JP3719833B2 - Modified cyanate ester resin film and method for producing the same - Google Patents

Modified cyanate ester resin film and method for producing the same Download PDF

Info

Publication number
JP3719833B2
JP3719833B2 JP29057897A JP29057897A JP3719833B2 JP 3719833 B2 JP3719833 B2 JP 3719833B2 JP 29057897 A JP29057897 A JP 29057897A JP 29057897 A JP29057897 A JP 29057897A JP 3719833 B2 JP3719833 B2 JP 3719833B2
Authority
JP
Japan
Prior art keywords
component
resin
resin film
cyanate ester
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29057897A
Other languages
Japanese (ja)
Other versions
JPH11124452A (en
Inventor
茂雄 佐瀬
康之 水野
猛 杉村
春巳 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP29057897A priority Critical patent/JP3719833B2/en
Publication of JPH11124452A publication Critical patent/JPH11124452A/en
Application granted granted Critical
Publication of JP3719833B2 publication Critical patent/JP3719833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、印刷配線板等における絶縁層の形成に用いられる変性シアネートエステル系樹脂フィルム及びその製造方法に関する
【0002】
【従来の技術】
電子機器の小型・高機能化に伴い、印刷配線板では薄型・軽量でかつ高密度配線が可能な基板材料が求められられるようになった。近年、小径でかつ必要な層間のみを非貫通穴で接続するIVH構造のビルドアップ積層方式印刷配線板が開発され、急速に普及が進んでいる。ビルドアップ積層方式印刷配線板の絶縁層にはガラス布等の基材を含まない耐熱性樹脂が用いられており、IVH用の穴は、感光性樹脂を利用したフォトリソグラフィあるいは熱硬化性樹脂をレーザー加工機によって熱分解する等の方法で形成されている。
【0003】
さらに近年では、大量のデータを高速で処理するためコンピュータや情報機器端末などでは信号の高周波化が進んでいるが、周波数が高くなる程電気信号の伝送損失が大きくなるという問題があり、高周波化に対応した印刷配線板の開発が強く求められている。
高周波回路での伝送損失は、配線周りの絶縁層(誘電体)の誘電特性で決まる誘電体損の影響が大きく、印刷配線板用基板(特に絶縁樹脂)の低誘電率及び低誘電正接(tanδ)化が必要となる。例えば移動体通信関連の機器では、信号の高周波化に伴い準マイクロ波帯(1〜3GHz)での伝送損失を少なくするため誘電正接の低い基板が強く望まれるようになっている。
【0004】
さらにコンピュータなどの電子情報機器では、動作周波数が200MHzを越える高速マイクロプロセッサが搭載されるようになり、印刷配線板での高速パルス信号の遅延が問題になってきた。信号の遅延時間が印刷配線板では配線まわりの絶縁物の比誘電率εrの平方根に比例して長くなるため、高速コンピュータなどでは誘電率の低い配線板用基板が求められている。
【0005】
上述の印刷配線板の技術動向に対して、高周波帯域での誘電率と誘電正接が低く、かつビルドアップ積層方式印刷配線板の製造に適した耐熱性絶縁フィルムはこれまで開発されていなかった。
【0006】
従来から誘電特性が良好なフィルム材料として、耐熱性熱可塑性樹脂(エンジニアリング・プラスチックス)のポリフェニレンエーテル(PPO又はPPE)系樹脂が知られていたが、印刷配線板用の絶縁材料に適用するためには、実装時のはんだ接続工程に耐えられる耐熱性と印刷配線板製造時のその他の工程での耐溶剤性・耐薬品性などの改善が必要であった。
【0007】
この耐熱性や耐溶剤性を改善する方法として、ポリフェニレンエーテル樹脂を熱硬化性樹脂で変性する方法が提案されている。例えば、熱硬化性樹脂の中では最も誘電率が低いシアネートエステル樹脂を用いた樹脂フィルムとして、特公平1-53700号公報に示されているようにポリフェニレンエーテル樹脂にシアネートエステル樹脂を配合した硬化性樹脂組成物を用いるポリフェニレンエーテル樹脂系フィルムがある。同様に、シアネートエステル系の変性樹脂を用いる樹脂組成物として、特公昭63-33506号公報に示されているビスマレイミド/シアネートエステル変性樹脂とポリフェニレンエーテル樹脂との樹脂組成物及び特開平5-311071号公報に示されている変性フェノール樹脂/シアネートエステル系樹脂とポリフェニレンエーテル樹脂との樹脂組成物などがある。
【0008】
また熱可塑性樹脂であるポリフェニレンエーテル系樹脂に熱硬化性を付与して耐熱性や耐溶剤性を改善するものとして、特公平5-77705号公報に示されているポリフェニレンエーテル樹脂と架橋性ポリマ/モノマとの樹脂組成物をキャスティングしたフィルム及び特開平7-188362号公報に示されている不飽和基を持つ特定の硬化性ポリフェニレンエーテル樹脂を適度に架橋させたフィルムなどがある。
【0009】
【発明が解決しようとする課題】
特公平1-53700号公報に示されるポリフェニレンエーテル樹脂にシアネートエステル樹脂を配合した樹脂組成物からなるフィルムは、樹脂同士の相容性が悪いという問題点があり、硬化性樹脂としてシアネートエステルを単独で用いているため、樹脂硬化物の誘電特性は、誘電率は後述の他の組成物よりは比較的良好ではあるものの誘電正接が誘電率の値の割に高いという傾向にあり、高周波特性(特に伝送損失の低減)が不十分であるという問題点があった。
特公昭63-33506号公報や特開平5-311071号公報に示される方法は、ポリフェニレンエーテル樹脂を変性する熱硬化性樹脂がビスマレイミド/シアネートエステル変性樹脂や変性フェノール樹脂/シアネートエステル系樹脂であるため、ポリフェニレンエーテル樹脂に対する相容性は若干良好になるものの、シアネートエステル樹脂以外の他の熱硬化性樹脂を含有しているため樹脂硬化物の誘電特性はシアネート樹脂単独で変性された樹脂よりも悪く、その結果高周波特性が更に不十分であるという問題点があった。
【0010】
特公平5-77705号公報に示される方法は、ポリトリアリルイソシアヌレートやスチレンブタジエン共重合体等の架橋性ポリマ及びトリアリルイソシアヌレート等の架橋性モノマをポリフェニレンエーテル樹脂に配合することにより熱硬化性(ラジカル重合性)を付与しているが、架橋性のポリマ及びモノマが極性の高い化合物であるために未反応で残存する少量成分によって樹脂硬化物の誘電特性が悪化するという問題点があった。
【0011】
また特開平7-188362号公報に示されている方法は、ポリフェニレンエーテル樹脂自身にアリル基などの不飽和基を導入したポリマを用いるものであるが、本来熱可塑性樹脂であるポリフェニレンエーテルの誘導体が主体となっているため、もともと溶融粘度が高いことに加え、不飽和基のラジカル重合性を利用しているので連鎖反応的に一気に硬化が進むため、硬化時の最低溶融粘度が高くかつ溶融粘度の上昇率も大きいという性質があり、プレス成形時に樹脂が十分に流動化できない結果、ボイドが発生して回路充填性が不十分となったり、多層化接着工程でのプレス条件の管理幅が狭くなる等成形性が悪いという問題点があった。
【0012】
このような状況に鑑みて本発明者らは、先に印刷配線板用樹脂組成物として特定のシアネートエステル樹脂を1価フェノール類化合物で変性した組成物を用いる方法(特願平9−80033号)を提案した。この方法によれば特定のシアネートエステル樹脂を1価フェノール類化合物で変性することで高周波(GHz)帯域での誘電特性、特に誘電正接が低い樹脂組成物を得ることができたが、使用する特定のシアネートエステル樹脂が特殊かつ高価であるという問題点があった。
【0013】
本発明は、耐熱性と耐溶剤性・耐薬品性が良好で、かつ印刷配線板の薄形・軽量化と高密度化に有効なビルドアップ積層方式に適した絶縁フィルムであって、高周波帯域での誘電率と誘電正接が低く高周波回路の低損失性を実現でき、しかも回路充填性などの成形性が良好な変性シアネートエステル系樹脂フィルム及びその製造方法を提供することを課題とした。
【0014】
【課題を解決するための手段】
本発明は、(A)式(1)で示されるシアネートエステル類化合物、(B)式(2)で示される1価フェノール類化合物、(C)ポリフェニレンエーテル樹脂及び(D)金属系反応触媒を必須成分として含有する変性シアネートエステル系硬化性樹脂組成物を半硬化もしくは硬化してなる変性シアネートエステル系樹脂フィルムである。
また、本発明は、前記変性シアネートエステル系硬化性樹脂組成物が、(A)式(1)で示されるシアネートエステル類化合物の100重量部に対して、(B)式(2)で示される1価フェノール類化合物を4〜30重量部、(C)ポリフェニレンエーテル樹脂5〜500重量部及び(D)金属系反応触媒を(A)式(1)で示されるシアネートエステル類化合物1gに対し1〜300ppmを配合した硬化性樹脂組成物であると好ましい変性シアネートエステル系樹脂フィルムである。また、(A)シアネートエステル類化合物と(B)1価フェノール類化合物の一部又は全部を反応させて得られる変性シアネートエステル樹脂と(C)ポリフェニレンエール樹脂及び(D)金属系反応触媒を必須成分として含有する変性シアネートエステル系硬化性樹脂組成物であると好ましい変性シアネートエステル系樹脂フィルムである。そして、本発明は、前記の変性シアネートエステル系硬化性樹脂組成物と溶剤を含むワニスを支持基材の片面に流延塗布し、加熱乾燥により溶剤を除去し製膜する変性シアネートエステル系樹脂フィルムの製造方法である。また、前記の変性シアネートエステル系硬化性樹脂組成物において、(C)ポリフェニレンエーテル樹脂の溶剤溶液中で、(A)シアネートエステル類化合物と(B)1価フェノール類化合物の反応を行い得られたワニスを用いてフィルムを作製すると好ましく、さらに、(C)ポリフェニレンエーテル樹脂の芳香族炭化水素系溶剤溶液中で、(A)シアネートエステル類化合物と(B)1価フェノール類化合物の反応を行いワニスを作製すると好ましく、また、(C)ポリフェニレンエーテル樹脂の芳香族炭化水素系溶剤溶液中で、(A)シアネートエステル類化合物と(B)1価フェノール類化合物の反応を行い、さらにケトン系溶剤を配合してワニスを作製すると好ましく、そのワニスを支持基材の片面に流延塗布し、加熱乾燥により溶剤を除去し製膜する変性シアネートエステル系樹脂フィルムの製造方法である。
【0015】
【化3】

Figure 0003719833
【0016】
【化4】
Figure 0003719833
【0017】
【発明の実施の形態】
本発明は、誘電特性の良好な変性シアネートエステル樹脂に誘電特性が良好な熱可塑性樹脂である(C)ポリフェニレンエーテル樹脂を配合することにより誘電特性の向上を図っており、本来非相容系であって均一な樹脂を得ることが困難であるシアネートエステル樹脂とポリフェニレンエーテル樹脂とを、(C)ポリフェニレンエーテル樹脂の溶剤溶液中で、(A)シアネートエステル類化合物と(B)1価フェノール類化合物の反応を行うといういわゆる“セミIPN化の手法によって、フィルム用の均一な樹脂ワニスを製造し、さらにそれを支持基材である銅箔やキャリヤフィルムの片面に流延塗布し、加熱乾燥により溶剤を除去して相容化した樹脂フィルムを得る変性シアネートエステル系樹脂フィルムの製造方法及変性シアネートエステル系樹脂フィルムである。
【0018】
高分子材料など誘電特性は双極子の配向分極による影響が大きく、したがって分子内の極性基を少なくすることにより低誘電率化が図れ、また極性基の運動性を抑えることにより誘電正接を低くすることが可能である。シアネートエステル樹脂は、極性の強いシアナト基を有していながら硬化時には対称性かつ剛直なトリアジン構造を生成するので、熱硬化性樹脂としては最も低い誘電率及び誘電正接の硬化物が得られるという特徴がある。
【0019】
しかしながら、実際の硬化反応においては、シアネートエステル樹脂中のすべてのシアナト基が反応してトリアジン構造を生成するということは不可能であり、硬化反応の進行に伴って反応系が流動性を失い未反応のシアナト基として系内に残存することになる。その結果、これまでのシアネートエステル樹脂では、本来の硬化物が示すはずの特性よりは誘電率や誘電正接が高い硬化物しか得られなかった。
【0020】
これに対して本発明の樹脂組成物では、(B)1価フェノール類化合物を(A)シアネートエステル類化合物に対して適正量配合することで未反応として残るシアナト基をイミドカーボネート化してその極性を減じることにより硬化物の誘電率と誘電正接を本来の値まで低下させようとしたものである。この目的で用いる材料としては、シアナト基との反応性が高く、また単官能で比較的低分子量でありかつシアネートエステル類化合物との相容性が良い(分子構造に類似性があり)化合物が適していると考えられる。本発明の樹脂組成物で用いる1価のフェノール類化合物は、このような理由によって特定された化合物である。
【0021】
従来、シアネートエステル類化合物の三量化反応(トリアジン環の生成)の助触媒として、ノニルフェノール等のフェノール化合物がシアネートエステル類化合物100重量部に対して1〜2重量部程度用いられる場合があった。しかし配合量が触媒量であったため、上記のような未反応のシアナト基と反応し低極性化するという効果は認められなかった。しかるに本発明者らがフェノール化合物の配合量について検討した結果、フェノール化合物を従来の触媒量よりも多量に配合した場合に硬化物の誘電率と誘電正接が低下することを認め、かつ特定の1価フェノール類化合物を用いれば、配合量が増える事による耐熱性の低下も抑制できることを見出した。そのため本発明の方法によれば、これまでのシアネートエステル樹脂単独の硬化物や、従来のエポキシ樹脂や多価フェノール類(片方の水酸基が未反応基として残り易いため誘電特性をかえって悪化させる)及びビスマレイミド等を配合した樹脂の硬化物よりも誘電率と誘電正接の低い硬化物が得られるようになった。
【0022】
したがって本発明の樹脂組成物では、1価フェノール類化合物の配合量が重要である。すなわち、配合量が少ない場合は未反応として残存する全てのシアナト基と反応し低極性化することができず、配合量が必要量より多い場合はかえって自分自身が未反応として残存し、自身の水酸基の極性によって硬化物の誘電特性を悪化させてしまうことになるからである。
【0023】
本発明の変性シアネートエステル系樹脂フィルムに用いられる変性シアネートエステル系硬化性樹脂組成物は、(A)式(1)で示されるシアネートエステル類化合物、(B)式(2)で示される1価フェノール類化合物、(C)ポリフェニレンエーテル樹脂及び(D)金属系反応触媒を必須成分として含む。
【0024】
本発明における(A)シアネートエステル類化合物は、式(1)で示されように1分子中にシアナト基を2個有するシアネートエステル類化合物である。式(1)で示される化合物としては、例えば、ビス(4−シアナトフェニル)エタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化物等が挙げられる。その中でも、2,2−ビス(4−シアナトフェニル)プロパン及び2,2−ビス(3,5−ジメチル−4−シアナトフェニル)メタンが硬化物の誘電特性と硬化性のバランスが特に良好であるため好ましい。また(A)シアネートエステル類化合物は、1種類を単独で用いてもよく、又は2種類以上を混合して用いてもよい。
【0025】
本発明における(B)1価フェノール類化合物は、式(2)で示される1価フェノール類であり耐熱性の良好な化合物が好ましい。式(2)で示される化合物としては、p−(α−クミル)フェノールが挙げられる。なお、(B)1価フェノール類化合物は、1種類を単独で用いてもよくまたは2種類以上を混合して用いてもよい。
【0026】
本発明における(B)1価フェノール類化合物の配合量は、(A)シアネートエステル類化合物100重量部に対して4〜30重量部とするのが好ましく、5〜25重量部とすることがより好ましく、5〜20重量部とすることが特に好ましい。(B)1価フェノール類化合物の配合量が4重量部未満では十分な誘電特性が得られず、特に高周波帯域での誘電正接が十分に低くならない傾向がある。また30重量部を超えるとかえって誘電正接が高くなるという傾向があり望ましくない。したがって、高周波帯において誘電正接の低い変性シアネートエステル系樹脂フィルムを得るためには、(A)シアネートエステル類化合物に対して適切な配合量の(B)1価フェノール類化合物を用いる必要がある。
【0027】
本発明における(A)シアネートエステル類化合物と(B)1価フェノール類化合物は、通常、それぞれを反応させて得られる変性シアネートエステル樹脂として用いられる。すなわち、(A)シアネートエステル類化合物のプレポリマ化とともに、(A)シアネートエステル類化合物に(B)1価フェノール類化合物を付加させたイミドカーボネート化変性樹脂として用いられる。
【0028】
(A)シアネートエステル類化合物と(B)1価フェノール類化合物を反応させる際には、(B)1価フェノール類化合物を反応初期から上記の適正配合量の全部を投入して反応させて変性シアネートエステル樹脂としても良いし、反応初期は上記の適正配合量の一部を反応させ、冷却後残りの(B)1価フェノール類化合物を投入して、Bステージ化時あるいは硬化時に反応させて変性シアネートエステル樹脂としても良い。
【0029】
本発明における(C)ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリスチレンのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエンコポリマのアロイ化ポリマ等が挙げられ、その中でも、ポリ(2、6−ジメチル−1,4−フェニレン)エーテルとポリスチレンのアロイ化ポリマ及びポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエンコポリマのアロイ化ポリマ等が好ましい。(C)ポリフェニレンエーテル樹脂中のポリ(2,6−ジメチル−1,4−フェニレン)エーテルの成分量は、50重量%以上含有するポリマであることが硬化物の誘電特性が良好であるために好ましいが、65重量%以上含有するポリマであることがより好ましい。
【0030】
本発明における(C)ポリフェニレンエーテル樹脂の配合量は、(A)シアネートエステル類化合物100重量部に対して5〜500重量部とすることが好ましく、10〜300重量部とすることがより好ましく、15〜200重量部とすることが特に好ましい。(C)ポリフェニレンエーテル樹脂の配合量が5重量部未満では十分な誘電特性が得られなくなる傾向があり、500重量部を超えると熱硬化成分である(A)シアネートエステル樹脂の反応性が(C)ポリフェニレンエーテル樹脂の希釈効果により悪くなり、得られた樹脂フィルムの耐熱性や耐溶剤性が悪くなるという問題点が生じる。
【0031】
本発明の(D)金属系反応触媒は、(A)シアネートエステル類化合物と(B)1価フェノール類化合物との反応を促進するものであり、変性シアネートエステル系硬化性樹脂組成物を製造する際の反応触媒及び樹脂フィルムが硬化する際の硬化促進剤として用いられる。金属系反応触媒としては、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属触媒類が用いられ、具体的には、2−エチルヘキサン酸塩やナフテン酸塩等の有機金属塩化合物及びアセチルアセトン錯体などの有機金属錯体として用いられる。変性シアネートエステル系硬化性樹脂組成物を製造する際の反応促進剤と積層板を製造する際の硬化促進剤で同一の金属系反応触媒を単独で用いてもよく、またはそれぞれ別の2種類以上を用いてもよい。
【0032】
本発明における(D)金属系反応触媒の配合量は、(A)シアネートエステル類化合物1gに対して1〜300ppmとすることが好ましく、1〜200ppmとすることがより好ましく、2〜150ppmとすることが特に好ましい。(D)金属系反応触媒の配合量が1ppm未満では反応性及び硬化性が不十分となる傾向があり、300ppmを超えると反応の制御が難しくなったり、硬化が速くなりすぎて流動性が乏しくなり成形性が悪くなる傾向がある。また、本発明における(D)金属系反応触媒の配合時期は、変性シアネートエステル系硬化性樹脂組成物を製造する際に反応促進剤及び硬化促進剤として必要な量を同時にまとめて配合してもよいし、変性シアネートエステル系硬化性樹脂組成物を製造する際に変性反応の促進に必要な量を用い、反応終了後残りの触媒、又は別の金属系触媒を硬化促進剤として添加混合してもよい。
【0033】
本発明の変性シアネートエステル系樹脂フィルムに用いる組成物には、上記必須成分以外に必要に応じて難燃剤、無機充填剤及びその他添加剤を配合することができる。難燃剤の例としては、トリブロモフェノールやテトラブロモビスフェノールAなどの臭素化フェノール系、テトラブロモビスフェノールA型エポキシ樹脂や臭素化ノボラック型エポキシ樹脂などの臭素化エポキシ樹脂系、臭素化ポリスチレンや臭素化ポリカーボネートなどの臭素化熱可塑性樹脂系、デカブロモジフェニルエーテルに代表されるポリブロモジフェニルエーテル系、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロヘキサン、テトラブロモシクロオクタン及びヘキサブロモシクロドデカンなどの臭素化炭化水素系、2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジンなどの臭素化トリフェニルシアヌレート系難燃剤等が挙げられる。その中でも、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン及び2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン等の難燃剤が、シアネートエステル類化合物と反応性を有しないため得られる硬化物の誘電特性が良好であるので好ましい。
【0034】
本発明における難燃剤の配合量は、(A)シアネートエステル類化合物、(B)1価フェノール類化合物及び(C)ポリフェニレンエーテル樹脂の総量100重量部に対して5〜50重量部とすることが好ましく、5〜40重量部とすることがより好ましく、10〜30重量部とすることが特に好ましい。難燃剤の配合量が5重量部未満では耐燃性が不十分となる傾向があり、50重量部を超えると樹脂の耐熱性が低下する傾向がある。
【0035】
無機充填剤としては、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、クレイ、タルク、窒化珪素、窒化ホウ素、酸化チタン、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウム等を使用することができる。この配合量としては、本発明の樹脂組成物の総量100重量部に対して、300重量部以下とすることが、本発明の変性シアネートエステル系樹脂フィルムが均一でかつ良好な取扱性を得るために好ましい。
【0036】
本発明の変性シアネートエステル系樹脂フィルムを製造するには、以上説明した変性シアネートエステル系硬化性樹脂組成物を溶剤に溶解して10〜50重量%のワニスとし、支持基材の片面にバーコータやロールコータなどを用いて流延塗布し、加熱乾燥により溶剤を除去してフィルム(製膜)とすることができる。
【0037】
上記のワニスを製造する場合に用いられる溶剤の具体例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、トリクロロエチレン、クロロベンゼン等のハロゲン化炭化水素類、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド等のアミド系やN−メチルピロリドンなどの窒素系溶剤などが用いられる。特にベンゼン、トルエン、キシレン等の芳香族炭化水素類(芳香族炭化水素系溶剤)がより好ましい。これらの溶剤類は1種類単独で用いてもよく又は2種類以上を混合して用いてもよい。芳香族炭化水素系溶剤の配合量は、樹脂組成物の全体量100重量部に対して100〜900重量部が好ましく、100〜600重量部がより好ましく、150〜400重量部が特に好ましい。
【0038】
またアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類を芳香族炭化水素系溶剤類と併用した場合はワニスが懸濁溶液となるが、より高濃度の溶液が得られるという利点がある。しかし、ケトン類の配合量が多すぎると樹脂組成物が分離沈降する恐れがあるので、ケトン系溶剤の配合量は芳香族炭化水素系溶剤100重量部に対して250重量部以下とするが好ましい。
【0039】
本発明に用いる支持基材は、銅やアルミニウム等の金属箔、ポリエステルやポリイミド等の樹脂フィルム、あるいはこれらの樹脂フィルムの表面に離型剤を塗布したものなどを用いることができる。支持基材に銅箔を用いた場合は、銅箔をそのまま回路導体として使用することができる利点があり、また支持基材に離型剤処理が施されていると支持基材から変性シアネートエステル系樹脂フィルムを引き剥がす際や支持基材付フィルムを基板に積層した後支持基材だけを剥離する際の作業性を向上させる上で好ましい。
【0040】
このように支持基材の片面に絶縁性の樹脂層を形成した変性シアネートエステル系樹脂フィルムは、以下に示す方法によって印刷配線板の製造に供することができる。例えば、支持基材を除去した変性シアネートエステル系樹脂フィルムを1枚または複数枚積層しその上下に銅箔を配置してプレス成形するか、あるいは支持基材である銅箔にワニスを塗工した変性シアネートエステル系樹脂フィルムをフィルム同士を合わせるように貼り合わせ、さらに必要ならばその間に樹脂フィルム基材を除去した変性シアネートエステル系樹脂フィルムを1枚以上介在させてプレス成形することによって印刷配線板用の銅張積層板を製造することができる。
【0041】
また、従来のガラス布基材の銅張積層板あるいは上記の銅張積層板に回路を形成後、支持基材を除去した変性シアネートエステル系樹脂フィルムを1枚以上積層し、さらにその上に銅箔や回路形成基板を配置してプレス成形するか、または支持基材としての銅箔に塗工した変性シアネートエステル系樹脂フィルムを配置してプレス成形することにより多層配線板用の基板を製造することができる。
【0042】
なお、回路の形成には、従来の方法を適用することができる。例えば、銅張積層板又は多層配線板用基板に必要に応じて貫通又は非貫通穴を明け、ついで無電解めっき又は必要に応じて電気めっきを施して穴内壁を導体化した後、導通穴部の保護とエッチングレジストの形成及びエッチングによる非配線部分の銅の除去などの工程により回路を形成することができる。
【0043】
さらに本発明の変性シアネートエステル系樹脂フィルムでは、貫通又は非貫通穴を明ける方法としてドリル穴明け及びレーザ加工を採用することができる。レーザ加工の場合には、レーザショットにより直に穴を形成するダイレクト・イメージング法や金属製マスク等を用いるコンフォーマル・マスク法でレーザ穴明けが可能であるが、本発明に示される変性シアネートエステル系樹脂フィルムの一例である銅箔を支持基材とした場合は、貫通又は非貫通穴を形成すべき場所をエッチングによって除去した銅箔をマスクとして用いてレーザ穴明けを行うことができる。
【0044】
【実施例】
以下、実施例により本発明をより具体的に説明する。表1に示す配合量に従い変性シアネートエステル系硬化性樹脂組成物ワニスを製造し、半硬化状の樹脂フィルムを作製した。
【0045】
(実施例1)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン450gと(C)ポリフェニレンエーテル樹脂としてノニルPKN4752(日本ジーイープラスチックス株式会社製商品名)120gを投入し、80℃に加熱し攪拌溶解した。次に(A)シアネートエステル類化合物として2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)60g、(B)1価フェノール類化合物としてp−(α−クミル)フェノール(サンテクノケミカル株式会社製)6gを投入溶解後、(D)金属系反応触媒としてナフテン酸コバルト(Co含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.8gを添加し還流温度で1時間反応させた。室温まで冷却し変性シアネートエステル系硬化性樹脂組成物ワニス(固形分濃度=29重量%)を製造した。
【0046】
このワニスをバーコータの一種であるコンマ型コータ(株式会社ヒラノテクシード製)を用いて厚さ50μmの離型剤付きのポリエチレンテレフタレート(PET)フィルム(ピューレックスA−63,株式会社帝人製商品名)に塗工、乾燥(130℃)し、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製した。得られた変性シアネートエステル系樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0047】
(実施例2)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン240gとポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)160gを投入し、80℃に加熱し攪拌溶解した。次に2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)80g、p−(α−クミル)フェノール(サンテクノケミカル株式会社製)2gを投入溶解後、ナフテン酸マンガン(Mn含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.3gを添加し還流温度で3時間反応させた。ついで反応液を冷却し、内温が90℃になったらメチルエチルケトン(MEK)300gを攪拌しながら投入し懸濁化させた。さらに室温まで冷却した後、p−(α−クミル)フェノール6g、ナフテン酸亜鉛(Zn含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.2gを投入溶解し変性シアネートエステル系硬化性樹脂組成物ワニス(固形分濃度=31重量%)を製造した。
【0048】
このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0049】
(実施例3)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン450gとポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)105gを投入し、80℃に加熱し攪拌溶解した。次に2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)75g、p−(α−クミル)フェノール15g、ナフテン酸コバルト(Co含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.7gを添加し還流温度で2時間反応させた。反応液を室温まで冷却した後、ナフテン酸亜鉛(Zn含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.1gを添加し攪拌溶解して変性シアネートエステル系硬化性樹脂組成物ワニス(固形分濃度=30重量%)を製造した。
【0050】
このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0051】
(実施例4)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン450gとポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)90gを投入し、80℃に加熱し攪拌溶解した。次に2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)90g、p−(α−クミル)フェノール11gを投入溶解後、ナフテン酸マンガン(Mn含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.7gを添加し還流温度で6時間反応させた。ついで室温まで冷却し変性シアネートエステル系硬化性樹脂組成物ワニス(固形分濃度=30重量%)を製造した。
【0052】
このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0053】
(実施例5)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン450gとポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)60gを投入し、80℃に加熱し攪拌溶解した。次にビス(3,5−ジメチル−4−シアナトフェニル)メタン(ArocyM−10、旭チバ株式会社製商品名)120g、p−(α−クミル)フェノール6gを投入溶解後、ナフテン酸マンガン(Mn含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.4gを添加し還流温度で6時間反応させた。ついで反応液を室温まで冷却した後、ナフテン酸コバルト(Co含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液0.2gを添加し攪拌溶解して変性シアネートエステル系硬化性樹脂組成物ワニス(固形分濃度=29重量%)を製造した。
【0054】
このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmPETフィルム付樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0055】
(比較例1)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、トルエン360gとポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)120gを投入し、80℃に加熱し攪拌溶解し、ワニス(固形分濃度=25重量%)を製造した。このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0056】
(比較例2)
温度計、冷却管、攪拌装置を備えた1リットルの4つ口セパラブルフラスコに、メチルエチルケトン(MEK)240gと2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)120g、p−(α−クミル)フェノール2gを投入し攪拌溶解後、ナフテン酸コバルト(Co含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液1.2gを添加し還流温度で2時間反応させ、室温まで冷却しワニス(固形分濃度=34重量%)を製造した。このワニスを用いて実施例1と同様にして、樹脂層厚さ30〜33μmのPETフィルム付樹脂フィルムを作製したが、得られた樹脂フィルムはカッタナイフで切断した際に樹脂割れや粉落ちが発生し、PETフィルムを剥離すると樹脂フィルム単体で取扱うことができなかった。
【0057】
(比較例3)
実施例4において、トルエン450gにポリフェニレンエーテル樹脂(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名)90gを投入し80℃に加熱して攪拌溶解し、次に2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)の替わりにそのオリゴマ(ArocyB−30、旭チバ株式会社製商品名)90gを投入して80℃で1時間加熱溶解した。ついで常温まで冷却し、p−(α−クミル)フェノールの替わりにノニルフェノール(三井東圧化学株式会社製)1g、ナフテン酸マンガンの替わりにナフテン酸コバルト(Co含有量=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液1gを添加してワニス(固形分濃度=29重量%)を製造した。しかし、このワニスは1日後にポリフェニレンエーテル樹脂の凝集分離物が観察され、結局、樹脂フィルムを作製することができなかった。
【0058】
【表1】
Figure 0003719833
【0059】
(A)B−10(旭チバ株式会社製商品名);2,2-ビス(4-シアナトフェニル)プロパン
M−10(旭チバ株式会社製商品名);ビス(3,5-ジメチル-4-シアナトフェニル)メタン
B−30(旭チバ株式会社製商品名);2,2-ビス(4-シアナトフェニル)プロパンのオリゴマ
(B)PCP(サンテクノケミカル株式会社製);p−(α−クミル)フェノール
NP(三井東圧化学株式会社製);ノニルフェノール
BPA(三井東圧化学株式会社製);ビスフェノールA、2,2-ビス(4-ヒドロキシフェニル)プロパン
(C)PPO(ノニルPKN4752、日本ジーイープラスチックス株式会社製商品名);ポリフェニレンエーテル樹脂
(D)Co;ナフテン酸コバルト(Co=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液
Zn;ナフテン酸亜鉛(Zn=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液
Mn;ナフテン酸マンガン(Mn=8重量%、日本化学産業株式会社製)の10重量%トルエン希釈溶液
【0060】
つぎに、実施例1〜5のPETフィルム付樹脂フィルムについて、樹脂フィルム単独での取扱性と硬化後のフィルムの耐溶剤性の評価を行った。
実施例1のPETフィルム付樹脂フィルムからPETフィルムを剥離し、得られた樹脂フィルムを12枚と、その上下に電解銅箔の鏡面を剥離面として用いて重ね、200℃、1.5MPaで1時間プレス成形を行い、厚さ約0.4mmの変性シアネートエステル系樹脂の硬化フィルムを作製した。同様にして実施例2〜5の樹脂フィルムをプレス成形してそれぞれの樹脂の硬化フィルムを作製した。
また、比較例1のPETフィルム付樹脂フィルムについて、樹脂フィルムをPETフィルムから剥離し、その12枚と上下に電解銅箔の鏡面を剥離面として用いて重ね、200℃、1.5MPaで1時間プレスし、厚さ約0.4mmの樹脂成形フィルムを作製した。比較例2のPETフィルム付樹脂フィルムについても同様に行ったが、比較例2のPETフィルム付樹脂フィルムは、シアネートエステル樹脂単独のフィルムであるためPETフィルムを剥離しようとすると、樹脂フィルム自体が脆いため割れてしまいフィルム単独で扱うことができなかった。その結果、樹脂の硬化フィルムを作製することができなかった。
【0061】
上記の樹脂硬化フィルムを50mm角に切断し、トルエン中に浸漬し室温で60分間放置した。実施例1〜5の樹脂硬化フィルムは、膨潤あるいは外観に変化が見られなかった。また、別に用意した実施例1〜5の樹脂硬化フィルムの表面を、トルエン又はメチルエチルケトン(MEK)を含ませた布で数回擦ってフィルム表面の異常の有無を観察したが、実施例1〜5の樹脂硬化フィルムでは、フィルム表面の異常は見られなかった。以上のことから実施例1〜5の樹脂硬化フィルムは、耐溶剤性が良好であることが確認できた。
【0062】
同様に、比較例1の樹脂成形フィルムを50mm角に切断し、トルエン中に浸漬し室温で60分間放置したところ、ポリフェニレンエーテル単独の樹脂成形フィルムであるため膨潤し、一部は溶解してしまった。また別の樹脂成形フィルムの表面をトルエンを含ませた布で数回擦ったところ、フィルムの表面が溶けてべたつきが発生した。また別の樹脂成形フィルムの表面をメチルエチルケトン(MEK)を含ませた布で数回擦ったところ、フィルムにひびわれ(亀裂)が生じ、遂には穴が明いて割れてしまった。
以上の結果より、本発明の変性シアネートエステル系樹脂フィルムは、フィルム単独での取扱性が可能でありかつ耐溶剤性も良好であることが確認できた。
【0063】
つぎに、実施例2〜5の変性シアネートエステル系硬化性樹脂組成物ワニスを用いて無機充填剤を添加した樹脂フィルムを作製し、その硬化物のGHz帯での誘電特性、ガラス転移温度及び引張弾性率を測定した。
【0064】
(実施例6)
実施例2の変性シアネートエステル系硬化性樹脂組成物ワニス170gに、無機充填剤として平均粒径5μmの溶融シリカ粉25gを加え、さらに直径1.0mmセラミックビーズ200gを投入し、AIMEX社製ビーズミルを用いて1500rpmで1時間混練した。混練後、ビーズをろ別したワニスをバーコータの一種であるコンマ型コータを用いて厚さ50μmの離型剤付きのポリエチレンテレフタレート(PET)フィルム(ピューレックスA−63,株式会社帝人製商品名)に塗工、乾燥(130℃)し、樹脂層(フィラ入り)厚さ55〜60μmのPETフィルム付フィラ入り樹脂フィルムを作製した。得られたフィラ入り樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0065】
(実施例7)
実施例3の変性シアネートエステル系硬化性樹脂組成物ワニスを用いた以外は実施例6と同様にして樹脂層(フィラ入り)厚さ55〜60μmのPETフィルム付フィラ入り樹脂フィルムを作製した。得られたフィラ入り樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0066】
(実施例8)
実施例4の変性シアネートエステル系硬化性樹脂組成物ワニス170gに、無機充填剤として平均粒径5μmの溶融シリカ粉40gを加え、さらに直径1.0mmセラミックビーズ200gを投入し、AIMEX社製ビーズミルを用いて1500rpmで1時間混練した。混練後、ビーズをろ別したワニスをバーコータの一種であるコンマ型コータを用いて厚さ50μmの離型剤処理PETフィルム(ピューレックスA−63,株式会社帝人製商品名)に塗工、乾燥(130℃)し、フィラ入り樹脂層厚さ50〜55μmのPETフィルム付フィラ入り樹脂フィルムを作製した。得られたフィラ入り樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0067】
(実施例9)
実施例5の変性シアネートエステル系硬化性樹脂組成物ワニスを用いた以外は実施例8と同様にしてフィラ入り樹脂層厚さ55〜60μmのPET付フィラ入り樹脂フィルムを作製した。得られたフィラ入り樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0068】
(比較例4)
実施例1において、p−(α−クミル)フェノールの替わりに2,2−ビス(4−ヒドロキシフェニル)プロパン(BPA;ビスフェノールA、三井東圧化学株式会社製)1gを用いた以外は実施例1と同様に反応させてワニス(固形分濃度=29重量%)を製造した。このワニスを用いて実施例6と同様にして溶融シリカ粉と混練及び塗工し、フィラ入り樹脂層厚さ55〜60μmのPETフィルム付フィラ入り樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0069】
(比較例5)
実施例4において、p−(α−クミル)フェノールの替わりにノニルフェノール(三井東圧化学株式会社製)2gを用いた以外は実施例4と同様に反応させてワニス(固形分濃度=30重量%)を製造した。このワニスを用いて実施例6と同様にして溶融シリカ粉と混練及び塗工し、フィラ入り樹脂層厚さ55〜60μmのPETフィルム付フィラ入り樹脂フィルムを作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0070】
実施例6のPETフィルム付きフィラ入り樹脂フィルムからPETフィルムを剥離し、得られたフィラ入り樹脂フィルム12枚とその上下に厚み18μm電解銅箔を重ね、200℃、1.5MPaの条件で1時間プレス成形を行い、厚さ約0.6mmの両面銅張樹脂硬化物を作製した。同様にして実施例7〜9及び比較例4、5のPETフィルム付きフィラ入り樹脂フィルムを厚さ18μm電解銅箔とプレス成形してそれぞれの両面銅張樹脂硬化物を作製した。
【0071】
次いで、これらの両面銅張樹脂硬化物から線路長約200mmのトリプレート線路共振器を化学エッチングにより作製し、ネットワークアナライザを用いて1GHz帯の伝送損失を測定することにより、1GHzでの誘電率及び誘電正接をもとめた。また、銅箔を全て化学エッチングで除去し、フィラ入り樹脂の硬化物から、試験片を切出して広域粘弾性測定装置(株式会社レオロジー製DVE)を用いて引張モード(周波数;10Hz、昇温;5℃/min)でガラス転移温度(Tg)と引張弾性率/40℃を測定した。それらの結果を表2に示した。
【0072】
【表2】
Figure 0003719833
【0073】
表2より、本発明の変性シアネートエステル系樹脂フィルムを用いたフィラー入り樹脂フィルムは、シアネートエステル類化合物を特定の1価フェノール類と反応させているために、GHz帯の誘電特性、特に誘電正接が低く、さらに耐熱性の目安となるガラス転移温度及び機械的特性も良好であることが確認できた。
【0074】
次に、実施例2〜4の変性シアネートエステル系硬化性樹脂組成物ワニスをそれぞれ用いて銅箔付き樹脂フィルムを作製し、印刷配線板用多層材料としての特性を評価した。
【0075】
(実施例10〜12)
実施例2〜4の変性シアネートエステル系硬化性樹脂組成物ワニスをバーコータの一種であるコンマ型コータを用いて厚さ18μmの電解銅箔の粗化面に塗工、乾燥(130℃)して、樹脂層厚さ60〜70μmの銅箔付樹脂フィルムをそれぞれのワニスについて作製した。得られた樹脂フィルムはカッタナイフで切断しても樹脂割れや粉落ちがなく、取扱性に優れていた。
【0076】
次いで、導体回路を形成したガラス布基材エポキシ樹脂銅張積層板(基材厚さ;0.1mm)を内層回路板(回路用銅箔厚さ;18μm)とし、その両面に実施例10〜12の銅箔付き樹脂フィルムを、樹脂層が内層回路に接するように重ね、200℃、2.5MPaの条件で60分間プレス成形して4層配線板を作製した。
【0077】
(比較例6)
比較例5のワニスを用いて、実施例10〜12と同様に、樹脂層厚さ60〜70μmの銅箔付樹脂フィルムを作製し、ついでそれを用いて同様に4層配線板を作製した。
【0078】
(比較例7)
実施例10〜12で用いたと同じガラス布基材エポキシ樹脂銅張積層板を内層回路板とし、その両面に、公称厚さ70μmの多層配線板用ガラス布基材エポキシ樹脂プリプレグ(FR−4グレード)1枚と18μm厚みの電解銅箔を積層し、180℃、2.5MPaの条件で60分間プレス成形して4層配線板を作製した。
【0079】
実施例10〜12及び比較例6、7の4層印刷配線板について、以下に示す方法により成形性(ボイドやカスレの有無)、はんだ耐熱性及び銅箔ピール強さを評価した。その結果を表3に示した。
【0080】
<特性評価方法>
・成形性;4層配線板の外層銅箔を化学エッチングによって全て除去し、目視にて内層回路への樹脂の充填性(ボイドやカスレの有無)を評価した。
・はんだ耐熱性:外層銅箔付きの50mm角4層板を260℃の溶融はんだに浮かべ、ふくれが発生するまでの時間を測定した。
・銅箔ピール強さ:JIS−C−6481に準拠して測定した。
・耐燃性:FR−4グレードの0.2mm厚基板の銅箔を全面エッチングし、その両側に実施例または比較例の銅箔付き樹脂フィルムをプレス成形した試験片を作製し、UL−94垂直試験法に準拠して測定した。
【0081】
【表3】
Figure 0003719833
【0082】
表3から明らかなように、実施例10〜12の銅箔付き樹脂フィルムは多層配線板材料として成形性が良好であり、かつ変性シアネートエステル系樹脂を特定の1価フェノール化合物と反応させたことにより本発明の銅箔付き樹脂フィルムを用いた4層配線板は、はんだ耐熱性が良好であり、従来のガラス布を基材に用いた接着用プリプレグと同様の特性を持っていることが確認できた。
【0083】
【発明の効果】
本発明の変性シアネートエステル系樹脂フィルムは、フィルム単独での取扱性が可能で耐溶剤性に優れ、かつその硬化物は高周波帯域での誘電率や誘電正接が低く、ガラス転移温度や弾性率が高く、さらには多層配線板材料として、成形性、はんだ耐熱性及び銅箔ピール強さなども良好であるので、高速デジタル信号や無線通信関連の高周波信号を扱う機器に用いる印刷配線板の、特にビルドアップ積層方式による製造に好適な絶縁性樹脂フィルムである。本発明の樹脂フィルムを用いることにより、コンピュータの高速化や高周波関連機器の低損失化に適した印刷配線板を容易に製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modified cyanate ester resin film used for forming an insulating layer in a printed wiring board and the like, and a method for producing the same.
[0002]
[Prior art]
As electronic devices have become smaller and more functional, printed circuit boards have been required to be thinner, lighter, and capable of high-density wiring. In recent years, a build-up laminated printed wiring board having a small diameter and connecting only necessary layers with non-through holes has been developed and is rapidly spreading. The insulation layer of the build-up lamination type printed wiring board uses a heat-resistant resin that does not contain a substrate such as glass cloth, and the hole for IVH is made of photolithography using a photosensitive resin or thermosetting resin. It is formed by a method such as thermal decomposition with a laser processing machine.
[0003]
Furthermore, in recent years, high-frequency signals have been increasing in computers and information equipment terminals in order to process large amounts of data at high speed, but there is a problem that the transmission loss of electrical signals increases as the frequency increases. There is a strong demand for the development of printed wiring boards that meet these requirements.
Transmission loss in a high-frequency circuit is greatly affected by dielectric loss determined by the dielectric characteristics of the insulating layer (dielectric) around the wiring. The low dielectric constant and low dielectric loss tangent (tan δ) of the printed wiring board substrate (particularly insulating resin). ) Is required. For example, in devices related to mobile communication, a substrate having a low dielectric loss tangent is strongly desired in order to reduce transmission loss in the quasi-microwave band (1 to 3 GHz) as the signal becomes higher in frequency.
[0004]
Furthermore, electronic information devices such as computers are equipped with a high-speed microprocessor having an operating frequency exceeding 200 MHz, and delay of a high-speed pulse signal on a printed wiring board has become a problem. In the printed wiring board, the signal delay time becomes longer in proportion to the square root of the relative dielectric constant εr of the insulator around the wiring. Therefore, a high-speed computer or the like requires a wiring board substrate having a low dielectric constant.
[0005]
In contrast to the above-described technical trend of the printed wiring board, a heat-resistant insulating film that has a low dielectric constant and a dielectric loss tangent in a high frequency band and is suitable for manufacturing a build-up laminated printed wiring board has not been developed so far.
[0006]
Conventionally, heat resistant thermoplastic resin (Engineering Plastics) polyphenylene ether (PPO or PPE) resin has been known as a film material with good dielectric properties, but it is used as an insulating material for printed wiring boards. However, it was necessary to improve the heat resistance that can withstand the solder connection process at the time of mounting and the solvent resistance and chemical resistance at other processes at the time of manufacturing the printed wiring board.
[0007]
As a method for improving the heat resistance and solvent resistance, a method of modifying a polyphenylene ether resin with a thermosetting resin has been proposed. For example, as a resin film using a cyanate ester resin having the lowest dielectric constant among thermosetting resins, a curability obtained by blending a cyanate ester resin with a polyphenylene ether resin as disclosed in JP-B-1-53700. There is a polyphenylene ether resin-based film using a resin composition. Similarly, as a resin composition using a cyanate ester-based modified resin, a resin composition of a bismaleimide / cyanate ester-modified resin and a polyphenylene ether resin disclosed in JP-B-63-33506 and JP-A-5-311071 are disclosed. And a resin composition of a modified phenolic resin / cyanate ester-based resin and a polyphenylene ether resin, which are disclosed in Japanese Laid-Open Patent Publication No. H11.
[0008]
In addition, as a thermoplastic resin that improves heat resistance and solvent resistance by imparting thermosetting property to a polyphenylene ether-based resin, a polyphenylene ether resin and a crosslinkable polymer / Examples thereof include a film obtained by casting a resin composition with a monomer and a film obtained by appropriately crosslinking a specific curable polyphenylene ether resin having an unsaturated group as disclosed in JP-A-7-188362.
[0009]
[Problems to be solved by the invention]
A film made of a resin composition in which a cyanate ester resin is blended with a polyphenylene ether resin disclosed in Japanese Patent Publication No. 1-53700 has a problem that the compatibility between the resins is poor, and a cyanate ester is used alone as a curable resin. Therefore, although the dielectric constant of the cured resin is relatively better than other compositions described later, the dielectric loss tangent tends to be higher than the value of the dielectric constant, and the high frequency characteristics ( In particular, there is a problem that transmission loss is not sufficiently reduced.
In the methods disclosed in Japanese Patent Publication No. 63-33506 and Japanese Patent Laid-Open No. 5-311071, the thermosetting resin for modifying the polyphenylene ether resin is a bismaleimide / cyanate ester modified resin or a modified phenol resin / cyanate ester resin. Therefore, although the compatibility with the polyphenylene ether resin is slightly better, the dielectric property of the cured resin is higher than that of the resin modified with the cyanate resin alone because it contains other thermosetting resins other than the cyanate ester resin. Unfortunately, as a result, there is a problem that the high frequency characteristics are further insufficient.
[0010]
The method disclosed in JP-B-5-77705 is a method in which a crosslinkable polymer such as polytriallyl isocyanurate or a styrene butadiene copolymer and a crosslinkable monomer such as triallyl isocyanurate are blended in a polyphenylene ether resin. However, since crosslinkable polymers and monomers are highly polar compounds, there is a problem that the dielectric properties of the cured resin are deteriorated by a small amount of components that remain unreacted. It was.
[0011]
The method disclosed in Japanese Patent Application Laid-Open No. 7-188362 uses a polymer in which an unsaturated group such as an allyl group is introduced into the polyphenylene ether resin itself. However, a derivative of a polyphenylene ether that is originally a thermoplastic resin is used. Because it is the main component, it has high melt viscosity from the beginning, and since radical polymerization of unsaturated groups is used, curing proceeds in a chain reaction, so the minimum melt viscosity at the time of curing is high and the melt viscosity is high. As a result, the resin cannot be sufficiently fluidized during press molding, resulting in voids and insufficient circuit fillability, and a narrow control range of press conditions in the multilayer bonding process. There was a problem that the moldability was poor.
[0012]
In view of such a situation, the present inventors previously used a method in which a specific cyanate ester resin is modified with a monohydric phenol compound as a resin composition for a printed wiring board (Japanese Patent Application No. 9-80033). ) Was proposed. According to this method, a specific cyanate ester resin can be modified with a monohydric phenol compound to obtain a resin composition having a dielectric property in a high frequency (GHz) band, particularly a low dielectric loss tangent. The cyanate ester resin has a problem that it is special and expensive.
[0013]
The present invention is an insulating film suitable for a build-up lamination system that has good heat resistance, solvent resistance, and chemical resistance, and is effective for making a printed wiring board thinner, lighter, and higher in density. An object of the present invention is to provide a modified cyanate ester-based resin film having a low dielectric constant and dielectric loss tangent and a low loss property of a high-frequency circuit and having good moldability such as circuit filling property and a method for producing the same.
[0014]
[Means for Solving the Problems]
The present invention comprises (A) a cyanate ester compound represented by formula (1), (B) a monohydric phenol compound represented by formula (2), (C) a polyphenylene ether resin, and (D) a metal-based reaction catalyst. A modified cyanate ester-based resin film obtained by semi-curing or curing a modified cyanate ester-based curable resin composition contained as an essential component.
In the present invention, the modified cyanate ester-based curable resin composition is represented by (B) Formula (2) with respect to 100 parts by weight of the cyanate ester compound represented by Formula (1). 4 to 30 parts by weight of a monohydric phenol compound, (C) 5 to 500 parts by weight of a polyphenylene ether resin, and (D) a metal-based reaction catalyst is 1 per 1 g of the cyanate ester compound represented by the formula (1). It is a modified cyanate ester resin film that is preferably a curable resin composition containing ˜300 ppm. In addition, a modified cyanate ester resin obtained by reacting part or all of (A) a cyanate ester compound and (B) a monohydric phenol compound, (C) a polyphenylene ale resin, and (D) a metal-based reaction catalyst are essential. A modified cyanate ester-based resin film is preferable when it is a modified cyanate ester-based curable resin composition contained as a component. Then, the present invention provides a modified cyanate ester resin film in which the modified cyanate ester curable resin composition and a varnish containing a solvent are cast on one side of a support substrate, and the solvent is removed by heating and drying to form a film. It is a manufacturing method. The modified cyanate ester-based curable resin composition was obtained by reacting (A) a cyanate ester compound with (B) a monohydric phenol compound in a solvent solution of (C) polyphenylene ether resin. It is preferable to produce a film using a varnish. Furthermore, in the aromatic hydrocarbon solvent solution of (C) polyphenylene ether resin, a reaction between (A) cyanate ester compound and (B) monohydric phenol compound is performed. And (C) a reaction of (A) a cyanate ester compound and (B) a monohydric phenol compound in an aromatic hydrocarbon solvent solution of a polyphenylene ether resin, and a ketone solvent. It is preferable to prepare a varnish by blending, and the varnish is cast-applied on one side of the support substrate, and then heated and dried. Agent is a process for producing a modified cyanate ester resin film layer made removed.
[0015]
[Chemical 3]
Figure 0003719833
[0016]
[Formula 4]
Figure 0003719833
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention aims to improve dielectric properties by blending (C) polyphenylene ether resin, which is a thermoplastic resin having good dielectric properties, with a modified cyanate ester resin having good dielectric properties. Cyanate ester resin and polyphenylene ether resin, which are difficult to obtain a uniform resin, in (C) polyphenylene ether resin solvent solution, (A) cyanate ester compound and (B) monohydric phenol compound A uniform resin varnish for a film is produced by the so-called “semi-IPN method” in which the reaction is carried out. Further, the resin varnish is cast-coated on one side of a copper foil or a carrier film as a support substrate, and heated to dry the solvent. Method for producing modified cyanate ester-based resin film for obtaining compatible resin film by removing water and modified cyanate It is ester based resin film.
[0018]
Dielectric properties such as polymer materials are greatly affected by the orientational polarization of the dipole. Therefore, the dielectric constant can be lowered by reducing the polar groups in the molecule, and the dielectric loss tangent can be lowered by suppressing the mobility of the polar groups. It is possible. Cyanate ester resin has a highly polar cyanate group, but generates a symmetric and rigid triazine structure upon curing. Therefore, a cured product having the lowest dielectric constant and dielectric loss tangent is obtained as a thermosetting resin. There is.
[0019]
However, in an actual curing reaction, it is impossible for all cyanate groups in the cyanate ester resin to react to form a triazine structure, and as the curing reaction proceeds, the reaction system loses its fluidity and has not yet flowed. It remains in the system as a cyanato group for the reaction. As a result, in the conventional cyanate ester resins, only cured products having a higher dielectric constant and dielectric loss tangent than characteristics that the original cured product should exhibit can be obtained.
[0020]
On the other hand, in the resin composition of the present invention, (B) the monovalent phenolic compound is mixed with an appropriate amount with respect to (A) the cyanate ester compound, and the cyanate group remaining as an unreacted is imidocarbonated to be polar. Is intended to reduce the dielectric constant and dielectric loss tangent of the cured product to their original values. Materials used for this purpose include compounds that are highly reactive with cyanato groups, are monofunctional, have a relatively low molecular weight, and are compatible with cyanate ester compounds (similar in molecular structure). It is considered suitable. The monovalent phenol compound used in the resin composition of the present invention is a compound specified for such a reason.
[0021]
Conventionally, as a co-catalyst for the trimerization reaction (generation of triazine ring) of a cyanate ester compound, a phenol compound such as nonylphenol is sometimes used in an amount of about 1 to 2 parts by weight with respect to 100 parts by weight of the cyanate ester compound. However, since the blending amount was a catalyst amount, the effect of reducing the polarity by reacting with the unreacted cyanato group as described above was not recognized. However, as a result of studying the blending amount of the phenol compound by the present inventors, it was found that when the phenol compound was blended in a larger amount than the conventional catalyst amount, the dielectric constant and the dielectric loss tangent of the cured product were lowered, and a specific 1 It has been found that if a polyhydric phenol compound is used, a decrease in heat resistance due to an increase in the blending amount can be suppressed. Therefore, according to the method of the present invention, a conventional cured product of a cyanate ester resin alone, a conventional epoxy resin or a polyhydric phenol (dielectric properties are deteriorated because one hydroxyl group tends to remain as an unreacted group) and A cured product having a lower dielectric constant and dielectric loss tangent than a cured product of a resin blended with bismaleimide or the like can be obtained.
[0022]
Therefore, in the resin composition of the present invention, the blending amount of the monohydric phenol compound is important. That is, when the blending amount is small, it cannot react with all cyanate groups remaining as unreacted and can be made less polar, and when the blending amount is larger than the required amount, it remains as unreacted itself, This is because the dielectric properties of the cured product are deteriorated by the polarity of the hydroxyl group.
[0023]
The modified cyanate ester-based curable resin composition used in the modified cyanate ester-based resin film of the present invention is a monovalent compound represented by (A) a cyanate ester compound represented by formula (1) and (B) a formula (2). A phenol compound, (C) polyphenylene ether resin, and (D) a metal-based reaction catalyst are included as essential components.
[0024]
The (A) cyanate ester compound in the present invention is a cyanate ester compound having two cyanate groups in one molecule as represented by the formula (1). Examples of the compound represented by the formula (1) include bis (4-cyanatophenyl) ethane, 2,2-bis (4-cyanatophenyl) propane, and 2,2-bis (3,5-dimethyl-4). -Cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α'-bis (4-cyanatophenyl)- Examples include m-diisopropylbenzene and cyanate esterified products of phenol-added dicyclopentadiene polymers. Among these, 2,2-bis (4-cyanatophenyl) propane and 2,2-bis (3,5-dimethyl-4-cyanatophenyl) methane are particularly good in balance between the dielectric properties and curability of the cured product. Therefore, it is preferable. Moreover, (A) cyanate ester compounds may be used individually by 1 type, or may mix and use 2 or more types.
[0025]
The (B) monohydric phenol compound in the present invention is a monohydric phenol represented by the formula (2) and is preferably a compound having good heat resistance. Examples of the compound represented by the formula (2) include p- (α-cumyl) phenol. In addition, (B) monohydric phenol compound may be used individually by 1 type, or may mix and use 2 or more types.
[0026]
In the present invention, the blending amount of the (B) monohydric phenol compound is preferably 4 to 30 parts by weight, more preferably 5 to 25 parts by weight with respect to 100 parts by weight of the (A) cyanate ester compound. The amount is preferably 5 to 20 parts by weight. (B) When the blending amount of the monohydric phenol compound is less than 4 parts by weight, sufficient dielectric properties cannot be obtained, and the dielectric loss tangent in the high frequency band does not tend to be sufficiently low. On the other hand, if it exceeds 30 parts by weight, the dielectric loss tangent tends to be high, which is not desirable. Therefore, in order to obtain a modified cyanate ester resin film having a low dielectric loss tangent in a high frequency band, it is necessary to use (B) a monohydric phenol compound in an appropriate blending amount with respect to (A) the cyanate ester compound.
[0027]
The (A) cyanate ester compound and (B) monohydric phenol compound in the present invention are usually used as a modified cyanate ester resin obtained by reacting each. That is, it is used as an imidocarbonate-modified resin obtained by adding (B) a monohydric phenol compound to (A) a cyanate ester compound, together with prepolymerization of (A) a cyanate ester compound.
[0028]
When (A) the cyanate ester compound and (B) the monohydric phenol compound are reacted, the (B) monohydric phenol compound is reacted by adding all of the above appropriate blending amounts from the initial stage of the reaction. Cyanate ester resin may be used. In the initial stage of the reaction, a part of the above-mentioned appropriate blending amount is reacted, and after cooling, the remaining (B) monohydric phenol compound is added and reacted at the time of B-stage or curing. A modified cyanate ester resin may be used.
[0029]
Examples of the (C) polyphenylene ether resin in the present invention include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene alloying. Polymers, alloyed polymers of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, and the like. Among them, poly (2,6-dimethyl-1,4-phenylene) ether and Preferred are an alloyed polymer of polystyrene and an alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and a styrene-butadiene copolymer. (C) The component amount of poly (2,6-dimethyl-1,4-phenylene) ether in the polyphenylene ether resin is a polymer containing 50% by weight or more because the cured product has good dielectric properties. A polymer containing 65% by weight or more is more preferable, but more preferable.
[0030]
The blending amount of the (C) polyphenylene ether resin in the present invention is preferably 5 to 500 parts by weight, more preferably 10 to 300 parts by weight with respect to 100 parts by weight of the (A) cyanate ester compound. It is especially preferable to set it as 15-200 weight part. When the blending amount of the (C) polyphenylene ether resin is less than 5 parts by weight, sufficient dielectric properties tend not to be obtained, and when it exceeds 500 parts by weight, the reactivity of the thermosetting component (A) cyanate ester resin is (C ) It becomes worse due to the diluting effect of the polyphenylene ether resin, and there arises a problem that the heat resistance and solvent resistance of the obtained resin film become worse.
[0031]
The metal-based reaction catalyst (D) of the present invention promotes the reaction between (A) a cyanate ester compound and (B) a monohydric phenol compound, and produces a modified cyanate ester-based curable resin composition. It is used as a curing accelerator when the reaction catalyst and the resin film are cured. As the metal-based reaction catalyst, metal catalysts such as manganese, iron, cobalt, nickel, copper, and zinc are used. Specifically, organometallic salt compounds such as 2-ethylhexanoate and naphthenate and acetylacetone Used as organometallic complexes such as complexes. The same metal-based reaction catalyst may be used alone in the reaction accelerator for producing the modified cyanate ester-based curable resin composition and in the case of producing the laminate, or two or more different types of each. May be used.
[0032]
In the present invention, the blending amount of the metal-based reaction catalyst (D) is preferably 1 to 300 ppm, more preferably 1 to 200 ppm, and more preferably 2 to 150 ppm with respect to 1 g of the (A) cyanate ester compound. It is particularly preferred. (D) When the compounding amount of the metal-based reaction catalyst is less than 1 ppm, the reactivity and curability tend to be insufficient, and when it exceeds 300 ppm, the control of the reaction becomes difficult or the curing becomes too fast and the fluidity is poor. There is a tendency that the formability becomes worse. In addition, the (D) metal-based reaction catalyst in the present invention may be blended at the same time with the amounts required as a reaction accelerator and a curing accelerator when producing a modified cyanate ester-based curable resin composition. In addition, when the modified cyanate ester-based curable resin composition is produced, an amount necessary for promotion of the modification reaction is used, and after the reaction, the remaining catalyst or another metal catalyst is added and mixed as a curing accelerator. Also good.
[0033]
In addition to the above essential components, a flame retardant, an inorganic filler, and other additives can be blended in the composition used for the modified cyanate ester resin film of the present invention, if necessary. Examples of flame retardants include brominated phenols such as tribromophenol and tetrabromobisphenol A, brominated epoxy resins such as tetrabromobisphenol A epoxy resin and brominated novolac epoxy resin, brominated polystyrene and brominated Brominated thermoplastic resins such as polycarbonate, polybromodiphenyl ethers represented by decabromodiphenyl ether, 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclohexane, tetrabromocyclooctane and hexa Brominated hydrocarbons such as bromocyclododecane, brominated triphenylcyanurate flame retardants such as 2,4,6-tris (tribromophenoxy) -1,3,5-triazine, and the like. Among them, 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane and 2,4,6-tris (tribromophenoxy) -1,3,5- A flame retardant such as triazine is preferable because it has no reactivity with a cyanate ester compound, and thus the obtained cured product has good dielectric properties.
[0034]
The blending amount of the flame retardant in the present invention is 5 to 50 parts by weight with respect to 100 parts by weight as a total of (A) cyanate ester compound, (B) monohydric phenol compound and (C) polyphenylene ether resin. Preferably, the amount is 5 to 40 parts by weight, more preferably 10 to 30 parts by weight. If the blending amount of the flame retardant is less than 5 parts by weight, the flame resistance tends to be insufficient, and if it exceeds 50 parts by weight, the heat resistance of the resin tends to decrease.
[0035]
As the inorganic filler, silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, lead titanate, strontium titanate and the like can be used. The blending amount is 300 parts by weight or less with respect to 100 parts by weight of the total amount of the resin composition of the present invention so that the modified cyanate ester resin film of the present invention is uniform and has good handleability. Is preferable.
[0036]
In order to produce the modified cyanate ester-based resin film of the present invention, the modified cyanate ester-based curable resin composition described above is dissolved in a solvent to obtain a varnish of 10 to 50% by weight. It can be cast by using a roll coater or the like, and the solvent is removed by heating and drying to form a film (film formation).
[0037]
Specific examples of the solvent used in the production of the varnish include aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as trichloroethylene and chlorobenzene, N, N-dimethylformamide, N, Amide type such as N-dimethylacetamide and nitrogen type solvent such as N-methylpyrrolidone are used. In particular, aromatic hydrocarbons (aromatic hydrocarbon solvents) such as benzene, toluene and xylene are more preferable. These solvents may be used alone or in combination of two or more. The blending amount of the aromatic hydrocarbon solvent is preferably 100 to 900 parts by weight, more preferably 100 to 600 parts by weight, and particularly preferably 150 to 400 parts by weight with respect to 100 parts by weight of the total amount of the resin composition.
[0038]
When a ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone or the like is used in combination with an aromatic hydrocarbon solvent, the varnish becomes a suspended solution, but there is an advantage that a higher concentration solution can be obtained. However, since the resin composition may be separated and precipitated if the amount of the ketone is too large, the amount of the ketone solvent is preferably 250 parts by weight or less with respect to 100 parts by weight of the aromatic hydrocarbon solvent. .
[0039]
As the supporting base material used in the present invention, a metal foil such as copper or aluminum, a resin film such as polyester or polyimide, or a material obtained by applying a release agent to the surface of these resin films can be used. When copper foil is used for the support substrate, there is an advantage that the copper foil can be used as a circuit conductor as it is, and when the release agent treatment is applied to the support substrate, the modified cyanate ester is changed from the support substrate. It is preferable in improving workability when peeling off the base resin film, or after peeling the support base material only after laminating the film with the support base material on the substrate.
[0040]
Thus, the modified cyanate ester-based resin film in which the insulating resin layer is formed on one side of the supporting substrate can be used for the production of a printed wiring board by the method described below. For example, one or a plurality of modified cyanate ester resin films from which the supporting base material has been removed are laminated and copper foil is placed on the top and bottom of the film, or press molding is performed, or varnish is applied to the copper foil that is the supporting base material A printed wiring board is formed by laminating a modified cyanate ester-based resin film so that the films match each other and, if necessary, press-molding one or more modified cyanate ester-based resin films with the resin film substrate removed therebetween Copper-clad laminates can be manufactured.
[0041]
In addition, after forming a circuit on a conventional copper-clad laminate of glass cloth substrate or the above-mentioned copper-clad laminate, one or more modified cyanate ester resin films from which the supporting substrate has been removed are laminated, and copper is further formed thereon. A board for a multilayer wiring board is manufactured by placing and pressing a foil or a circuit-forming board, or by placing and pressing a modified cyanate ester resin film coated on a copper foil as a supporting substrate. be able to.
[0042]
Note that a conventional method can be applied to the formation of the circuit. For example, a through-hole or non-through hole is drilled in a copper-clad laminate or a multilayer wiring board substrate as necessary, and then electroless plating or electroplating is performed as necessary to convert the inner wall of the hole into a conductive hole portion. A circuit can be formed by a process such as protection of the substrate, formation of an etching resist, and removal of copper in a non-wiring portion by etching.
[0043]
Further, in the modified cyanate ester-based resin film of the present invention, drilling and laser processing can be employed as a method for forming a through or non-through hole. In the case of laser processing, laser drilling can be performed by a direct imaging method in which a hole is formed directly by laser shot or a conformal mask method using a metal mask, etc., but the modified cyanate ester shown in the present invention When copper foil which is an example of a resin film is used as a support base, laser drilling can be performed using a copper foil from which a place where a through or non-through hole is to be formed is removed by etching as a mask.
[0044]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. A modified cyanate ester-based curable resin composition varnish was produced according to the amount shown in Table 1, and a semi-cured resin film was produced.
[0045]
(Example 1)
Into a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 450 g of toluene and 120 g of nonyl PKN4752 (trade name, manufactured by GE Plastics, Inc.) as a polyphenylene ether resin were added. The mixture was heated to 80 ° C. and dissolved with stirring. Next, (A) 2,2-bis (4-cyanatophenyl) propane (Arocy B-10, trade name, manufactured by Asahi Ciba Co., Ltd.) 60 g as the cyanate ester compound, and (B) p- ( [alpha] -cumyl) phenol (manufactured by Sun Techno Chemical Co., Ltd.) 6 g was charged and dissolved, and (D) 10 wt% toluene of cobalt naphthenate (Co content = 8 wt%, manufactured by Nippon Chemical Industry Co., Ltd.) as a metal-based reaction catalyst The diluted solution 0.8g was added and it was made to react at reflux temperature for 1 hour. The mixture was cooled to room temperature to produce a modified cyanate ester-based curable resin composition varnish (solid content concentration = 29 wt%).
[0046]
This varnish is applied to a polyethylene terephthalate (PET) film (Purex A-63, manufactured by Teijin Ltd.) with a release agent of 50 μm in thickness using a comma type coater (Hirano Tech Seed Co., Ltd.) which is a kind of bar coater. Coating and drying (130 ° C.) were performed to prepare a resin film with a PET film having a resin layer thickness of 30 to 33 μm. The obtained modified cyanate ester-based resin film was excellent in handleability because it did not crack or fall off even when cut with a cutter knife.
[0047]
(Example 2)
Into a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 240 g of toluene and 160 g of polyphenylene ether resin (Nonyl PKN4752, a product name manufactured by Nippon GE Plastics Co., Ltd.) are added and heated to 80 ° C. Heat and stir to dissolve. Next, 80 g of 2,2-bis (4-cyanatophenyl) propane (Arocy B-10, trade name, manufactured by Asahi Ciba Co., Ltd.) and 2 g of p- (α-cumyl) phenol (manufactured by Sun Techno Chemical Co., Ltd.) were added and dissolved. Then, 0.3 g of a 10 wt% toluene diluted solution of manganese naphthenate (Mn content = 8 wt%, manufactured by Nippon Chemical Industry Co., Ltd.) was added and reacted at reflux temperature for 3 hours. Next, the reaction solution was cooled, and when the internal temperature reached 90 ° C., 300 g of methyl ethyl ketone (MEK) was added with stirring to suspend it. After further cooling to room temperature, 6 g of p- (α-cumyl) phenol and 0.2 g of a 10 wt% toluene diluted solution of zinc naphthenate (Zn content = 8 wt%, manufactured by Nippon Kagaku Sangyo Co., Ltd.) were dissolved. A modified cyanate ester-based curable resin composition varnish (solid content concentration = 31 wt%) was produced.
[0048]
Using this varnish, a resin film with a PET film having a resin layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0049]
(Example 3)
450 g of toluene and 105 g of polyphenylene ether resin (Nonyl PKN4752, trade name of Nippon GE Plastics Co., Ltd.) are put into a 1 liter four-necked separable flask equipped with a thermometer, a condenser and a stirrer and heated to 80 ° C. Heat and stir to dissolve. Next, 2,2-bis (4-cyanatophenyl) propane (Arocy B-10, trade name of Asahi Ciba Co., Ltd.) 75 g, p- (α-cumyl) phenol 15 g, cobalt naphthenate (Co content = 8 weight) %, Manufactured by Nippon Chemical Industry Co., Ltd.) and 0.7 g of a 10 wt% toluene diluted solution were added and reacted at reflux temperature for 2 hours. After cooling the reaction solution to room temperature, 0.1 g of a 10 wt% toluene diluted solution of zinc naphthenate (Zn content = 8 wt%, manufactured by Nihon Chemical Sangyo Co., Ltd.) was added and dissolved with stirring to modify a cyanate ester-based curing. Resin composition varnish (solid content concentration = 30% by weight) was produced.
[0050]
Using this varnish, a resin film with a PET film having a resin layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0051]
(Example 4)
Into a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 450 g of toluene and 90 g of polyphenylene ether resin (Nonyl PKN4752, a product name manufactured by GE Plastics Japan, Inc.) are added and heated to 80 ° C. Heat and stir to dissolve. Next, 90 g of 2,2-bis (4-cyanatophenyl) propane (Arocy B-10, trade name manufactured by Asahi Ciba Co., Ltd.) and 11 g of p- (α-cumyl) phenol were added and dissolved, and then manganese naphthenate (Mn contained). 0.7 g of a 10 wt% toluene diluted solution of 8% by weight (manufactured by Nippon Chemical Industry Co., Ltd.) was added and reacted at reflux temperature for 6 hours. Subsequently, it cooled to room temperature and manufactured modified | denatured cyanate ester type curable resin composition varnish (solid content concentration = 30 weight%).
[0052]
Using this varnish, a resin film with a PET film having a resin layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0053]
(Example 5)
Into a 1 liter four-necked separable flask equipped with a thermometer, a condenser tube, and a stirrer, 450 g of toluene and 60 g of polyphenylene ether resin (Nonyl PKN4752, a trade name of Nippon GE Plastics Co., Ltd.) are added and heated to 80 ° C. Heat and stir to dissolve. Next, 120 g of bis (3,5-dimethyl-4-cyanatophenyl) methane (ArocyM-10, manufactured by Asahi Ciba Co., Ltd.) and 6 g of p- (α-cumyl) phenol were added and dissolved, and then manganese naphthenate ( 0.4 g of 10 wt% toluene diluted solution of Mn content = 8 wt%, manufactured by Nippon Chemical Industry Co., Ltd. was added and reacted at reflux temperature for 6 hours. Next, after cooling the reaction solution to room temperature, 0.2 g of a 10% by weight toluene diluted solution of cobalt naphthenate (Co content = 8% by weight, manufactured by Nippon Kagaku Sangyo Co., Ltd.) was added and dissolved by stirring to obtain a modified cyanate ester system. A curable resin composition varnish (solid concentration = 29% by weight) was produced.
[0054]
Using this varnish, a resin film with a PET layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0055]
(Comparative Example 1)
Into a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 360 g of toluene and 120 g of a polyphenylene ether resin (Nonyl PKN4752, a product name manufactured by Nippon GE Plastics Co., Ltd.) are put at 80 ° C. The mixture was heated and dissolved by stirring to produce a varnish (solid content concentration = 25% by weight). Using this varnish, a resin film with a PET film having a resin layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0056]
(Comparative Example 2)
In a 1 liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 240 g of methyl ethyl ketone (MEK) and 2,2-bis (4-cyanatophenyl) propane (ArocyB-10, Asahi Ciba Co., Ltd.) Product name) 120 g, p- (α-cumyl) phenol 2 g was added and dissolved by stirring, and then a 10 wt% toluene diluted solution of cobalt naphthenate (Co content = 8 wt%, manufactured by Nippon Chemical Industry Co., Ltd.) 2g was added, it was made to react at reflux temperature for 2 hours, it cooled to room temperature, and the varnish (solid content concentration = 34 weight%) was manufactured. Using this varnish, a resin film with a PET film having a resin layer thickness of 30 to 33 μm was produced in the same manner as in Example 1. However, when the obtained resin film was cut with a cutter knife, resin cracking and powder removal occurred. When the PET film was peeled off, the resin film alone could not be handled.
[0057]
(Comparative Example 3)
In Example 4, 90 g of polyphenylene ether resin (Nonyl PKN4752, trade name, manufactured by Nippon GE Plastics Co., Ltd.) was added to 450 g of toluene, heated to 80 ° C. with stirring and dissolved, and then 2,2-bis (4-si Instead of anatophenyl) propane (Arocy B-10, trade name, manufactured by Asahi Ciba Co., Ltd.), 90 g of the oligomer (Arocy B-30, trade name, manufactured by Asahi Ciba Co., Ltd.) was added and dissolved by heating at 80 ° C. for 1 hour. Then, it was cooled to room temperature, 1 g of nonylphenol (manufactured by Mitsui Toatsu Chemical Co., Ltd.) instead of p- (α-cumyl) phenol, cobalt naphthenate instead of manganese naphthenate (Co content = 8 wt%, Nippon Chemical Industry) A varnish (solid content concentration = 29% by weight) was produced by adding 1 g of a 10% by weight toluene diluted solution (manufactured by Co., Ltd.). However, in this varnish, an aggregated product of polyphenylene ether resin was observed after 1 day, and as a result, a resin film could not be produced.
[0058]
[Table 1]
Figure 0003719833
[0059]
(A) B-10 (trade name, manufactured by Asahi Ciba Co., Ltd.); 2,2-bis (4-cyanatophenyl) propane
M-10 (trade name, manufactured by Asahi Ciba Co., Ltd.); bis (3,5-dimethyl-4-cyanatophenyl) methane
B-30 (trade name, manufactured by Asahi Ciba Co., Ltd.); 2,2-bis (4-cyanatophenyl) propane oligomer
(B) PCP (manufactured by Sun Techno Chemical Co., Ltd.); p- (α-cumyl) phenol
NP (Mitsui Toatsu Chemical Co., Ltd.); Nonylphenol
BPA (Mitsui Toatsu Chemical Co., Ltd.); bisphenol A, 2,2-bis (4-hydroxyphenyl) propane
(C) PPO (Nonyl PKN4752, trade name of Nippon GE Plastics Co., Ltd.); polyphenylene ether resin
(D) Co: 10% by weight toluene diluted solution of cobalt naphthenate (Co = 8% by weight, manufactured by Nippon Chemical Industry Co., Ltd.)
Zn: 10% by weight toluene diluted solution of zinc naphthenate (Zn = 8% by weight, manufactured by Nippon Chemical Industry Co., Ltd.)
Mn: 10% by weight toluene diluted solution of manganese naphthenate (Mn = 8% by weight, manufactured by Nippon Chemical Industry Co., Ltd.)
[0060]
Next, the resin film with PET film of Examples 1 to 5 was evaluated for the handleability of the resin film alone and the solvent resistance of the cured film.
The PET film was peeled from the resin film with a PET film of Example 1, and 12 sheets of the obtained resin film were stacked on top and bottom using the mirror surface of the electrolytic copper foil as a peeling surface, and 1 at 200 ° C. and 1.5 MPa. Time press molding was performed to prepare a cured film of a modified cyanate ester resin having a thickness of about 0.4 mm. Similarly, the resin films of Examples 2 to 5 were press-molded to produce cured films of the respective resins.
Moreover, about the resin film with a PET film of Comparative Example 1, the resin film was peeled from the PET film, and 12 sheets thereof were stacked on top and bottom using the mirror surface of the electrolytic copper foil as a peeled surface, and at 200 ° C. and 1.5 MPa for 1 hour. Pressed to produce a resin molded film having a thickness of about 0.4 mm. The same process was performed for the resin film with a PET film of Comparative Example 2, but the resin film with a PET film of Comparative Example 2 is a film of a cyanate ester resin alone. Therefore, it broke and could not be handled alone. As a result, a cured resin film could not be produced.
[0061]
The cured resin film was cut into 50 mm squares, immersed in toluene, and left at room temperature for 60 minutes. The cured resin films of Examples 1 to 5 were not swollen or changed in appearance. Moreover, although the surface of the resin cured film of Examples 1-5 prepared separately was rubbed several times with the cloth containing toluene or methyl ethyl ketone (MEK), the presence or absence of the abnormality of the film surface was observed, but Examples 1-5 In the cured resin film, no abnormality of the film surface was observed. From the above, it was confirmed that the cured resin films of Examples 1 to 5 had good solvent resistance.
[0062]
Similarly, the resin molded film of Comparative Example 1 was cut into 50 mm squares, immersed in toluene and allowed to stand at room temperature for 60 minutes, but because it was a resin molded film of polyphenylene ether alone, it swelled and partly dissolved. It was. Further, when the surface of another resin molded film was rubbed several times with a cloth containing toluene, the surface of the film melted and stickiness was generated. Further, when the surface of another resin-molded film was rubbed several times with a cloth containing methyl ethyl ketone (MEK), the film was cracked (cracked), and finally a hole was formed and cracked.
From the above results, it was confirmed that the modified cyanate ester resin film of the present invention can be handled by the film alone and has good solvent resistance.
[0063]
Next, a resin film to which an inorganic filler was added was prepared using the modified cyanate ester-based curable resin composition varnish of Examples 2 to 5, and the cured product had dielectric properties in the GHz band, glass transition temperature, and tensile strength. The elastic modulus was measured.
[0064]
(Example 6)
To the modified cyanate ester-based curable resin composition varnish (170 g) of Example 2, 25 g of fused silica powder having an average particle size of 5 μm was added as an inorganic filler, and 200 g of 1.0 mm diameter ceramic beads were added. And kneaded at 1500 rpm for 1 hour. After kneading, the varnish from which the beads have been filtered off is a 50 μm thick polyethylene terephthalate (PET) film (Purex A-63, trade name manufactured by Teijin Ltd.) using a comma type coater which is a kind of bar coater. Coating and drying (130 ° C.) were performed to prepare a filler-containing resin film with a PET film having a resin layer (with filler) thickness of 55 to 60 μm. The obtained filler-containing resin film was free from resin cracking and powder falling even when cut with a cutter knife, and was excellent in handleability.
[0065]
(Example 7)
A filler-containing resin film with a PET film having a thickness of 55 to 60 μm was prepared in the same manner as in Example 6 except that the modified cyanate ester-based curable resin composition varnish of Example 3 was used. The obtained filler-containing resin film was free from resin cracking and powder falling even when cut with a cutter knife, and was excellent in handleability.
[0066]
(Example 8)
To 170 g of the modified cyanate ester-based curable resin composition varnish of Example 4, 40 g of fused silica powder having an average particle size of 5 μm was added as an inorganic filler, and 200 g of 1.0 mm diameter ceramic beads were added, and an AIMEX bead mill was used. And kneaded at 1500 rpm for 1 hour. After kneading, the varnish obtained by filtering the beads is coated on a 50 μm-thick release agent-treated PET film (Purex A-63, product name manufactured by Teijin Limited) using a comma type coater, which is a type of bar coater, and dried. The filler-containing resin film with a PET film having a filler-containing resin layer thickness of 50 to 55 μm was prepared. The obtained filler-containing resin film was free from resin cracking and powder falling even when cut with a cutter knife, and was excellent in handleability.
[0067]
Example 9
A filler-filled resin film with PET having a filler-containing resin layer thickness of 55 to 60 μm was prepared in the same manner as in Example 8 except that the modified cyanate ester-based curable resin composition varnish of Example 5 was used. The obtained filler-containing resin film was free from resin cracking and powder falling even when cut with a cutter knife, and was excellent in handleability.
[0068]
(Comparative Example 4)
Example 1 except that 1 g of 2,2-bis (4-hydroxyphenyl) propane (BPA; bisphenol A, manufactured by Mitsui Toatsu Chemical Co., Ltd.) was used instead of p- (α-cumyl) phenol in Example 1. In the same manner as in Example 1, a varnish (solid content concentration = 29% by weight) was produced. Using this varnish, it was kneaded and coated with fused silica powder in the same manner as in Example 6 to prepare a filler-containing resin film with a PET film having a filler-containing resin layer thickness of 55 to 60 μm. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0069]
(Comparative Example 5)
In Example 4, varnish (solid content concentration = 30% by weight) was reacted in the same manner as in Example 4 except that 2 g of nonylphenol (Mitsui Toatsu Chemical Co., Ltd.) was used instead of p- (α-cumyl) phenol. ) Was manufactured. Using this varnish, it was kneaded and coated with fused silica powder in the same manner as in Example 6 to prepare a filler-containing resin film with a PET film having a filler-containing resin layer thickness of 55 to 60 μm. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0070]
The PET film was peeled from the filler-containing resin film with a PET film of Example 6, and 12 sheets of the obtained filler-containing resin film and an electrolytic copper foil having a thickness of 18 μm were stacked on top and bottom thereof, and the conditions were 200 ° C. and 1.5 MPa for 1 hour. Press molding was performed to prepare a double-sided copper-clad resin cured product having a thickness of about 0.6 mm. Similarly, the filler-containing resin films with PET films of Examples 7 to 9 and Comparative Examples 4 and 5 were press-molded with an 18 μm-thick electrolytic copper foil to prepare respective double-sided copper-clad resin cured products.
[0071]
Next, a triplate line resonator having a line length of about 200 mm is fabricated by chemical etching from these double-sided copper-clad resin cured products, and the transmission loss in the 1 GHz band is measured using a network analyzer, and the dielectric constant at 1 GHz and The dielectric loss tangent was determined. Moreover, all copper foil is removed by chemical etching, a test piece is cut out from a cured resin containing filler, and a tensile mode (frequency: 10 Hz, temperature increase) using a wide area viscoelasticity measuring apparatus (DVE manufactured by Rheology Co., Ltd.). The glass transition temperature (Tg) and the tensile modulus / 40 ° C. were measured at 5 ° C./min). The results are shown in Table 2.
[0072]
[Table 2]
Figure 0003719833
[0073]
From Table 2, since the resin film with filler using the modified cyanate ester resin film of the present invention is reacted with a specific monohydric phenol compound, particularly in the GHz band, the dielectric property, particularly the dielectric loss tangent. It was confirmed that the glass transition temperature and mechanical properties, which are low in heat resistance, and good heat resistance are also good.
[0074]
Next, a resin film with a copper foil was prepared using each of the modified cyanate ester-based curable resin composition varnishes of Examples 2 to 4, and properties as a multilayer material for a printed wiring board were evaluated.
[0075]
(Examples 10 to 12)
The modified cyanate ester-based curable resin composition varnishes of Examples 2 to 4 were coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm and dried (130 ° C.) using a comma type coater which is a kind of bar coater. A resin film with a copper foil having a resin layer thickness of 60 to 70 μm was prepared for each varnish. Even if the obtained resin film was cut with a cutter knife, the resin film did not crack or fall off and was excellent in handleability.
[0076]
Subsequently, the glass cloth base material epoxy resin copper clad laminated board (base material thickness; 0.1 mm) in which the conductor circuit was formed was used as an inner layer circuit board (circuit copper foil thickness: 18 μm). 12 resin films with copper foil were stacked so that the resin layer was in contact with the inner layer circuit, and press molded at 200 ° C. and 2.5 MPa for 60 minutes to prepare a four-layer wiring board.
[0077]
(Comparative Example 6)
Using the varnish of Comparative Example 5, a resin film with a copper foil having a resin layer thickness of 60 to 70 μm was produced in the same manner as in Examples 10 to 12, and then a four-layer wiring board was produced using the same.
[0078]
(Comparative Example 7)
The same glass cloth base epoxy resin copper clad laminate as used in Examples 10 to 12 was used as an inner circuit board, and a glass cloth base epoxy resin prepreg (FR-4 grade) for a multilayer wiring board having a nominal thickness of 70 μm was formed on both sides thereof. ) One sheet and an 18 μm thick electrolytic copper foil were laminated, and press molded at 180 ° C. and 2.5 MPa for 60 minutes to prepare a four-layer wiring board.
[0079]
The four-layer printed wiring boards of Examples 10 to 12 and Comparative Examples 6 and 7 were evaluated for formability (presence of voids and scum), solder heat resistance, and copper foil peel strength by the following methods. The results are shown in Table 3.
[0080]
<Characteristic evaluation method>
-Formability: All the outer layer copper foils of the four-layer wiring board were removed by chemical etching, and the resin filling property to the inner layer circuit (presence of voids and creaking) was visually evaluated.
Solder heat resistance: A 50 mm square four-layer board with an outer layer copper foil was floated on 260 ° C. molten solder, and the time until blistering was measured.
Copper foil peel strength: measured in accordance with JIS-C-6481.
・ Flame resistance: A copper foil of a 0.2 mm thick substrate of FR-4 grade was etched on the entire surface, and a test piece was produced by press-molding the resin film with the copper foil of Example or Comparative Example on both sides thereof. Measured according to the test method.
[0081]
[Table 3]
Figure 0003719833
[0082]
As is apparent from Table 3, the resin films with copper foils of Examples 10 to 12 had good moldability as a multilayer wiring board material, and the modified cyanate ester resin was reacted with a specific monohydric phenol compound. It is confirmed that the four-layer wiring board using the resin film with copper foil of the present invention has good solder heat resistance and has the same characteristics as a prepreg for bonding using a conventional glass cloth as a base material. did it.
[0083]
【The invention's effect】
The modified cyanate ester-based resin film of the present invention can be handled alone and has excellent solvent resistance, and its cured product has a low dielectric constant and dielectric loss tangent in a high frequency band, and has a glass transition temperature and an elastic modulus. In addition, as a multilayer wiring board material, the moldability, solder heat resistance, and copper foil peel strength are also good, so printed wiring boards used for equipment that handles high-speed digital signals and high-frequency signals related to wireless communication, especially It is an insulating resin film suitable for production by a build-up lamination method. By using the resin film of the present invention, it is possible to easily produce a printed wiring board suitable for increasing the speed of computers and reducing the loss of high-frequency related equipment.

Claims (17)

(A)式(1):
Figure 0003719833
で示されるシアネートエステル類化合物、
(B)式(2):
Figure 0003719833
で示される1価フェノール類化合物、
(C)ポリフェニレンエーテル樹脂及び
(D)前記(A)成分と前記(B)成分との反応の促進剤及び樹脂フィルムの硬化における硬化促進剤として用いられる金属系反応触媒
を含有する硬化性樹脂組成物(ただし、前記(A)成分と反応性を有しない難燃 剤を含有するものを除く)
を半硬化又は硬化してなる、樹脂フィルム。
(A) Formula (1):
Figure 0003719833
A cyanate ester compound represented by:
(B) Formula (2):
Figure 0003719833
A monohydric phenol compound represented by:
(C) A curable resin composition containing a polyphenylene ether resin and (D) a metal-based reaction catalyst used as a promoter for the reaction between the component (A) and the component (B) and a curing accelerator for curing the resin film. objects (however, the (a) excluding those containing no flame retardant agent reactive with component)
A resin film obtained by semi-curing or curing.
前記(A)成分100重量部に対して、前記(B)成分が4〜30重量部であり、前記(C)成分が、5〜500重量部であり、かつ前記(D)成分が、前記(A)成分1gに対して、1〜300ppmである、請求項1に記載の樹脂フィルム。The component (B) is 4 to 30 parts by weight, the component (C) is 5 to 500 parts by weight, and the component (D) is based on 100 parts by weight of the component (A). (A) The resin film of Claim 1 which is 1-300 ppm with respect to 1g of components. 前記(A)成分が、2,2−ビス(4−シアナトフェニル)プロパン及び/又は2,2−ビス(3,5−ジメチル−4−シアナトフェニル)メタンである、請求項1又は2に記載の樹脂フィルム。The component (A) is 2,2-bis (4-cyanatophenyl) propane and / or 2,2-bis (3,5-dimethyl-4-cyanatophenyl) methane. The resin film described in 1. 前記(B)成分が、p−(α−クミル)フェノールである、請求項1〜3のいずれか1項に記載の樹脂フィルム。The resin film according to claim 1, wherein the component (B) is p- (α-cumyl) phenol. 前記(C)成分が、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリスチレン又はスチレン−ブタジエンコポリマとのアロイ化ポリマであって、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルを50重量%以上含有する、請求項1〜4のいずれか1項に記載の樹脂フィルム。The component (C) is an alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene or styrene-butadiene copolymer, and comprises poly (2,6-dimethyl-1,4- The resin film of any one of Claims 1-4 which contains 50 weight% or more of (phenylene) ethers. 前記(D)成分が、マンガン、鉄、コバルト、ニッケル、銅又は亜鉛の2−エチルヘキサン酸塩、ナフテン酸塩若しくはアセチルアセトン錯体から選ばれる1種類以上である、請求項1〜5のいずれか1項に記載の樹脂フィルム。The component (D) is one or more selected from 2-ethylhexanoate, naphthenate or acetylacetone complex of manganese, iron, cobalt, nickel, copper or zinc. The resin film as described in the item. 前記(A)〜(D)成分を含有する硬化性樹脂組成物と溶剤を含むワニスを支持基材の片面に流延塗布し、加熱乾燥により溶剤を除去し製膜することを特徴とする、請求項1〜6のいずれか1項に記載の樹脂フィルムを製造する方法。A varnish containing a curable resin composition containing the components (A) to (D) and a solvent is cast-coated on one side of a support substrate, and the solvent is removed by heat drying to form a film. The method to manufacture the resin film of any one of Claims 1-6. (A′)式(1):
Figure 0003719833
で示されるシアネートエステル類化合物と(B′)式(2):
Figure 0003719833
で示される1価フェノール類化合物の一部又は全部を反応させて得られる変性シアネートエステル樹脂、
(C′)ポリフェニレンエーテル樹脂及び
(D′)前記(A′)成分と前記(B′)成分との反応の促進剤及び樹脂フィルムの硬化における硬化促進剤として用いられる金属系反応触媒
を含有する硬化性樹脂組成物(ただし、前記(A′)成分と反応性を有しない難燃剤を含有するものを除く)
を半硬化又は硬化してなる、樹脂フィルム。
(A ′) Formula (1):
Figure 0003719833
And a cyanate ester compound represented by formula (B ′): Formula (2):
Figure 0003719833
A modified cyanate ester resin obtained by reacting part or all of the monohydric phenol compound represented by
(C ') a polyphenylene ether resin and (D') a metal-based reaction catalyst used as an accelerator for the reaction between the component (A ') and the component (B') and a curing accelerator for curing the resin film Curable resin composition (excluding those containing a flame retardant that is not reactive with the component (A '))
A resin film obtained by semi-curing or curing.
前記変性シアネートエステル樹脂が、前記(A′)成分100重量部と前記(B′)成分4〜30重量部の一部又は全部を反応させて得られる変性シアネートエステル樹脂であり、
前記(C′)成分が、前記(A′)成分100重量部に対して、5〜500重量部であり、かつ
前記(D′)成分が、前記(A)成分1gに対して、1〜300ppmである、請求項8に記載の樹脂フィルム。
The modified cyanate ester resin is a modified cyanate ester resin obtained by reacting 100 parts by weight of the component (A ′) and 4 to 30 parts by weight of the component (B ′).
The component (C ′) is 5 to 500 parts by weight with respect to 100 parts by weight of the component (A ′), and the component (D ′) is 1 to 1 g of the component (A). The resin film of Claim 8 which is 300 ppm.
前記(A′)成分が、2,2−ビス(4−シアナトフェニル)プロパン及び/又は2,2−ビス(3,5−ジメチル−4−シアナトフェニル)メタンである、請求項8又は9に記載の樹脂フィルム。The component (A ′) is 2,2-bis (4-cyanatophenyl) propane and / or 2,2-bis (3,5-dimethyl-4-cyanatophenyl) methane. 9. The resin film according to 9. 前記(B′)成分が、p−(α−クミル)フェノールである、請求項8〜10のいずれか1項に記載の樹脂フィルム。The resin film according to any one of claims 8 to 10, wherein the component (B ') is p- (α-cumyl) phenol. 前記(C′)成分が、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリスチレン又はスチレン−ブタジエンコポリマとのアロイ化ポリマであって、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルを50重量%以上含有する、請求項8〜11のいずれか1項に記載の樹脂フィルム。The component (C ′) is an alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene or styrene-butadiene copolymer, and the poly (2,6-dimethyl-1,4 The resin film of any one of Claims 8-11 containing 50 weight% or more of (-phenylene) ether. 前記(D′)成分が、マンガン、鉄、コバルト、ニッケル、銅又は亜鉛の2−エチルヘキサン酸塩、ナフテン酸塩若しくはアセチルアセトン錯体から選ばれる1種類以上である、請求項8〜12のいずれか1項に記載の樹脂フィルム。The component (D ') is one or more selected from 2-ethylhexanoate, naphthenate, or acetylacetone complex of manganese, iron, cobalt, nickel, copper, or zinc. The resin film according to Item 1. 前記変性シアネートエステル樹脂、前記(C′)成分及び前記(D′)成分を含有する硬化性樹脂組成物と溶剤を含むワニスを支持基材の片面に流延塗布し、加熱乾燥により溶剤を除去し製膜することを特徴とする、請求項8〜13のいずれか1項に記載の樹脂フィルムを製造する方法。The curable resin composition containing the modified cyanate ester resin, the component (C ′) and the component (D ′), and a varnish containing a solvent are cast on one side of a support substrate, and the solvent is removed by heat drying The method for producing a resin film according to claim 8, wherein the resin film is formed. 前記変性シアネートエステル樹脂を、前記(C′)成分を投入した前記溶剤中で、前記(A′)成分と前記(B′)成分の一部又は全部を反応させて得る、請求項14記載の樹脂フィルムの製造方法。The modified cyanate ester resin is obtained by reacting a part or all of the component (A ') and the component (B') in the solvent to which the component (C ') is added. A method for producing a resin film. 前記溶剤が、芳香族炭化水素系溶剤を含む、請求項14又は15に記載の樹脂フィルムの製造方法。The method for producing a resin film according to claim 14, wherein the solvent includes an aromatic hydrocarbon solvent. 前記溶剤が、さらにケトン系溶剤を含む、請求項16に記載の樹脂フィルムの製造方法。The method for producing a resin film according to claim 16, wherein the solvent further contains a ketone solvent.
JP29057897A 1997-10-23 1997-10-23 Modified cyanate ester resin film and method for producing the same Expired - Fee Related JP3719833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29057897A JP3719833B2 (en) 1997-10-23 1997-10-23 Modified cyanate ester resin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29057897A JP3719833B2 (en) 1997-10-23 1997-10-23 Modified cyanate ester resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11124452A JPH11124452A (en) 1999-05-11
JP3719833B2 true JP3719833B2 (en) 2005-11-24

Family

ID=17757843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29057897A Expired - Fee Related JP3719833B2 (en) 1997-10-23 1997-10-23 Modified cyanate ester resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3719833B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114816B2 (en) * 2001-04-12 2013-01-09 日立化成工業株式会社 Siloxane-modified cyanate resin composition, and adhesive film, metal foil with resin, and multilayer printed wiring board using the same
JP4934910B2 (en) * 2001-05-22 2012-05-23 日立化成工業株式会社 Modified cyanate ester-based resin composition, resin film using the same, multilayer printed wiring board and method for producing them
JP2002338887A (en) * 2001-05-22 2002-11-27 Hitachi Chem Co Ltd Insulating varnish using modified cyanate ester based resin composition and method for producing its resin film
TWI262041B (en) 2003-11-14 2006-09-11 Hitachi Chemical Co Ltd Formation method of metal layer on resin layer, printed wiring board, and production method thereof
CN100546435C (en) * 2003-11-14 2009-09-30 日立化成工业株式会社 Formation method, printed substrate and the manufacture method thereof of the resin bed of metal level
JP2011208150A (en) * 2011-05-27 2011-10-20 Hitachi Chem Co Ltd Modified cyanate ester based resin composition, resin film and multilayer printed wiring board using the same, and method for manufacturing them
JP2011202175A (en) * 2011-05-27 2011-10-13 Hitachi Chem Co Ltd Siloxane-modified cyanate resin composition, adhesive film using the same, resin coated metal foil and multilayered printed wiring board
JP2011252152A (en) * 2011-07-04 2011-12-15 Hitachi Chem Co Ltd Insulating varnish using modified cyanate ester-based resin composition, and manufacturing method of resin film of the same

Also Published As

Publication number Publication date
JPH11124452A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
EP0889096B1 (en) Modified cyanate ester group curable resin composition, and varnish, prepreg, metal clad laminated board, film, printed circuit board, and multilayered circuit board using the same
JP4039033B2 (en) Modified cyanate ester-based resin composition, resin film, multilayer printed wiring board, and production method thereof
JP3719833B2 (en) Modified cyanate ester resin film and method for producing the same
JP4934910B2 (en) Modified cyanate ester-based resin composition, resin film using the same, multilayer printed wiring board and method for producing them
JP3261076B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP3382507B2 (en) Modified cyanate ester resin varnish for printed wiring boards, and prepreg for laminate and metal-clad laminate using the same
JP3382508B2 (en) Modified cyanate ester resin varnish for printed wiring boards and method for producing the same
JP4039034B2 (en) Modified cyanate ester-based resin composition, flame retardant resin film, flame retardant multilayer printed wiring board, and production method thereof
JP3722601B2 (en) Modified cyanate ester resin film and method for producing the same
JP2011208150A (en) Modified cyanate ester based resin composition, resin film and multilayer printed wiring board using the same, and method for manufacturing them
JP3315631B2 (en) Flame retardant modified cyanate ester-based resin film and method for producing the same
JP2002338887A (en) Insulating varnish using modified cyanate ester based resin composition and method for producing its resin film
JP3315630B2 (en) Flame retardant modified cyanate ester-based resin film and method for producing the same
JP3382510B2 (en) Modified cyanate ester resin varnish for printed wiring boards and method for producing prepreg for laminated board and metal-clad laminate using the same
JP2011252152A (en) Insulating varnish using modified cyanate ester-based resin composition, and manufacturing method of resin film of the same
JP2002194212A (en) Modified cyanate ester based curable resin composition for laminate, and prepreg and laminate made by using it
JP3382509B2 (en) Modified cyanate ester resin varnish for printed wiring boards and method for producing the same
JP3261078B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP2003332701A (en) Modified cyanate ester resin varnish for printed wiring board, prepreg for laminate using same, and method for manufacturing metal-clad laminate
JP4154625B2 (en) Modified cyanate ester resin varnish for printed wiring board and method for producing the same
JP3981847B2 (en) Modified cyanate ester-based curable resin composition for laminates, and prepreg and metal-clad laminate using the same
JP4075449B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP4788934B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP2001081322A (en) Modified cyanate ester resin composition and prepreg and laminate using the same
JP3968639B2 (en) Modified cyanate ester resin varnish for printed wiring board, and prepreg for laminate and metal-clad laminate using the same

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees