and means for producing hyaluronic acid
Cadmus et al. Synthetic media for production of quality xanthan gum in 20 liter fermentors
Vincent et al. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana
JP3071583B2 (en) High molecular weight pullulan and method for producing the same
KR100414607B1 (en) Sugar compound
JP2009050271A (en) Glucuronofucan sulfate
TW434313B (en) Process for producing hyaluronic acid using a mutant strain of streptococcus zooepidemicus capable of producing hyaluronic acid at high yield
EP0001895A1 (en) Heteropolysaccharide, its preparation by fermentation, and compositions and complexes containing it
Saranraj et al. Production, optimization and spectroscopic studies of hyaluronic acid extracted from Streptococcus pyogenes
Ogrodowski et al. Production of hyaluronic acid by Streptococcus: the effects of the addition of lysozyme and aeration on the formation and the rheological properties of the product
JP2856992B2 (en) Polysaccharides, production and production strains
Sa´ nchez et al. Characterization of xanthans from selected Xanthomonas strains cultivated under constant dissolved oxygen
WO2022136277A1 (en) Bacterial strains for biocellulose production
JP3722522B2 (en) Process for producing β-1,3-glucan
KR100472007B1 (en) Microorganism producing hyaluronic acid and method of producing hyalironic acid using thereof
US4950604A (en) Culture of a microorgansim of the genus klebsiella sp., having a high content of rhamnose
JPWO2002086116A1 (en) Sulfated fucoglucuronomannan
RU2740710C1 (en) Bacterial strain paenibacillus polymyxa-producer of levan
Piggott et al. Alginate synthesis by mucoid strains of Pseudomonas aeruginosa PAO
KR100303066B1 (en) Streptococcus sp. microorganism producing hyaluronic acid
JPH0686671A (en) Method for decomposition of polysaccharide and decomposition product
RU2207370C1 (en) Strain of bacterium pseudoalteromonas issachenkonii kmm 3549t as producer of fucoidane hydrolase and nutrient medium for its culturing
JPH0583237B2 (en)
JP4752024B2 (en) Cell wall degrading enzyme, producing microorganism, and protoplast preparation method using the same
JPH099962A (en) Alginic acid hydrolyzing enzyme and hydrolysis of alginic acid

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050411

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term