JP3719900B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3719900B2
JP3719900B2 JP2000066737A JP2000066737A JP3719900B2 JP 3719900 B2 JP3719900 B2 JP 3719900B2 JP 2000066737 A JP2000066737 A JP 2000066737A JP 2000066737 A JP2000066737 A JP 2000066737A JP 3719900 B2 JP3719900 B2 JP 3719900B2
Authority
JP
Japan
Prior art keywords
bump
wiring board
semiconductor device
chip
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000066737A
Other languages
Japanese (ja)
Other versions
JP2001257237A (en
Inventor
浩之 平井
裕昭 小泉
知久 本村
雅弘 吉村
修 島田
義孝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000066737A priority Critical patent/JP3719900B2/en
Publication of JP2001257237A publication Critical patent/JP2001257237A/en
Application granted granted Critical
Publication of JP3719900B2 publication Critical patent/JP3719900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体チップを配線基板上にフリップチップ実装してなる半導体装置、その製造方法、実装装置及び実装方法並びにそれに用いられるフリップチップ実装用基板に関する。
【0002】
【従来の技術】
従来より、半導体チップを配線基板上に実装する方法として、ワイヤボンディングによらず、半導体チップ側にバンプを形成し、配線基板側にパッドを形成して半導体チップを配線基板にフェースダウン方式で直接実装すると同時にバンプとパッドとを接続するフリップチップ実装方法が知られている。
【0003】
図12に、従来のフリップチップ実装構造を示す。同図(a)に示すように、半導体チップ100の表面には、Al等からなる複数のパッド101が形成されており、これらのパッド101上にはAu等からなるボールバンプ102が形成されている。一方、配線基板103の表面にも、例えばCu等からなる複数のパッド104が半導体チップ100のパッド101に対向するように配置されている。配線基板103上に異方性導電膜(ACF)等の封止樹脂を配置し、半導体チップ100のボールバンプ102がパッド104と対向するように半導体チップ100をフェースダウンさせて加圧及び加熱することにより、ボールバンプ102とパッド104とが接合され、半導体チップ100のフリップチップ実装が完了する。
【0004】
上述したボールバンプ102としては、パッド101上に、例えばCr−Cu−Auの中間蒸着膜を形成した後、Pb,Sn等を順次蒸着して、不活性雰囲気中で加熱反応させて得られる共晶半田バンプを用いることがなされているが、蒸着法は、製造プロセスが煩雑で製造コストがかかるという問題がある。この問題を解決するため、半導体チップ100のパッド101上にAuワイヤによるワイヤボールボンディングを施してAuのボールバンプ102を形成する方式も用いられている。
【0005】
また、図12(b)に示すように、配線基板103側のパッド104に、例えばAgペースト等をスクリーン印刷法により形成してこれをバンプ105とする方式も提案されている。この方式は、上述した方式よりも更に製造工程を簡略化でき、高さのバラツキなども少ないという利点がある。
【0006】
【発明が解決しようとする課題】
近年、半導体チップの小型化、配線パターンの微細化が進み、配線基板と半導体チップとの接続の信頼性向上が益々大きな課題となってきた。これに対し、上述した従来例のうち、ワイヤボールボンディングによる方法では、バンプの高さのバラツキや配線基板のうねり等の影響で接続が不安定になったり、チップそのものへのボンディング形成が困難になるという問題がある。
【0007】
また、Agバンプをスクリーン印刷により形成する方式では、AgバンプとAlのパッドとの接合部が高湿環境下で局部電池を形成し、電気化学的腐食を起こして接続不良を発生させるという問題がある。
【0008】
この発明は、このような問題点に鑑みてなされたもので、フリップチップ実装が微細化されても半導体チップと配線基板との接続信頼性を損なわない半導体装置、その製造方法及びそれに用いられるフリップチップ実装用基板を提供することを第1の目的とする。
この発明は、また、フリップチップ実装の際に十分な接続信頼性を確保することができる半導体装置の実装装置及び実装方法を提供することを第2の目的とする。
【0009】
【課題を解決するための手段】
本発明に係る第1の半導体装置は、配線基板と、この配線基板上にフリップチップ方式により実装された半導体チップとを備えた半導体装置において、前記配線基板上に形成された配線基板電極と、この配線基板電極上に形成されたAgバンプと、このAgバンプが形成された配線基板電極上に形成されたNi/Auメッキ層と、前記半導体チップ上に形成された前記Ni/Auメッキ層を介して前記Agバンプと接続されるAlからなるチップ電極とを備えてなることを特徴とする。
【0011】
また、本発明に係る第1の半導体装置の製造方法は、配線基板上に配線基板電極を形成する工程と、この工程で形成された配線基板電極上にAgバンプを形成する工程と、この工程でAgバンプが形成されたCuの配線基板電極上にNiメッキを施した後、Auメッキを施す工程と、前記Ni/Auメッキ層が表面に形成された前記Agバンプと半導体チップのAlからなるチップ電極とを位置合わせして熱圧着することにより前記半導体チップを前記配線基板上にフリップチップ実装する工程とを備えてなることを特徴とする。
【0012】
この発明によれば、AgバンプはNi/Auメッキ層を介してAlチップ電極と接触することになるので、電池反応を抑制することができ、経時的な信頼性を高めることができる。しかも、配線基板上にCuの配線基板電極を形成する工程に続けてAgバンプを形成し、続いてNi/Auメッキ層を形成するようにしているので、従来の工程を殆ど変更せずに、しかもCu電極が酸化する前にAgバンプを形成し、表面をメッキすることができるので、電極の酸化防止にも有効である。なお、ここでAgバンプは、例えばAgペーストをスクリーン印刷することによって形成されたものである。また、Niメッキ層の厚さは、望ましくは3μm〜5μmであり、Auメッキ層の厚さは、望ましくは0.03μm以上である。
【0027】
【発明の実施の形態】
以下、図面を参照して、この発明の実施の形態について説明する。
図1は、本発明の第1の実施形態に係る半導体装置を製造工程順に示した断面図、図2は、この半導体装置の製造工程を示すフローチャートである。
先ず、図1(a)に示すように、配線基板1上に、Cuからなる所定の導電パターンと共に導電パッド(配線基板電極)2を形成する(S1)。続いて図1(b)に示すように、導電パッド2上にAgペーストをスクリーン印刷して、硬化させることにより凸形状のAgバンプ3を形成する(S2)。次に、図1(c)に示すように、Agバンプ3が形成された導電パッド2にNiメッキを施してNiメッキ層4を形成し、続いてその上にAuメッキを施してAuメッキ層5を形成する(S3)。Niメッキ層4の厚みは、好適には3μm〜5μmであり、Auメッキ層5の厚みは、好適には0.03μm以上である。なお、これらの工程は、一連のフリップチップ実装用基板の製造工程として連続的に行われることが望ましい。これにより、Agバンプ3の形成と、Cuの導電パッド2に対する表面酸化防止処理とを同時に実現できるからである。
【0028】
このようにして得られたフリップチップ実装用基板に対して、次に図1(d)に示すように、異方性導電膜(ACF:Anisotropic Conductive Film)又は異方性導電ペースト(ACP:Anisotropic Conductive Paste)からなる封止樹脂6を貼付又は塗布する(S4)。そして、図1(e)に示すように、別途工程でAl製の導電パッド(チップ電極)7が形成された半導体チップ8を、Agバンプ3と導電パッド7とが一致するように位置合わせして熱圧着することにより、半導体装置が完成する(S5)。
【0029】
この第1の実施形態の半導体装置及びその製造方法によれば、導電パッド2上にAgバンプ3を形成したのち、Niメッキ層4を下地層としてAuメッキ層5を形成し、半導体チップ8側の導電パッド7とを接続するようにしているので、簡易且つ安価に腐食等を防止することができ、接続信頼性を向上させることができる。そのことを証明するために、本発明者は半導体装置の高温高湿放置試験を行い、抵抗値の変化の様子を測定した。その結果を図3に示す。
【0030】
図3(a)に示すように、半導体チップ8側の導電パッド7とAgバンプ3を直接接続した場合の試験結果によれば、試験開始から500時間経過時位までを目処に抵抗値は増え続け(約50mΩ→約800mΩ)、腐食等が急激に進行することが分かり、その後も徐々にではあるが腐食し続け、接続信頼性が著しく損なわれるということが判明した。一方、図3(b)に示すように、Agバンプ3にNiメッキ層4及びAuメッキ層5を形成してから接続した場合の試験結果によれば、抵抗値は試験開始から1000時間を経過しても約100mΩ以下であり、腐食等による影響を受けにくいことが判明した。また、その後も非常に緩やかにしか抵抗値が増えないため、その差は歴然としたものであり、この半導体装置及びその製造方法によれば腐食等を防止し接続信頼性を向上することが確認された。
【0031】
図4は、参考形態に係る半導体装置を示す断面図である。図4(a)に示す参考形態では、配線基板11上に形成された導電パッド12側にAuワイヤからなる第1のボールバンプ13が形成され、半導体チップ14上に形成された導電パッド15側にAuワイヤからなる第2のボールバンプ16が形成され、配線基板11と半導体チップ14とが、ACF、ACP等の封止樹脂17によって接着されている。第1のボールバンプ13の硬度は、第2のボールバンプ16の硬度よりも低く、第1のボールバンプ13の大きさは、第2ボールバンプ16よりも大きく設定されている。
【0032】
この参考形態によれば、硬度の低い第1のボールバンプ13が硬度の高い第2のボールバンプ16に食い込まれることで、バンプの高さのバラツキや基板の反りを吸収して確実な接続が得られる。第1のボールバンプ13としては、例えば田中電子工業(株)製FAタイプ(硬さ:54Hv,φ100μm)のAuワイヤを使用し、第2のボールバンプ16としては、同じくGBタイプ(硬さ:73Hv,φ70μm)のAuワイヤを使用することができる。
【0033】
図4(b)は、配線基板11側の第1のボールバンプ18を高い硬度で小さく形成し、半導体チップ14側の第2のボールバンプ19を低い硬度で大きく形成した例である。この例でも、同図(c)に示すように、配線基板11と半導体チップ14とを熱圧着したときに、第1のボールバンプ18が第2のボールバンプ19側に食い込むので、バンプの高さのバラツキや基板の反りを吸収して確実な接続が得られる。
【0034】
図5は、別の参考形態に係る半導体装置を製造工程順に示す断面図である。この参考形態では、同図(a)に示すように、配線基板21に導電パッド22を形成すると共に、半導体チップ23の導電パッド24にワイヤボールボンディング法によりバンプ25を形成する。但し、バンプ25はその形状に特徴がある。この参考形態では、ボンディング時にAuワイヤを引きちぎってバンプ25を形成する。このため、先端が尖った形状となっている。次に同図(b)に示すように、配線基板21の導電パッド22上にACF26を貼り付ける。そして、同図(c)に示すように、配線基板21に半導体チップ23を熱圧着により実装してバンプ25と導電パッド22とを接続する。
【0035】
図6には、実際に下記表1の条件にて形成されたバンプ25の形状が拡大表示されている。
【0036】
【表1】

Figure 0003719900
【0037】
なお、このバンプ25は、松下電器製STBボンダを使用して、日鉄マイクロメタル製T3 25μmのAuワイヤを使用した。バンプ25の基端部の球状部の径は65±5μm、高さは80μmであった。
【0038】
この参考形態によれば、バンプ25の形状は、本発明者の実験により得られたもので先端部と球状部とを有し、先端部は尖っておりある程度の高さもあるため、バンプ25自体の高さや配線基板、半導体チップの製品精度に多少のバラツキがあっても接続側の電極に十分接触し導通を得ることができる。また、先端部が尖っていることで、配線基板と半導体チップとを接着する封止樹脂を突き破り確実に接続することができる。従って、通常の絶縁フィルムや絶縁ペーストを使用しても導通を得ることができるため、異方性導電フィルム等の高価な絶縁樹脂を使用する必要がなく、生産コストを抑えることができる。更に、例えば高価な異方性導電フィルム等を使用した場合でも、図7に示すパッドとバンプとの接続部分の断面図からも分かるように、バンプの先端部が潰れる際に導電粒子を抱き込んで接続されるため、より確実な導通を得ることができ接続信頼性を向上することができる。ちなみに、図8に示すように、従来のバンプ25´の形状は先端部が潰された形状であった。これはバンプ先端が平坦である方がACFの導電粒子がより捕捉し易いと考えられたためであるが、このために製品精度のバラツキ等を吸収して接続性を得ることが困難であった。また、封止樹脂の厚さや種類等により接続安定性にかなり影響を受けていた。更に、先端部を潰して接続面の面積を拡大し接続性を向上させようとしても、例えば異方性導電フィルム等の導電粒子は接続の際に接続面から離れてしまい、却って接続性を落としてしまう傾向にあるということも分かってきた。この参考例に係るバンプ25は、これら従来の問題点を全てコストの上昇を伴わずに解決することが可能なものである。
【0039】
は、本発明の別の参考形態に係る半導体装置を製造工程順に示す断面図である。この参考形態では、同図(a)に示すように、配線基板21に導電パッド22を形成し、ワイヤボールボンディング法によりバンプ27を形成すると共に、半導体チップ23の導電パッド24を形成する。なお、バンプ27は図5のバンプ25と同一構造を有し、同一方法で形成されたものである。次に同図(b)に示すように、配線基板21の導電パッド22及びバンプ27上にACF26を貼り付ける。そして、同図(c)に示すように、配線基板21に半導体チップ23を熱圧着により実装してバンプ27と導電パッド22とを接続する。
【0040】
この参考形態によれば、ワイヤボールボンディングによるバンプの形成を半導体チップ側ではなく配線基板側に対して行うため、例えば半導体チップの小型化に伴うハンドリングの困難性が増大したり、半導体チップの材質がGaAsのように衝撃に弱い場合であっても半導体チップと配線基板を確実に接続することができ、製造工程が簡略化されて製品歩留まりも向上することができる。なお、この参考例では、バンプ27は図5のバンプ25と同一構造を有し、同一方法で形成されたものであるが、本参考形態は、配線基板21側にバンプを形成することを主眼とするものであるから、バンプの形状は、上述した形状に限定されない。
【0041】
図10は、一参考例に係る半導体装置の実装装置の装置構成例を示す図である。配線基板搭載テーブル31は、その所定の位置にパッドが形成された配線基板32を搭載する。半導体チップ支持ヘッド33は、先端部にATC(Auto-ToolChange Collet)34を有し、このATC34でバンプが形成されたベアICチップ等の半導体チップ35をバキュームにより支持し、配線基板搭載テーブル31の配線基板32位置に半導体チップ35を移動させる。半導体チップ35と配線基板32との精密な位置合わせは、配線基板32の裏面側にあるX線発生装置37からのX線照射をチップ支持ヘッド33上部にあるX線撮像装置38により撮像して行う。即ち、X線発生装置37からのX線は、配線基板32や半導体チップ35のバンプや各電極等を透過してこれらの透過像を生成するため、この透過像をX線撮像装置38にて撮像し、撮像されたバンプや各電極等の位置をモニタ装置39により参照しながら位置合わせ実装処理部40の位置補正制御によりチップ支持ヘッド33に支持された半導体チップ35の位置を微調整して半導体チップ35と配線基板32との位置合わせを行い、チップ支持ヘッド33のヒータ36により熱圧着を実行してフリップチップ実装を行う。
【0042】
ちなみに従来の半導体実装装置では、例えばCCDカメラを複数台使用して配線基板32と半導体チップ35のバンプや各電極等を撮像し、その複数の映像に基づきバンプ等の真の位置を演算により割り出して位置合わせを行っていたため、精度の高い位置合わせを行うことは難しく、また、実装後の接続部の様子は、CCDカメラでは撮像できなかったため検査作業を別工程で行う必要等があり、実装作業が煩雑なものとなっていた。
【0043】
しかし、この参考例に係る半導体実装装置は、上述したようにX線を使用して、図11に示すように、配線パターン、各パッド及びバンプの状態等の透過像を確認しながらバンプや各電極等の位置合わせを行うことができるため、フリップチップ実装の精度を向上することができる。しかも、X線による配線パターンの確認や実装状態の検査も同時に行うことができるため、検査作業を簡略化し製品の信頼性を高めることが可能となる。
【0044】
【発明の効果】
以上述べたように、この発明の第1の半導体装置及び半導体装置の製造方法によれば、AgバンプはNi/Auメッキ層を介してAlチップ電極と接触することになるので、電池反応を抑制することができ、経時的な信頼性を高めることができると共に、配線基板上にCuの配線基板電極を形成する工程に続けてAgバンプを形成し続いてNi/Auメッキ層を形成するようにしているので、従来の工程を殆ど変更せずに、しかもCu電極が酸化する前にAgバンプを形成し表面をメッキすることができるので、電極の酸化防止にも有効であるという効果を奏する。
【図面の簡単な説明】
【図1】 この発明の第1の実施形態に係る半導体装置を製造工程順に示した断面図である。
【図2】 同半導体装置の製造工程を示すフローチャートである。
【図3】 同半導体装置の効果を説明するための図である。
【図4】 この発明の参考形態に係る半導体装置を製造工程順に示した断面図である。
【図5】 この発明の別の参考形態に係る半導体装置を製造工程順に示した断面図である。
【図6】 同半導体装置のバンプの拡大斜視図である。
【図7】 同半導体装置のバンプによる接続部の拡大図である。
【図8】 従来のワイヤボールボンディングによるバンプの拡大斜視図である。
【図9】 この発明の別の参考形態に係る半導体装置を製造工程順に示した断面図である。
【図10】 一参考例に係る半導体装置の実装装置の一例を示す図である。
【図11】 同実装装置で得られる画像を示す図である。
【図12】 従来の半導体装置の断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which a semiconductor chip is flip-chip mounted on a wiring substrate, a manufacturing method thereof, a mounting device and a mounting method, and a flip chip mounting substrate used therefor.
[0002]
[Prior art]
Conventionally, as a method of mounting a semiconductor chip on a wiring board, bumps are formed on the semiconductor chip side, pads are formed on the wiring board side, and the semiconductor chip is directly mounted on the wiring board in a face-down manner without using wire bonding. A flip chip mounting method in which bumps and pads are connected simultaneously with mounting is known.
[0003]
FIG. 12 shows a conventional flip chip mounting structure. As shown in FIG. 2A, a plurality of pads 101 made of Al or the like are formed on the surface of the semiconductor chip 100, and ball bumps 102 made of Au or the like are formed on these pads 101. Yes. On the other hand, a plurality of pads 104 made of, for example, Cu are also disposed on the surface of the wiring substrate 103 so as to face the pads 101 of the semiconductor chip 100. A sealing resin such as an anisotropic conductive film (ACF) is disposed on the wiring substrate 103, and the semiconductor chip 100 is faced down and pressed and heated so that the ball bumps 102 of the semiconductor chip 100 face the pads 104. As a result, the ball bumps 102 and the pads 104 are joined, and the flip chip mounting of the semiconductor chip 100 is completed.
[0004]
As the above-described ball bump 102, for example, an intermediate vapor deposition film of, for example, Cr—Cu—Au is formed on the pad 101, and then Pb, Sn, etc. are sequentially deposited and heated and reacted in an inert atmosphere. Although crystal solder bumps are used, the vapor deposition method has a problem that the manufacturing process is complicated and the manufacturing cost is high. In order to solve this problem, a method of forming Au ball bumps 102 by performing wire ball bonding with Au wires on the pads 101 of the semiconductor chip 100 is also used.
[0005]
Further, as shown in FIG. 12B, a method is proposed in which, for example, an Ag paste or the like is formed on the pad 104 on the wiring board 103 side by a screen printing method and used as a bump 105. This method has an advantage that the manufacturing process can be further simplified and there is less variation in height than the method described above.
[0006]
[Problems to be solved by the invention]
In recent years, miniaturization of semiconductor chips and miniaturization of wiring patterns have progressed, and improvement in the reliability of connection between a wiring board and a semiconductor chip has become an increasingly important issue. On the other hand, among the conventional examples described above, in the method using wire ball bonding, the connection becomes unstable due to variations in bump height, waviness of the wiring board, etc., and it is difficult to form a bond to the chip itself. There is a problem of becoming.
[0007]
Further, in the method of forming the Ag bump by screen printing, there is a problem in that the joint between the Ag bump and the Al pad forms a local battery in a high humidity environment, causing electrochemical corrosion and causing a connection failure. is there.
[0008]
The present invention has been made in view of such problems. A semiconductor device that does not impair the connection reliability between a semiconductor chip and a wiring board even if flip chip mounting is miniaturized, a manufacturing method thereof, and a flip used in the semiconductor device A first object is to provide a chip mounting substrate.
A second object of the present invention is to provide a semiconductor device mounting apparatus and mounting method capable of ensuring sufficient connection reliability in flip chip mounting.
[0009]
[Means for Solving the Problems]
A first semiconductor device according to the present invention is a semiconductor device comprising a wiring board and a semiconductor chip mounted on the wiring board by a flip chip method, a wiring board electrode formed on the wiring board, An Ag bump formed on the wiring board electrode, a Ni / Au plating layer formed on the wiring board electrode on which the Ag bump is formed, and the Ni / Au plating layer formed on the semiconductor chip. And chip electrodes made of Al connected to the Ag bumps.
[0011]
The first method for manufacturing a semiconductor device according to the present invention includes a step of forming a wiring substrate electrode on the wiring substrate, a step of forming an Ag bump on the wiring substrate electrode formed in this step, and this step. After the Ni plating is performed on the Cu wiring substrate electrode on which the Ag bump is formed, the Au plating is performed, and the Ag bump having the Ni / Au plated layer formed on the surface and the Al of the semiconductor chip. And a step of flip-chip mounting the semiconductor chip on the wiring board by aligning the chip electrode and thermocompression bonding.
[0012]
According to the present invention, the Ag bump comes into contact with the Al chip electrode through the Ni / Au plating layer, so that the battery reaction can be suppressed and the reliability over time can be improved. Moreover, since the Ag bump is formed following the process of forming the Cu wiring board electrode on the wiring board, and the Ni / Au plating layer is subsequently formed, the conventional process is hardly changed. In addition, Ag bumps can be formed before the Cu electrode is oxidized, and the surface can be plated, which is also effective for preventing oxidation of the electrode. Here, the Ag bump is formed, for example, by screen printing an Ag paste. Further, the thickness of the Ni plating layer is desirably 3 μm to 5 μm, and the thickness of the Au plating layer is desirably 0.03 μm or more.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing the semiconductor device according to the first embodiment of the present invention in the order of the manufacturing process, and FIG. 2 is a flowchart showing the manufacturing process of the semiconductor device.
First, as shown in FIG. 1A, a conductive pad (wiring board electrode) 2 is formed on a wiring board 1 together with a predetermined conductive pattern made of Cu (S1). Subsequently, as shown in FIG. 1B, an Ag paste 3 is screen-printed on the conductive pad 2 and cured to form convex Ag bumps 3 (S2). Next, as shown in FIG. 1 (c), the Ni plating layer 4 is formed by performing Ni plating on the conductive pad 2 on which the Ag bump 3 is formed, and then Au plating is applied thereon to form the Au plating layer. 5 is formed (S3). The thickness of the Ni plating layer 4 is preferably 3 μm to 5 μm, and the thickness of the Au plating layer 5 is preferably 0.03 μm or more. Note that these steps are desirably performed continuously as a series of flip-chip mounting substrate manufacturing steps. This is because the formation of the Ag bump 3 and the surface oxidation prevention treatment for the Cu conductive pad 2 can be realized simultaneously.
[0028]
Next, as shown in FIG. 1 (d), an anisotropic conductive film (ACF) or anisotropic conductive paste (ACP) is applied to the flip-chip mounting substrate thus obtained. A sealing resin 6 made of Conductive Paste) is pasted or applied (S4). Then, as shown in FIG. 1E, the semiconductor chip 8 on which the Al conductive pads (chip electrodes) 7 are formed in a separate process is aligned so that the Ag bumps 3 and the conductive pads 7 coincide. The semiconductor device is completed by thermocompression bonding (S5).
[0029]
According to the semiconductor device and the manufacturing method thereof of the first embodiment, after forming the Ag bump 3 on the conductive pad 2, the Au plating layer 5 is formed using the Ni plating layer 4 as a base layer, and the semiconductor chip 8 side. Since the conductive pads 7 are connected to each other, corrosion and the like can be prevented easily and inexpensively, and connection reliability can be improved. In order to prove this, the present inventor conducted a high-temperature and high-humidity storage test of the semiconductor device, and measured the state of change in the resistance value. The result is shown in FIG.
[0030]
As shown in FIG. 3A, according to the test result when the conductive pad 7 on the semiconductor chip 8 side and the Ag bump 3 are directly connected, the resistance value increases from the start of the test until about 500 hours have passed. Continuing (about 50 mΩ → about 800 mΩ), it was found that corrosion and the like proceeded rapidly, and thereafter, it gradually continued to corrode, and it was found that connection reliability was significantly impaired. On the other hand, as shown in FIG. 3B, according to the test result when the Ni plating layer 4 and the Au plating layer 5 are formed on the Ag bump 3 and then connected, the resistance value has passed 1000 hours from the start of the test. However, it was found to be about 100 mΩ or less and hardly affected by corrosion. In addition, since the resistance value increases only very slowly thereafter, the difference is obvious, and it has been confirmed that this semiconductor device and its manufacturing method prevent corrosion and improve connection reliability. It was.
[0031]
FIG. 4 is a cross-sectional view showing a semiconductor device according to a reference embodiment. Figure 4 reference embodiment shown in (a), the wiring first ball bump 13 made of Au wire on the formed conductive pad 12 side on the substrate 11 is formed, is formed on the semiconductor chip 14 has conductive pads 15 side A second ball bump 16 made of Au wire is formed on the wiring board 11, and the wiring substrate 11 and the semiconductor chip 14 are bonded by a sealing resin 17 such as ACF or ACP. The hardness of the first ball bump 13 is lower than the hardness of the second ball bump 16, and the size of the first ball bump 13 is set larger than that of the second ball bump 16.
[0032]
According to this reference form, the first ball bump 13 having a low hardness is digged into the second ball bump 16 having a high hardness, so that a reliable connection can be achieved by absorbing variations in the height of the bump and warping of the substrate. can get. For example, an FA type (hardness: 54 Hv, φ100 μm) Au wire manufactured by Tanaka Denshi Kogyo Co., Ltd. is used as the first ball bump 13, and a GB type (hardness: 73Hv, φ70 μm) Au wire can be used.
[0033]
FIG. 4B shows an example in which the first ball bump 18 on the wiring board 11 side is formed small with high hardness, and the second ball bump 19 on the semiconductor chip 14 side is formed large with low hardness. Also in this example, as shown in FIG. 5C, when the wiring board 11 and the semiconductor chip 14 are thermocompression bonded, the first ball bumps 18 bite into the second ball bumps 19 side. Reliable connection can be obtained by absorbing variations in the thickness and warping of the substrate.
[0034]
FIG. 5 is a cross-sectional view showing a semiconductor device according to another reference embodiment in the order of manufacturing steps. In this reference embodiment, as shown in FIG. 5A, conductive pads 22 are formed on the wiring substrate 21, and bumps 25 are formed on the conductive pads 24 of the semiconductor chip 23 by a wire ball bonding method. However, the bump 25 is characterized by its shape. In this reference embodiment, the bump 25 is formed by tearing the Au wire during bonding. For this reason, the tip has a sharp shape. Next, as shown in FIG. 2B, an ACF 26 is attached on the conductive pad 22 of the wiring substrate 21. Then, as shown in FIG. 3C, the semiconductor chip 23 is mounted on the wiring substrate 21 by thermocompression bonding, and the bumps 25 and the conductive pads 22 are connected.
[0035]
In FIG. 6, the shape of the bump 25 actually formed under the conditions shown in Table 1 below is enlarged and displayed.
[0036]
[Table 1]
Figure 0003719900
[0037]
In addition, this bump 25 used the Matsushita Electric STB bonder, and used the T3 25micrometer Au wire made from Nippon Steel Micrometal. The diameter of the spherical portion at the base end of the bump 25 was 65 ± 5 μm, and the height was 80 μm.
[0038]
According to this reference form, the shape of the bump 25 was obtained by the experiment of the present inventor and has a tip portion and a spherical portion. The tip portion is sharp and has a certain height, so the bump 25 itself Even if there is some variation in the product height of the wiring board, the wiring board, and the semiconductor chip, the electrodes on the connection side can be sufficiently contacted and electrical conduction can be obtained. Further, since the tip portion is sharp, the sealing resin for bonding the wiring board and the semiconductor chip can be pierced and reliably connected. Therefore, since conduction can be obtained even if a normal insulating film or insulating paste is used, it is not necessary to use an expensive insulating resin such as an anisotropic conductive film, and the production cost can be suppressed. Furthermore, even when an expensive anisotropic conductive film or the like is used, for example, as shown in the sectional view of the connection portion between the pad and the bump shown in FIG. Therefore, more reliable conduction can be obtained and connection reliability can be improved. Incidentally, as shown in FIG. 8, the shape of the conventional bump 25 ′ is a shape in which the tip is crushed. This is because it is thought that the ACF conductive particles are more easily captured when the bump tip is flat, but for this reason, it is difficult to obtain the connectivity by absorbing variations in product accuracy. Further, the connection stability was significantly affected by the thickness and type of the sealing resin. Furthermore, even if the tip portion is crushed to increase the area of the connection surface and improve the connectivity, for example, conductive particles such as an anisotropic conductive film are separated from the connection surface during connection, and the connectivity is reduced instead. It has also been found that it tends to end up. The bump 25 according to this reference example can solve all of these conventional problems without increasing the cost.
[0039]
These are sectional drawings which show the semiconductor device which concerns on another reference form of this invention in order of a manufacturing process. In this reference embodiment, as shown in FIG. 5A, conductive pads 22 are formed on a wiring board 21, bumps 27 are formed by a wire ball bonding method, and conductive pads 24 of a semiconductor chip 23 are formed. The bump 27 has the same structure as the bump 25 in FIG. 5 and is formed by the same method. Next, as shown in FIG. 2B, the ACF 26 is attached on the conductive pads 22 and the bumps 27 of the wiring board 21. Then, as shown in FIG. 3C, the semiconductor chip 23 is mounted on the wiring substrate 21 by thermocompression bonding, and the bumps 27 and the conductive pads 22 are connected.
[0040]
According to this reference form, bump formation by wire ball bonding is performed not on the semiconductor chip side but on the wiring board side, so that, for example, handling difficulty associated with downsizing of the semiconductor chip increases, and the semiconductor chip material Even when GaAs is weak against impact, the semiconductor chip and the wiring substrate can be reliably connected, the manufacturing process is simplified, and the product yield can be improved. In this reference example, the bumps 27 have the same structure as the bump 25 of Figure 5, but those that are formed by the same method, the present reference embodiment, focus forming a bump on the wiring board 21 side Therefore, the shape of the bump is not limited to the shape described above.
[0041]
FIG. 10 is a diagram illustrating a device configuration example of a semiconductor device mounting apparatus according to a reference example. The wiring board mounting table 31 mounts a wiring board 32 on which pads are formed at predetermined positions. The semiconductor chip support head 33 has an ATC (Auto-Tool Change Collet) 34 at the tip, and supports a semiconductor chip 35 such as a bare IC chip on which bumps are formed by the ATC 34 by vacuum, and The semiconductor chip 35 is moved to the position of the wiring board 32. Precise alignment between the semiconductor chip 35 and the wiring board 32 is performed by imaging X-ray irradiation from the X-ray generator 37 on the back side of the wiring board 32 with an X-ray imaging device 38 above the chip support head 33. Do. That is, the X-rays from the X-ray generator 37 are transmitted through the bumps and electrodes of the wiring substrate 32 and the semiconductor chip 35 to generate these transmitted images. The position of the semiconductor chip 35 supported by the chip support head 33 is finely adjusted by the position correction control of the alignment mounting processing unit 40 while taking an image and referring to the position of the imaged bump and each electrode by the monitor device 39. The semiconductor chip 35 and the wiring board 32 are aligned, and flip-chip mounting is performed by performing thermocompression bonding with the heater 36 of the chip support head 33.
[0042]
Incidentally, in a conventional semiconductor mounting apparatus, for example, a plurality of CCD cameras are used to image the bumps and electrodes of the wiring board 32 and the semiconductor chip 35, and the true positions of the bumps and the like are calculated by calculation based on the plurality of images. Therefore, it is difficult to perform highly accurate alignment, and the state of the connected part after mounting cannot be imaged with a CCD camera, so inspection work must be performed in a separate process. The work was complicated.
[0043]
However, the semiconductor mounting apparatus according to this reference example uses X-rays as described above, and as shown in FIG. 11, while confirming a transmission image such as the wiring pattern, each pad, and the state of the bump, Since the electrodes and the like can be aligned, the accuracy of flip chip mounting can be improved. In addition, since it is possible to simultaneously check the wiring pattern by X-rays and inspect the mounting state, it is possible to simplify the inspection work and increase the reliability of the product.
[0044]
【The invention's effect】
As described above, according to the first semiconductor device and the method for manufacturing the semiconductor device of the present invention, the Ag bump comes into contact with the Al chip electrode through the Ni / Au plating layer, thereby suppressing the battery reaction. In addition to improving reliability over time, an Ag bump is formed following a process of forming a Cu wiring board electrode on the wiring board, and then a Ni / Au plating layer is formed. Therefore, it is possible to form an Ag bump and plate the surface before the Cu electrode is oxidized without changing the conventional process, and it is effective in preventing the oxidation of the electrode.
[Brief description of the drawings]
1 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention in the order of manufacturing steps;
FIG. 2 is a flowchart showing manufacturing steps of the semiconductor device.
FIG. 3 is a diagram for explaining an effect of the semiconductor device.
4 is a cross-sectional view showing a semiconductor device according to a reference embodiment of the present invention in the order of manufacturing steps; FIG.
FIG. 5 is a cross-sectional view showing a semiconductor device according to another reference embodiment of the present invention in the order of manufacturing steps;
FIG. 6 is an enlarged perspective view of a bump of the semiconductor device.
FIG. 7 is an enlarged view of a connection portion by a bump of the semiconductor device.
FIG. 8 is an enlarged perspective view of a bump formed by conventional wire ball bonding.
FIG. 9 is a cross-sectional view showing a semiconductor device according to another reference embodiment of the present invention in the order of manufacturing steps;
FIG. 10 is a diagram illustrating an example of a semiconductor device mounting apparatus according to a reference example ;
FIG. 11 is a view showing an image obtained by the mounting apparatus.
FIG. 12 is a cross-sectional view of a conventional semiconductor device.

Claims (6)

配線基板と、この配線基板上にフリップチップ方式により実装された半導体チップとを備えた半導体装置において、
前記配線基板上に形成された配線基板電極と、
この配線基板電極上に形成されたAgバンプと、
このAgバンプが形成された配線基板電極上に形成されたNi/Auメッキ層と、
前記半導体チップ上に形成された前記Ni/Auメッキ層を介して前記Agバンプと接続されるAlからなるチップ電極と
を備えてなることを特徴とする半導体装置。
In a semiconductor device comprising a wiring board and a semiconductor chip mounted on the wiring board by a flip chip method,
A wiring board electrode formed on the wiring board;
Ag bumps formed on the wiring board electrodes;
A Ni / Au plating layer formed on the wiring board electrode on which the Ag bump is formed;
A semiconductor device comprising: a chip electrode made of Al connected to the Ag bump through the Ni / Au plated layer formed on the semiconductor chip.
Agバンプは、Agペーストをスクリーン印刷することによって形成されたものであることを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the Ag bump is formed by screen printing of an Ag paste. 前記配線基板電極は、Cuからなることを特徴とする請求項1又は2記載の半導体装置。  The semiconductor device according to claim 1, wherein the wiring board electrode is made of Cu. 前記配線基板と前記半導体チップとは、異方性導電フィルム、異方性導電ぺースト及び絶縁樹脂のうちの一つを塗布、貼付又は充填することにより接着されていることを特徴とする請求項1〜のいずれか1項記載の半導体装置。The wiring board and the semiconductor chip are bonded by applying, pasting or filling one of an anisotropic conductive film, an anisotropic conductive paste, and an insulating resin. the semiconductor device of any one of 1-3. 配線基板上に配線基板電極を形成する工程と、この工程で形成された配線基板電極上にAgバンプを形成する工程と、この工程でAgバンプが形成されたCuの配線基板電極上にNiメッキを施した後、Auメッキを施す工程と、前記Ni/Auメッキ層が表面に形成された前記Agバンプと半導体チップのAlからなるチップ電極とを位置合わせして熱圧着することにより前記半導体チップを前記配線基板上にフリップチップ実装する工程とを備えてなることを特徴とする半導体装置の製造方法。  Forming a wiring board electrode on the wiring board; forming an Ag bump on the wiring board electrode formed in this process; and plating Ni on the Cu wiring board electrode on which the Ag bump is formed in this process. The semiconductor chip by aligning the Ag bump having the Ni / Au plating layer formed on the surface thereof with the chip electrode made of Al of the semiconductor chip, and performing thermocompression bonding. And a step of flip-chip mounting on the wiring substrate. 前記配線基板上にAgバンプを形成する工程は、Agペーストを前記配線基板電極上にスクリーン印刷して形成する工程であることを特徴とする請求項記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5 , wherein the step of forming the Ag bump on the wiring substrate is a step of forming an Ag paste by screen printing on the wiring substrate electrode.
JP2000066737A 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3719900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066737A JP3719900B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066737A JP3719900B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005223235A Division JP2005322947A (en) 2005-08-01 2005-08-01 Semiconductor device, manufacturing method for same, mounting device, and mounting method

Publications (2)

Publication Number Publication Date
JP2001257237A JP2001257237A (en) 2001-09-21
JP3719900B2 true JP3719900B2 (en) 2005-11-24

Family

ID=18586049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066737A Expired - Fee Related JP3719900B2 (en) 2000-03-10 2000-03-10 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3719900B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179099A (en) * 2001-12-12 2003-06-27 Toshiba Corp Semiconductor device and method of manufacturing the same
US20050257953A1 (en) * 2004-05-19 2005-11-24 Aries Electronics, Inc. Method of creating gold contacts directly on printed circuit boards and product thereof
JP2006177925A (en) * 2004-11-25 2006-07-06 Denso Corp Pressure sensor and manufacturing method therefor
JP4566915B2 (en) * 2006-01-10 2010-10-20 大日本印刷株式会社 Semiconductor device mounting body and method of manufacturing semiconductor device mounting body
JP5065657B2 (en) * 2006-11-27 2012-11-07 パナソニック株式会社 Electronic device and manufacturing method thereof
KR100924559B1 (en) 2008-03-07 2009-11-02 주식회사 하이닉스반도체 Method of manufacturing semiconductor package

Also Published As

Publication number Publication date
JP2001257237A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
US8101866B2 (en) Packaging substrate with conductive structure
US7682962B2 (en) Method for fabricating stacked semiconductor components with through wire interconnects
US7056818B2 (en) Semiconductor device with under bump metallurgy and method for fabricating the same
US6995469B2 (en) Semiconductor apparatus and fabricating method for the same
JP5066935B2 (en) Method for manufacturing electronic component and electronic device
TW201225188A (en) No flow underfill
US5877079A (en) Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
US8779300B2 (en) Packaging substrate with conductive structure
US8046911B2 (en) Method for mounting electronic component on substrate and method for forming solder surface
JP3719900B2 (en) Semiconductor device and manufacturing method thereof
JP3836349B2 (en) Semiconductor device and manufacturing method thereof
JP2003017531A (en) Semiconductor device
KR100834804B1 (en) Flip-chip interconnecting method using metal stud stack or column, and electric circuit board
JP2005322947A (en) Semiconductor device, manufacturing method for same, mounting device, and mounting method
JPH118270A (en) Method for mounting semiconductor chip, method for manufacturing chip-on-chip structure, and method for manufacturing chip-on-board structure
JP2003243455A (en) Tape, method of manufacturing the same, semiconductor device, method of manufacturing the same
KR101040157B1 (en) Package using nanospring or microspring and method of fabricating the same
JP4318893B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4495927B2 (en) Semiconductor device and manufacturing method thereof
JP3553246B2 (en) Method of manufacturing IC module for IC card and method of manufacturing IC module
JP5152157B2 (en) Manufacturing method of semiconductor device
JP4444022B2 (en) Manufacturing method of semiconductor device
JP2003258155A (en) Wiring board manufacturing method
JP3675374B2 (en) Semiconductor device
JP4467260B2 (en) Bump formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees