JP3719945B2 - Hot static pressure bonding method and first wall structure manufacturing method - Google Patents

Hot static pressure bonding method and first wall structure manufacturing method Download PDF

Info

Publication number
JP3719945B2
JP3719945B2 JP2001106198A JP2001106198A JP3719945B2 JP 3719945 B2 JP3719945 B2 JP 3719945B2 JP 2001106198 A JP2001106198 A JP 2001106198A JP 2001106198 A JP2001106198 A JP 2001106198A JP 3719945 B2 JP3719945 B2 JP 3719945B2
Authority
JP
Japan
Prior art keywords
bonding
slit
canning
joining
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001106198A
Other languages
Japanese (ja)
Other versions
JP2002303690A (en
Inventor
憲介 毛利
祥裕 小原
幹男 榎枝
敏公 黒田
聡 佐藤
歳久 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001106198A priority Critical patent/JP3719945B2/en
Publication of JP2002303690A publication Critical patent/JP2002303690A/en
Application granted granted Critical
Publication of JP3719945B2 publication Critical patent/JP3719945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間静圧接合法に関し、特に熱間静圧接合法を用いて核融合炉の第一壁構造体などを製造する方法に関する。
【0002】
【従来の技術】
核融合炉ブランケット第一壁は、核融合炉においてプラズマ閉じ込めのための真空容器の最も内側の壁であって、ステンレス鋼や高融点金属で構成され、表面に炭素やベリリウムなど原子番号の小さい物質をコーティングして形成する。
第一壁は、高温下でヘリウム、水素、中性子などの過酷な照射を受けるため、効果的な冷却が必須である。このため、基材のステンレス鋼と表面のベリリウム張りの間に伝熱性能のよい銅の層を設けてその中に冷却管を埋め込んだ構造が普通に用いられる。なお容器内の電磁界により第一壁内に生成する渦電流を抑制するためベリリウム層と銅層にはスリットを設けることが好ましい。
【0003】
従来、第一壁のように内部に多数の貫通孔を有する比較的長尺の板状体は、初めに形成された板状体に機械加工や電解加工によって貫通孔を形成するか、溝を有する多数の板状体を平板上に載置して電子ビーム溶接することにより形成していた。
しかしながら、これらの方法では極めて高度な加工技術を必要とし高価になること、溶接による変形により寸法精度が得られないこと、また接触面全面の溶接が困難であることなどの問題があった。
【0004】
これに対して、2枚の板状部材に冷却管を挟み込み加熱下で加圧して拡散接合させる熱間静圧接合法を利用して、接触面同士を接合させることもできる。この方法は、図8に断面を示すように、圧力を伝達する流体が接合面に滲入しないように接触面の周囲をシール溶接するが、溶接線の近辺では拡散接合が行われないため、接合の不十分な部分を切り落す必要があった。
【0005】
こうした問題を解決する方法として、本願出願人の出願に係る特開平10−54688号公報に、キャニングを用いた熱間静圧接合法が開示されている。開示方法は、板状部材には冷却管を嵌合させる溝が形成されており、複数の冷却管を溝に嵌め込んで合体させた部材を、図9の分解組立図に示すように、厚さ1mmから3mmのシール板で囲って、図10の斜視図に示すように、全周をシール溶接して被覆(キャニング)し、内部を真空にし、熱間静圧加圧処理(HIP)装置で加工処理して接触面を拡散接合させるものである。この方法は、静圧が薄いシール板を介して部材に作用するようにしたもので、部材の接触部分に媒体が滲入することが無く、設計が容易でコストも低い上、寸法精度が高く、熱荷重、内圧荷重、電磁力負荷に対して安全性の高い第一壁を製造することができる。
【0006】
しかし、上記開示発明によっても、キャニングに使用したシール材が母材に拡散接合して固着するため、寸法精度を確保する場合には機械加工によりシール材を切削除去して製品化する必要がある。なお、寸法精度が問題にならない場合にも、母材が異質の材料を接合したものであるときには、シール材を母材に合わせることができない。
また、第一壁のように切り込みや溝が必要な場合には、予め切り込みなどを形成した材料を使って熱間静圧接合をすると切り込み等の部分で拡散接合が生じて切り込み等が塞がったり変形したりする。このため、加工後に接合した材料にスリット等を形成しなくてはならず、加工費が増大する問題があった。
【0007】
【発明が解決しようとする課題】
そこで、本発明が解決しようとする課題は、熱間静圧接合法を適用するときに仕上げに必要な機械加工を簡略化して低コストで製品を製造することができる方法を提供することである。
特に、熱間静圧接合法を用いてより簡単に低コストで核融合炉第一壁を製作する方法を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の熱間静圧接合法は、接合する材料の接合面同士を当接させ、当接した接合材料の周囲を接合防止材料を介して薄いキャニング材で囲繞し、接合面に加圧媒体が侵入しないようにキャニング材をシール溶接して密封し、加熱下で加圧媒体を介して静圧を印加することにより接合材料同士を拡散接合させ、その後キャニング材を剥離させて製品を作製することを特徴とする。
本発明は、接合防止材を介して接合材料の周囲をキャニング材で囲繞するようにしてあるから、熱間静圧接合法(HIP)を施した後でもキャニング材と接合材料は接合していない。したがって、施工後にキャニング材と接合防止材を製品表面から容易に剥離することができる。このため、従来のように切削加工を行う必要がなく、製造コストも低減する。
【0009】
なお、キャニング材で囲繞した後で真空に引くことにより、接合材料同士の接触面部分に余剰のガスが残留することを防いで、良好な接合が得られる。
また、接合材料に溝が必要な場合には、接合材料に予め溝を形成しておき、溝の部分に接合防止材を挿入しておけば、HIPによっても溝の壁同士が融着することなく、処理後に接合防止材を取り除くことによって、簡単に溝を復元することができる。
なお、結合防止材は、結合しようとする金属と接合を起こさない材料で高温に耐えるものであればよく、カーボンや窒化ホウ素などが適当である。また薄板、繊維、粒体などの形状で適用することができる。しかし、ステンレス鋼や銅の処理に使用するときは、剥離性を考慮に入れるとアルミナ長繊維から形成された布あるいは綿が結合防止材として適当である。また、特に溝内に仕込む必要があるときには、アルミナ長繊維から形成された布が結合防止材として適当である。
【0010】
また、本発明の第一壁構造物の製造方法は、銅もしくは銅合金にステンレス鋼製の水管を挟み込んでブロックを形成し、そのブロックの裏側にステンレス鋼の裏板を当接させて、接合防止材を介して薄いステンレス鋼製キャニング材で囲繞密封して、加熱下で静圧を印加して拡散接合し、キャニング材を剥離して中間構造物を得た後、さらにその中間構造物の銅表面側にベリリウムを当接させて、再度接合防止材を介して薄いキャニング材で囲繞密封して、加熱下で静圧を印加して拡散接合することを特徴とする。
【0011】
本発明の第一壁構造物製造法によれば、幾つかの異なる材料を含み多数の冷却管を内蔵した複雑な構成を有する第一壁を、部材同士が互いに強固な接合面を介して合体したものとして比較的容易に形成して、キャニング材と接合防止材を簡単に剥離して製品とすることができる。
このようにして形成した第一壁は、核融合炉のプラズマから受ける輻射熱と壁内部で発生する核発熱を熱伝導性のよい銅あるいは銅合金で冷却管に伝導し冷却管内の冷媒で外部に排泄することができるので、耐熱性が高く寿命が長い。
【0012】
また、第一壁には垂直方向、すなわち真空容器内の構造物に流れる渦電流に対して垂直方向にスリットを設けて、渦電流の発生を抑制するようにする必要がある。このスリットは、上記熱間静圧接合法により構造物を形成した後で機械加工により形成することができる。
本願発明では、接合前の部材に予めスリットを入れて、このスリット内に接合防止材を挿入しておいてから、キャニングして熱間静圧接合法を適用する。この方法によれば、熱間静圧接合法施工後にスリット内の接合防止材を除去することにより、極めて容易にスリットを形成することができる。
【0013】
【発明の実施の形態】
以下、本発明について実施例に基づき図面を参照して詳細に説明する。
【0014】
【実施例】
本実施例は、本発明の熱間静圧接合法を用いた第一壁の製造方法である。
図1は本実施例で対象とする第一壁の斜視図、図2はホールダを含む垂直面で切断したときの断面図、図3は図2の切断面に垂直な面で基板部分を切断した断面図、図4は上部を水平面で切断したときの断面図、図5は本実施例の第一壁製造方法において始めの工程の部材の組み合わせを説明する分解組立図、図6は後の工程における部材の組み合わせを説明する分解組み立て図、図7は第一壁上端部の拡大斜視図である。
【0015】
本実施例で製造しようとする製品は、図1から図4に示したような核融合炉の第一壁で、ステンレス鋼の基板1に熱伝導体として銅ベースの金属層2を介在させて表面にベリリウム板3が張り付けられた構造になっている。銅ベース金属層2の中には冷却管4が通っている。基板1中には給水ヘッダー11とこれに接続する給水孔12、および排水ヘッダー13とこれに接続する排水孔14が、上下に対応して例えば6対設けられている。給水孔12のヘッダーと反対側端は給水サブヘッダー15に接続され、排水孔14のヘッダーと反対側端は排水サブヘッダー16に接続されている。給水サブヘッダー15と排水サブヘッダー16はそれぞれ接続された2本の冷却管4により連絡されている。
また、給水ヘッダー11と排水ヘッダー13は支持部材5に設けられた給水孔51と排水孔52にそれぞれ接続されている。
【0016】
第一壁には、渦電流の発生を抑制するため縦方向に幅約1mmのスリット6が入れられている。スリット6は給水孔12と排水孔14の対を区切る位置に、ベリリウム層3と銅金属層2については上から下まで貫通して、またステンレス基板1については給水ヘッダー11と排水ヘッダー13の部分を残して設けられている。
支持部材5を介して外部から供給された冷却水は、給水ヘッダー11から給水孔12を通って冷却管4に供給され、第一壁内及び表面に発生する熱を吸収して排水孔14を通って排水ヘッダー13を介して外部に排出される。
【0017】
本実施例における製造方法を図5と図6により説明する。
図5は、冷却管4を通した銅金属層2をステンレス基板1上に固定する工程における部材の組み立て方法を示す分解組み立て図である。
冷却管4はステンレス鋼管で、銅金属層2の面に沿って伸び、上端と下端でステンレス基板1側に折れ曲がった形状を有する。銅金属層2は、表面側の表面部材21とステンレス基板1側の内面部材22に分割されており、それぞれ対向する面に冷却管4を嵌合して案内する溝が冷却管の数だけ並列して設けられている。ステンレス基板1はステンレス製の平板部材であって、上端と下端に冷却管4に嵌合する溝を設けている。さらにステンレス基板1の上端部と下端部にカバー部材17が当接するようにする。このカバー部材17にはそれぞれ冷却管4の端部に嵌合する溝が設けられている。
【0018】
これらの部材を組み合わせた上で、その全周にアルミナ繊維製の布地からなる接合防止材71,72,73,74を介してシール材75,76,77,78を当てて囲繞し、シール材同士をシール溶接して密封する。シール材は厚さ約1mmの鋼製の薄板を利用することができる。
接合する部材の背面に当てる接合防止材71とシール材75には、冷却管4が通る穴79,80が開けられていて、シール材75を冷却管4の外壁に溶接で接合して、シール材75,76,77,78で囲繞された部分を気密にする。また、接合部材の一方の側面に当てる接合防止材72とシール材76には適当な穴が設けられ、シール材76には真空配管と接続される真空ノズル81が設けられている。
【0019】
各部のシール溶接を完了した後に、真空ノズル81から吸引してシール材75,76,77,78で囲繞された内部空間を真空にする。内部空間の真空が確認された後、真空ノズル81を封止して気密シールを行う。このようにして得られたシール材で囲繞され真空を維持した接合部材ブロックは、部材の接触面に加圧媒体が滲入しないので、静圧は柔軟なシール材を介して部材に作用して接合面に及ぶ。組み上げた接合部材ブロックを熱間静圧接合装置にセットし、例えば1000℃から1100℃に加熱した状態でアルゴン圧もしくはヘリウム圧150MPaから200MPaを印加して処理する。すると、接合部材の接触面が高温下で圧接する間に物質の拡散が起こり相互に冶金的に接合するため、極めて強固に一体化した構造体を得ることができる。
【0020】
その後、装置から取り外して、シール材75,76,77,78を接合部材から剥離し、冷却管4がステンレス基板1の裏面から突出している部分を削り落として平面にして中間構造体を形成する。シール材と接合部材の間に介在している接合防止材は、接合部材ともシール材とも馴染まない上、高温下の処理を受けても性能の劣化が小さいので、シール材と接合防止材は接合部材から簡単に剥離することができる。従って、従来の熱間静圧接合法による場合のように構造体表面に融着したシール材層を研削することにより形状を整えたりしなくても、接合防止材とシール材を剥離すればそのまま設計通りの形状を備えた中間構造体になるので、表面処理工程が簡略化する利点がある。
【0021】
次に、図6に示すような組み立てにより、上記中間構造体の表面にベリリウム層を形成する。
中間構造体7の全面にベリリウム層3を当接させて、その周囲にアルミナ繊維製の接合防止材82,83,84,85を介してシール材86,87,88,89を当てて囲繞し、シール材同士をシール溶接して密封する。また、中間構造体7の一方の側面に当てる接合防止材83には適当な穴が設けられ、これに対応するシール材87には真空ノズル90が設けられている。
【0022】
各部のシール溶接を完了した後に、真空ノズル90から吸引してシール材86,87,88,89で囲繞された内部空間を真空にして、真空ノズル90を封止して気密シールを行う。シール材を囲繞し真空を維持した中間構造体を熱間静圧接合装置にセットし、例えば550℃から625℃に加熱した状態でアルゴン圧150MPaから200MPaを印加して処理すると、ベリリウム層3と中間構造体7の銅金属表面が拡散接合して強固に一体化した構造体を得ることができる。
処理後の構造体を熱間静圧接合装置から取り外して、接合防止材82,83,84,85とシール材86,87,88,89を剥離し、設計通りの形状を備えた第一壁構造体を得る。
【0023】
こうして得られた第一壁構造体において、ステンレス基板1中に冷却水路11,13、12,14を形成し、銅金属層2中の冷却管4に接続するサブヘッダー15,16を形成するため、ステンレス基板1の中央部および上端部と下端部に簡単な機械加工を行う。
まず、ステンレス基板1の横腹から給水ヘッダー11と排水ヘッダー13となる穴を貫通させる。この穴は、後に、両端にプラグを当てて溶接で密封する。
【0024】
また、図7の拡大斜視図に示すように、ステンレス基板1の上端と下端でそれぞれ間仕切り18を残して切り欠き、冷却管4の端面を露出させ、さらにステンレス基板1の中央部に設けた給水ヘッダー11と連通する給水孔12と、排水ヘッダー13と連通する排水孔14を鑽孔する。この切り欠き部19は、内側に切り欠きを有する蓋体20をかぶせて溶接で固定し、給水孔12もしくは排水孔14と例えば2個の冷却管4を連通するための給水サブヘッダー15もしくは排水サブヘッダー16を形成する。
【0025】
間仕切り18の位置に、約1mmのスリット6を入れる。スリット6は、ステンレス基板1の部分では給水ヘッダー11や排水ヘッダー13まで達しない位置までに止め、銅金属層2とベリリウム層3では上端から下端まで貫通して形成する。スリット6は例えばウオータージェットで加工することができる。
最後に、ステンレス基板1の背面に電子ビーム溶接により支持部材5を固定し、給水孔51と排水孔52がそれぞれ給水ヘッダー11と排水ヘッダー13と連通するように設ける。
【0026】
なお、熱間静圧接合法により構造体を形成した後でスリット6を形成する代わりに、あらかじめスリットを形成したステンレス鋼材とスリット位置で切断して細片化した銅金属板とベリリウム板を組み合わせて熱間静圧接合法で加工処理し一体化して第一壁を製造することができる。
この場合は、ステンレス鋼材に形成したスリットの中に接合防止材を押し込んだり、銅金属板やベリリウム板のスリット位置に接合防止材を挟み込んでから、これらの部材を組み合わせて、その全周に接合防止材を介してシール材を当てて囲繞しシール溶接して密封し、熱間静圧接合法で加工処理する。
このように、スリット部分に接合防止材を仕込むことで、熱間静圧接合法を施工してもスリット部分が拡散接合することがなく、また施工後に接合防止材を引き剥がすことにより簡単にスリットが復元される。
したがって、構造体を形成した後で機械的な加工を行ってスリットを形成するのと比較して、極めて容易に第一壁を製造することができる。
【0027】
本発明の熱間静圧接合法により製作した第一壁は、冷却管が独立した円管体で形成されるので、異形断面の冷却ダクトと比較して応力集中が低減し、熱荷重、内圧荷重、非対称な電磁力負荷に対して、耐圧バウンダリーとしての健全性能が強化される。また、円形断面の冷却管を利用することにより、必要冷却量が与えられれば、あとは配置間隔と管径さえ決めればよく、設計が簡素化される。
さらに、接合部材は接合前処理として複雑な工作を必要としないため、従来工法と比較して加工工程が少なくなり、製造コストが低減する。
【0028】
また、冷却管の周囲をステンレス鋼より熱伝導度が数10倍高い銅もしくは銅合金で囲繞するため冷却効果が大きくなるので、プラズマディスラプションが起きて第一壁最外面に極端な温度ピークが発生したときにも、短時間かつ一様に冷却することが出来る。
なお、本発明の製法で製作した第一壁は、冷却管を両側から同じ銅金属で挟み込む構造を持つため、相互拡散により接合面における同質性に優れる。したがて、大きな電磁力によるせん断荷重や曲げ荷重を受けても、接合界面に亀裂が発生しにくく、設計の信頼性が高い。
【0029】
なお、上記実施例は、本発明の熱間静圧接合法を核融合炉第一壁の製造に適用した例であるが、本発明の対象は第一壁に限らず、従来のキャニングを用いる熱間静圧接合法が適用できるもの全てに適用することができることは言うまでもない。
また、上記実施例における接合防止材はアルミナ繊維製の綿もしくは布地を用いたが、対象とする接合部材の材質と形状に従って適当なものを選択することができる。カーボンや窒化ホウ素などの難焼結性セラミックも使用することができ、また粉体を表面に塗布するようにしても良い。
【0030】
【発明の効果】
以上説明したように、従来の方法ではシール材が製品表面に付着するため後加工が必要になるところ、本発明の熱間静圧接合法は、シール材を簡単に剥離させることができるため、簡単な仕上げ加工で精度の高い製品を得ることができる。また、スリット部分がある場合も、あらかじめスリット加工した部材を組み立てて熱間静圧接合させることにより、精度の高いスリットを形成することができる。
特に、核融合炉第一壁のような複合構造体についても、本発明の熱間静圧接合法を用いることにより簡単かつ低コストで製造することができる。
【図面の簡単な説明】
【図1】本発明の熱間静圧接合法の実施例で対象とする第一壁の斜視図である。
【図2】図1の第一壁を垂直面で切断したときの断面図である。
【図3】図1の第一壁を図2の切断面に垂直な面で切断したときの断面図である。
【図4】図1の第一壁の上部を水平面で切断したときの断面図である。
【図5】本実施例の第一壁製造方法において始めの工程の部材の組み合わせを説明する分解組立図である。
【図6】本実施例の第一壁製造方法において後の工程における部材の組み合わせを説明する分解組立図である。
【図7】本実施例で製造する第一壁の上端部の部分拡大斜視図である。
【図8】従来の熱間静圧接合法で製作した部材の断面図である。
【図9】従来の熱間静圧接合法における初期の工程を説明する分解組立図である。
【図10】従来の熱間静圧接合法における中間構造体を示す斜視図である。
【符号の説明】
1 ステンレス鋼の基板
2 銅金属層
3 ベリリウム層
4 冷却管
5 支持部材
6 スリット
7 中間構造体
11 給水ヘッダー
12 給水孔
13 排水ヘッダー
14 排水孔
15 給水サブヘッダー
16 排水サブヘッダー
17 カバー部材
21 表面部材
22 内面部材
51 給水孔
52 排水孔
71,72,73,74 接合防止材
75,76,77,78 シール材
79,80 冷却管用穴
81 真空ノズル
82,83,84,85 接合防止材
86,87,88,89 シール材
90 真空ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot hydrostatic bonding method, and more particularly to a method of manufacturing a first wall structure of a nuclear fusion reactor using the hot hydrostatic bonding method.
[0002]
[Prior art]
The first blanket of the fusion reactor blanket is the innermost wall of the vacuum vessel for confining the plasma in the fusion reactor, and it is made of stainless steel or refractory metal and has a low atomic number such as carbon or beryllium on the surface. Is formed by coating.
Since the first wall is subjected to severe irradiation such as helium, hydrogen, and neutrons at a high temperature, effective cooling is essential. For this reason, a structure in which a copper layer having good heat transfer performance is provided between stainless steel as a base material and beryllium covering the surface and a cooling pipe is embedded therein is usually used. In order to suppress eddy currents generated in the first wall due to the electromagnetic field in the container, it is preferable to provide slits in the beryllium layer and the copper layer.
[0003]
Conventionally, a relatively long plate-like body having a large number of through-holes inside, such as the first wall, is formed by forming through-holes in the plate-like body formed first by machining or electrolytic processing, or by providing grooves. It was formed by placing a large number of plate-like bodies on a flat plate and performing electron beam welding.
However, these methods have a problem that they require extremely high processing techniques and are expensive, dimensional accuracy cannot be obtained due to deformation caused by welding, and welding of the entire contact surface is difficult.
[0004]
On the other hand, the contact surfaces can also be joined using a hot hydrostatic joining method in which a cooling pipe is sandwiched between two plate-like members and pressurized and heated under diffusion. In this method, as shown in a cross section in FIG. 8, the periphery of the contact surface is sealed and welded so that the fluid that transmits the pressure does not enter the joint surface, but diffusion bonding is not performed in the vicinity of the weld line. It was necessary to cut off the insufficient part.
[0005]
As a method for solving such a problem, a hot hydrostatic bonding method using canning is disclosed in Japanese Patent Application Laid-Open No. 10-54688, which is filed by the present applicant. In the disclosed method, a groove for fitting a cooling pipe is formed in the plate-shaped member, and a member obtained by fitting a plurality of cooling pipes into the groove is combined as shown in an exploded view of FIG. As shown in the perspective view of FIG. 10, surrounded by a seal plate with a thickness of 1 mm to 3 mm, the entire circumference is sealed and coated (canning), the inside is evacuated, and a hot hydrostatic pressure treatment (HIP) apparatus The contact surface is diffusion bonded by processing. In this method, the static pressure acts on the member through a thin seal plate, the medium does not penetrate into the contact portion of the member, the design is easy, the cost is low, and the dimensional accuracy is high. A first wall having high safety against thermal load, internal pressure load, and electromagnetic force load can be manufactured.
[0006]
However, according to the disclosed invention as well, since the sealing material used for canning is diffusion bonded to the base material and fixed, it is necessary to cut and remove the sealing material by machining in order to ensure dimensional accuracy. . Even when the dimensional accuracy is not a problem, the sealing material cannot be matched with the base material when the base material is formed by joining different materials.
In addition, when a cut or groove is required as in the first wall, if hot-static pressure bonding is performed using a material that has been previously formed with a cut or the like, diffusion bonding occurs at the cut or the like and the cut or the like is blocked. Or deform. For this reason, there is a problem that slits and the like must be formed in the material joined after processing, which increases processing costs.
[0007]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to provide a method capable of producing a product at a low cost by simplifying the machining necessary for finishing when applying the hot hydrostatic bonding method.
In particular, it is to provide a method of manufacturing the first wall of a fusion reactor more easily and at low cost by using a hot hydrostatic bonding method.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the hot hydrostatic bonding method of the present invention brings the bonding surfaces of the materials to be bonded into contact with each other, surrounds the contacted bonding material with a thin canning material via a bonding prevention material, The canning material is sealed and sealed so that the pressurized medium does not enter the joint surface, and the joining material is diffusion bonded by applying static pressure through the pressurized medium under heating, and then the canning material is peeled off. And producing a product.
In the present invention, since the periphery of the bonding material is surrounded by the canning material via the bonding preventing material, the canning material and the bonding material are not bonded even after the hot hydrostatic bonding (HIP) is performed. Therefore, the canning material and the bonding preventing material can be easily peeled off from the product surface after the construction. For this reason, it is not necessary to perform cutting as in the prior art, and the manufacturing cost is reduced.
[0009]
In addition, by drawing the vacuum after surrounding with the canning material, it is possible to prevent the surplus gas from remaining on the contact surface portion between the bonding materials, and to obtain good bonding.
In addition, if a groove is required for the bonding material, the groove walls can be fused even by HIP if a groove is formed in the bonding material in advance and a bonding preventing material is inserted into the groove. However, the groove can be easily restored by removing the anti-bonding material after the treatment.
The bonding preventing material may be any material that does not cause bonding with the metal to be bonded and can withstand high temperatures, and carbon, boron nitride, and the like are suitable. Moreover, it can apply with shapes, such as a thin plate, a fiber, and a granule. However, when used for the treatment of stainless steel or copper, a cloth or cotton formed from alumina long fibers is suitable as a binding preventing material in consideration of peelability. In particular, when it is necessary to prepare in the groove, a cloth formed of alumina long fibers is suitable as a binding preventing material.
[0010]
In addition, the first wall structure manufacturing method of the present invention forms a block by sandwiching a stainless steel water pipe between copper or a copper alloy, and a stainless steel back plate is brought into contact with the back side of the block, and joined. Sealed with a thin stainless steel canning material through a preventive material, applied with static pressure under heat, diffusion bonded, peeled off the canning material to obtain an intermediate structure, and then the intermediate structure It is characterized in that beryllium is brought into contact with the copper surface side, sealed again with a thin canning material through a bonding preventing material, and subjected to diffusion bonding by applying a static pressure under heating.
[0011]
According to the first wall structure manufacturing method of the present invention, the first wall having a complicated configuration including a plurality of different materials and incorporating a large number of cooling pipes is combined through a joint surface in which members are mutually strong. As a result, it can be formed relatively easily, and the canning material and the joining prevention material can be easily peeled to form a product.
The first wall formed in this way conducts radiant heat received from the plasma of the fusion reactor and nuclear heat generated inside the wall to the cooling pipe with copper or copper alloy having good thermal conductivity, and to the outside with the refrigerant in the cooling pipe. Since it can be excreted, it has high heat resistance and long life.
[0012]
In addition, it is necessary to provide a slit in the first wall in the vertical direction, that is, in a direction perpendicular to the eddy current flowing through the structure in the vacuum vessel, to suppress the generation of eddy current. The slit can be formed by machining after the structure is formed by the hot hydrostatic bonding method.
In the present invention, a slit is previously formed in the member before joining, and a joining preventing material is inserted into the slit, and then canned and the hot hydrostatic joining method is applied. According to this method, the slit can be formed very easily by removing the bonding preventing material in the slit after the hot hydrostatic bonding method.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
[0014]
【Example】
A present Example is a manufacturing method of the 1st wall using the hot hydrostatic bonding method of this invention.
FIG. 1 is a perspective view of a first wall targeted in this embodiment, FIG. 2 is a cross-sectional view taken along a vertical plane including a holder, and FIG. 3 is a substrate section cut along a plane perpendicular to the cut plane of FIG. 4 is a cross-sectional view when the upper portion is cut by a horizontal plane, FIG. 5 is an exploded view for explaining the combination of members in the first step in the first wall manufacturing method of the present embodiment, and FIG. FIG. 7 is an exploded perspective view of the upper end portion of the first wall, illustrating the assembly of the members in the process.
[0015]
The product to be manufactured in this embodiment is a first wall of a nuclear fusion reactor as shown in FIGS. 1 to 4 and a stainless steel substrate 1 with a copper-based metal layer 2 interposed as a heat conductor. The beryllium plate 3 is attached to the surface. A cooling pipe 4 passes through the copper base metal layer 2. In the substrate 1, for example, six pairs of water supply headers 11, water supply holes 12 connected to the water supply headers 11, and drainage headers 13 and water discharge holes 14 connected to the water supply headers 11 are provided. The end of the water supply hole 12 opposite to the header is connected to the water supply subheader 15, and the end of the drainage hole 14 opposite to the header is connected to the drainage subheader 16. The water supply subheader 15 and the drainage subheader 16 are connected by two cooling pipes 4 connected to each other.
Further, the water supply header 11 and the drainage header 13 are respectively connected to a water supply hole 51 and a drainage hole 52 provided in the support member 5.
[0016]
The first wall is provided with a slit 6 having a width of about 1 mm in the vertical direction in order to suppress the generation of eddy current. The slit 6 penetrates from the top to the bottom for the beryllium layer 3 and the copper metal layer 2 at the position separating the pair of the water supply hole 12 and the drainage hole 14, and the water supply header 11 and the drainage header 13 for the stainless steel substrate 1. It is provided leaving.
The cooling water supplied from the outside via the support member 5 is supplied from the water supply header 11 through the water supply hole 12 to the cooling pipe 4 and absorbs the heat generated in the first wall and on the surface so that the drain hole 14 is formed. It is discharged to the outside through the drainage header 13.
[0017]
The manufacturing method in the present embodiment will be described with reference to FIGS.
FIG. 5 is an exploded view showing a method for assembling members in the process of fixing the copper metal layer 2 through the cooling pipe 4 onto the stainless steel substrate 1.
The cooling pipe 4 is a stainless steel pipe and extends along the surface of the copper metal layer 2 and has a shape bent at the upper end and the lower end toward the stainless steel substrate 1 side. The copper metal layer 2 is divided into a surface member 21 on the front surface side and an inner surface member 22 on the stainless steel substrate 1 side, and grooves for guiding and guiding the cooling pipes 4 are arranged in parallel on the opposing faces as many as the number of cooling pipes. Is provided. The stainless steel substrate 1 is a flat plate member made of stainless steel, and is provided with grooves that fit into the cooling pipe 4 at the upper and lower ends. Further, the cover member 17 is brought into contact with the upper end portion and the lower end portion of the stainless steel substrate 1. The cover member 17 is provided with a groove that fits into the end of the cooling pipe 4.
[0018]
After these members are combined, the sealing material 75, 76, 77, 78 is applied to the entire circumference of the sealing material 75, 76, 77, 78 through the joining prevention materials 71, 72, 73, 74 made of alumina fiber, and the sealing material Seal each other by seal welding. As the sealing material, a thin steel plate having a thickness of about 1 mm can be used.
Holes 79 and 80 through which the cooling pipe 4 passes are formed in the joining preventing material 71 and the sealing material 75 applied to the back surface of the members to be joined, and the sealing material 75 is joined to the outer wall of the cooling pipe 4 by welding. The part surrounded by the materials 75, 76, 77, 78 is made airtight. Further, an appropriate hole is provided in the bonding preventing material 72 and the sealing material 76 applied to one side surface of the bonding member, and the sealing material 76 is provided with a vacuum nozzle 81 connected to a vacuum pipe.
[0019]
After the seal welding of each part is completed, the internal space surrounded by the sealing materials 75, 76, 77, 78 is evacuated by suction from the vacuum nozzle 81. After the vacuum in the internal space is confirmed, the vacuum nozzle 81 is sealed to perform an airtight seal. In the joining member block surrounded by the sealing material thus obtained and maintained in vacuum, the pressure medium does not penetrate into the contact surface of the member, so that the static pressure acts on the member via the flexible sealing material and joins. To the surface. The assembled joining member block is set in a hot hydrostatic joining apparatus, and processed by applying an argon pressure or a helium pressure of 150 MPa to 200 MPa in a state of being heated from 1000 ° C. to 1100 ° C., for example. Then, diffusion of substances occurs while the contact surfaces of the joining members are pressed at high temperature, and they are metallurgically joined to each other, so that an extremely strong integrated structure can be obtained.
[0020]
Thereafter, it is removed from the apparatus, and the sealing materials 75, 76, 77, 78 are peeled off from the joining member, and the intermediate tube is formed by scraping off the portion where the cooling pipe 4 protrudes from the back surface of the stainless steel substrate 1 to form a flat surface. . The anti-bonding material interposed between the sealing material and the bonding member is not compatible with both the bonding material and the sealing material, and performance degradation is small even when subjected to high temperature treatment. It can be easily peeled from the member. Therefore, even if the shape is not adjusted by grinding the sealing material layer fused to the surface of the structure as in the case of the conventional hot hydrostatic bonding method, it is designed as it is if the anti-bonding material and the sealing material are peeled off. Since the intermediate structure has a street shape, there is an advantage that the surface treatment process is simplified.
[0021]
Next, a beryllium layer is formed on the surface of the intermediate structure by assembling as shown in FIG.
The beryllium layer 3 is brought into contact with the entire surface of the intermediate structure 7, and the sealing material 86, 87, 88, 89 is applied to the periphery of the intermediate structure 7 via alumina fiber bonding prevention materials 82, 83, 84, 85. The seal material is sealed and sealed. Further, an appropriate hole is provided in the bonding preventing material 83 applied to one side surface of the intermediate structure 7, and a vacuum nozzle 90 is provided in the corresponding sealing material 87.
[0022]
After the seal welding of each part is completed, the internal space surrounded by the sealing materials 86, 87, 88, 89 is evacuated by suction from the vacuum nozzle 90, and the vacuum nozzle 90 is sealed to perform an airtight seal. When the intermediate structure that surrounds the sealing material and maintains the vacuum is set in a hot hydrostatic bonding apparatus, for example, heated at 550 ° C. to 625 ° C. and applied with an argon pressure of 150 MPa to 200 MPa, the beryllium layer 3 and A structure in which the copper metal surface of the intermediate structure 7 is diffusion-bonded and firmly integrated can be obtained.
The structure after the treatment is removed from the hot hydrostatic bonding apparatus, the bonding preventing materials 82, 83, 84, 85 and the sealing materials 86, 87, 88, 89 are peeled off, and the first wall having the shape as designed. Get a structure.
[0023]
In the first wall structure thus obtained, the cooling water channels 11, 13, 12 and 14 are formed in the stainless steel substrate 1, and the subheaders 15 and 16 connected to the cooling pipe 4 in the copper metal layer 2 are formed. Then, simple machining is performed on the central portion, the upper end portion, and the lower end portion of the stainless steel substrate 1.
First, holes serving as the water supply header 11 and the drainage header 13 are penetrated from the side of the stainless steel substrate 1. This hole is later sealed by welding with plugs at both ends.
[0024]
Further, as shown in the enlarged perspective view of FIG. 7, the upper end and the lower end of the stainless steel substrate 1 are notched leaving the partition 18 to expose the end face of the cooling pipe 4, and the water supply provided at the center of the stainless steel substrate 1. A water supply hole 12 communicating with the header 11 and a drain hole 14 communicating with the drain header 13 are bored. The notch 19 is covered with a cover 20 having a notch on the inside and fixed by welding, and a water supply subheader 15 or drainage for communicating the water supply hole 12 or drainage hole 14 with, for example, two cooling pipes 4. A sub-header 16 is formed.
[0025]
At the position of the partition 18, a slit 6 of about 1 mm is inserted. The slit 6 is stopped at a position where it does not reach the water supply header 11 or the drainage header 13 in the stainless steel substrate 1 and is formed so as to penetrate from the upper end to the lower end in the copper metal layer 2 and the beryllium layer 3. The slit 6 can be processed by, for example, a water jet.
Finally, the support member 5 is fixed to the back surface of the stainless steel substrate 1 by electron beam welding so that the water supply hole 51 and the drainage hole 52 communicate with the water supply header 11 and the drainage header 13, respectively.
[0026]
Instead of forming the slit 6 after forming the structure by the hot hydrostatic bonding method, a stainless steel material having a slit formed in advance, and a copper metal plate and a beryllium plate cut into pieces at the slit position are combined. The first wall can be manufactured by being processed and integrated by a hot hydrostatic bonding method.
In this case, press the anti-bonding material into the slit formed in the stainless steel material, or insert the anti-bonding material into the slit position of the copper metal plate or beryllium plate, then combine these members and bond them all around A sealant is applied through a preventive material, enclosed, sealed and sealed, and processed by hot hydrostatic bonding.
In this way, by installing a bonding preventive material in the slit portion, the slit portion will not be diffusion bonded even if the hot static pressure bonding method is applied, and the slit can be easily removed by peeling off the bonding preventive material after application. Restored.
Therefore, the first wall can be manufactured very easily as compared with the case where the slit is formed by performing mechanical processing after forming the structure.
[0027]
Since the first wall manufactured by the hot hydrostatic bonding method of the present invention is formed of a circular tube with an independent cooling pipe, the stress concentration is reduced as compared with the cooling duct having a deformed cross section, and the thermal load and the internal pressure load are reduced. The sound performance as a pressure-resistant boundary is strengthened against an asymmetric electromagnetic force load. In addition, by using a cooling pipe having a circular cross section, if the required cooling amount is given, then only the arrangement interval and the pipe diameter need be determined, and the design is simplified.
Furthermore, since the joining member does not require complicated work as joining pretreatment, the number of processing steps is reduced as compared with the conventional method, and the manufacturing cost is reduced.
[0028]
In addition, the cooling effect is increased because the cooling pipe is surrounded by copper or copper alloy whose thermal conductivity is several tens of times higher than that of stainless steel. Therefore, plasma disruption occurs and extreme temperature peaks occur on the outermost surface of the first wall. Even when this occurs, cooling can be performed uniformly in a short time.
In addition, since the 1st wall manufactured with the manufacturing method of this invention has the structure which pinches | interposes a cooling pipe with the same copper metal from both sides, it is excellent in the homogeneity in a joint surface by mutual diffusion. Therefore, even when subjected to a shear load or bending load due to a large electromagnetic force, cracks are unlikely to occur at the joint interface, and the design reliability is high.
[0029]
In addition, although the said Example is an example which applied the hot hydrostatic joining method of this invention to manufacture of the nuclear fusion reactor 1st wall, the object of this invention is not restricted to a 1st wall, The heat which uses the conventional canning Needless to say, the method can be applied to all those to which the hydrostatic bonding method can be applied.
Moreover, although the cotton or cloth made of alumina fiber is used as the bonding preventing material in the above embodiment, an appropriate material can be selected according to the material and shape of the target bonding member. Hard-sintering ceramics such as carbon and boron nitride can also be used, and powder may be applied to the surface.
[0030]
【The invention's effect】
As described above, the conventional method requires post-processing because the sealing material adheres to the product surface, but the hot hydrostatic bonding method of the present invention can easily peel off the sealing material. High-precision products can be obtained through simple finishing. In addition, even when there is a slit portion, it is possible to form a highly accurate slit by assembling a member that has been slit in advance and performing hot hydrostatic bonding.
In particular, a composite structure such as a fusion reactor first wall can also be manufactured easily and at low cost by using the hot hydrostatic bonding method of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first wall which is a target in an embodiment of a hot hydrostatic bonding method of the present invention.
FIG. 2 is a cross-sectional view of the first wall of FIG. 1 taken along a vertical plane.
3 is a cross-sectional view of the first wall of FIG. 1 taken along a plane perpendicular to the cut surface of FIG.
4 is a cross-sectional view of the upper portion of the first wall in FIG. 1 cut along a horizontal plane. FIG.
FIG. 5 is an exploded view illustrating the combination of members in the first step in the first wall manufacturing method of the present embodiment.
FIG. 6 is an exploded view illustrating a combination of members in a later step in the first wall manufacturing method of the present embodiment.
FIG. 7 is a partially enlarged perspective view of an upper end portion of a first wall manufactured in the present embodiment.
FIG. 8 is a cross-sectional view of a member manufactured by a conventional hot hydrostatic bonding method.
FIG. 9 is an exploded view illustrating an initial process in a conventional hot hydrostatic bonding method.
FIG. 10 is a perspective view showing an intermediate structure in a conventional hot hydrostatic bonding method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stainless steel board | substrate 2 Copper metal layer 3 Beryllium layer 4 Cooling pipe 5 Support member 6 Slit 7 Intermediate structure 11 Water supply header 12 Water supply hole 13 Drainage header 14 Drainage hole 15 Water supply subheader 16 Drainage subheader 17 Cover member 21 Surface member 22 Inner surface member 51 Water supply hole 52 Drain hole 71, 72, 73, 74 Joining prevention material 75, 76, 77, 78 Sealing material 79, 80 Cooling tube hole 81 Vacuum nozzle 82, 83, 84, 85 Joining prevention material 86, 87 , 88, 89 Sealing material 90 Vacuum nozzle

Claims (5)

接合する材料の接合面同士を当接させ、該当接した接合材料の周囲を接合防止材料を介して薄いキャニング材で囲繞し、前記接合面に加圧媒体が侵入しないように前記キャニング材をシール溶接して密封し、加熱下で加圧媒体を介して静圧を印加することにより前記接合材料同士を拡散接合させ、その後キャニング材を剥離させて製品を作製する熱間静圧接合法であって、前記接合材料自体に設けスリットの内および前記接合材料同士の突き合わせ位置に設けるべきスリットの位置に予め接合防止材料を挟み込んで前記熱間静圧接合法を施し、該スリット部の接合防止材料を除去して接合材料自体に設けたスリットを復元しまた接合材料同士の突き合わせ位置にスリットを形成することにより製品を作製することを特徴とする熱間静圧接合法。The joining surfaces of the materials to be joined are brought into contact with each other, and the surrounding joining materials are surrounded by a thin canning material via a joining prevention material, and the canning material is sealed so that the pressurized medium does not enter the joining surface. It is a hot hydrostatic joining method in which a product is produced by welding and sealing, diffusion bonding between the joining materials by applying a static pressure through a pressurized medium under heating, and then peeling the canning material. In addition, the hot static pressure bonding method is performed by sandwiching the anti-bonding material in advance in the slit provided in the bonding material itself and the position of the slit to be provided at the abutting position between the bonding materials. removed to hot hydrostatic pressure bonding, characterized in that to produce the product by forming a slit in restoring the slit provided in the bonding material itself also butted position between the bonding material . 前記キャニング材を密封した後にキャニング材で囲われた部分を真空に引くことを特徴とする請求項1記載の熱間静圧接合法。  The hot hydrostatic bonding method according to claim 1, wherein after sealing the canning material, a vacuum is applied to a portion surrounded by the canning material. 前記接合防止材料がアルミナ繊維布であることを特徴とする請求項1または2記載の熱間静圧接合法。  The hot static pressure bonding method according to claim 1 or 2, wherein the bonding preventing material is an alumina fiber cloth. 銅もしくは銅合金にステンレス鋼製の水管を挟み込んでブロックを形成して、該ブロックの裏側にステンレス鋼の裏板を当接させて、接合防止材料を介して薄いステンレス鋼製キャニング材で囲繞密封して、加熱下で静圧を印加して拡散接合し、該キャニング材を剥離して中間構造物を得た後、さらに該中間構造物の銅側表面にベリリウム板を当接させて、接合防止材料を介して薄いキャニング材で囲繞密封して、加熱下で静圧を印加して拡散接合することを特徴とする核融合炉の第一壁構造物の製造方法において、前記ブロックに設けスリットの内に予め接合防止材料を挟み込むと共に前記ベリリウム板に設けるスリットとなるべき位置に接合防止材料を挟み込んで前記熱間静圧接合法を施した後で、該スリット内及び前記ベリリウム板の接合防止材料を除去して前記ブロックのスリットを復元しかつ前記ベリリウム板のスリットを形成することにより作製することを特徴とする第一壁構造物の製造方法。A stainless steel water tube is sandwiched between copper or copper alloy to form a block, a stainless steel back plate is brought into contact with the back side of the block, and sealed with a thin stainless steel canning material via a joint prevention material Then, after applying static pressure under heating and diffusion bonding, peeling off the canning material to obtain an intermediate structure, a beryllium plate is further brought into contact with the copper side surface of the intermediate structure, and bonded In the manufacturing method of a first wall structure of a nuclear fusion reactor, which is sealed with a thin canning material through a preventive material and is subjected to diffusion bonding by applying a static pressure under heating, the block is provided with the block after applying the hot static pressing legal sandwich the stop-off material at a position to be a slit provided on the beryllium plate with sandwich the advance stop-off material within the slit, in the slit and the beryllium plate Manufacturing method of the first wall structure, characterized in that to remove the stop-off material produced by forming a slit of a slit was restored and the beryllium plate of the block. 前記接合防止材料がアルミナ繊維布であることを特徴とする請求項4記載の第一壁構造物の製造方法The method for producing a first wall structure according to claim 4, wherein the bonding prevention material is an alumina fiber cloth.
JP2001106198A 2001-04-04 2001-04-04 Hot static pressure bonding method and first wall structure manufacturing method Expired - Fee Related JP3719945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106198A JP3719945B2 (en) 2001-04-04 2001-04-04 Hot static pressure bonding method and first wall structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106198A JP3719945B2 (en) 2001-04-04 2001-04-04 Hot static pressure bonding method and first wall structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2002303690A JP2002303690A (en) 2002-10-18
JP3719945B2 true JP3719945B2 (en) 2005-11-24

Family

ID=18958747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106198A Expired - Fee Related JP3719945B2 (en) 2001-04-04 2001-04-04 Hot static pressure bonding method and first wall structure manufacturing method

Country Status (1)

Country Link
JP (1) JP3719945B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0327043D0 (en) * 2003-11-18 2004-04-07 Rolls Royce Plc A method of manufacturing an article by applying heat and pressure, a method of connecting a pipe to a sealed assembly and a connector for use therein
SG11201902184PA (en) * 2018-03-15 2019-10-30 Nisshin Steel Co Ltd Stainless Steel Material For Diffusion Bonding Jig
CN109822282B (en) * 2019-04-22 2020-11-13 河南工业大学 Reaction wall, loading hole unit welding frock for reaction pedestal

Also Published As

Publication number Publication date
JP2002303690A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US7009136B2 (en) Method of fabricating a bipolar plate assembly
US6180931B1 (en) Heater unit for semiconductor processing
US20080116246A1 (en) Method for Making a Component Including Fluid Flow Channels
EP2542373B1 (en) Welded, laminated apparatus, methods of making, and methods of using the apparatus
JP2004169702A (en) Rocket engine combustion chamber having a number of conformal throat supports
JP2008039255A (en) Heat exchanger and its manufacturing method
JP3719945B2 (en) Hot static pressure bonding method and first wall structure manufacturing method
JP2011076937A (en) Electrode for ion source
CN114453693A (en) Contact reaction brazing process for connecting TZM alloy and graphite by pure zirconium layer
US5642853A (en) Method for bonding steel to copper
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JP4133958B2 (en) Apparatus for heating or cooling a workpiece and method for manufacturing the same
JP5019200B2 (en) Ion source electrode
JPH0245955B2 (en)
JP2703975B2 (en) Accelerator electrode plate and method of manufacturing the same
JPH09103923A (en) Manufacture of cooling wall body made of different kind of metal
KR20020015173A (en) Heater unit for semiconductor processing
CN115302207B (en) Composite base manufacturing method and composite base
JP2000294123A (en) Manufacture of ion source electrode plate
JP2002280152A (en) Method of manufacturing metal structure body for heating and/or cooling
JP5971727B2 (en) Ion source electrode and manufacturing method thereof
JP2005050600A (en) Electrode plate for ion source and its manufacturing method
JP2004148387A (en) Cooling panel with build-in rectangular flow passage and production method therefor
JP2816904B2 (en) Method of manufacturing roll body member of hearth roll in steel material heat treatment furnace
JPH03129638A (en) Manufacture of ion accelerating electrode plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees