JP3719060B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine Download PDF

Info

Publication number
JP3719060B2
JP3719060B2 JP24954199A JP24954199A JP3719060B2 JP 3719060 B2 JP3719060 B2 JP 3719060B2 JP 24954199 A JP24954199 A JP 24954199A JP 24954199 A JP24954199 A JP 24954199A JP 3719060 B2 JP3719060 B2 JP 3719060B2
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
valve
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24954199A
Other languages
Japanese (ja)
Other versions
JP2001073855A (en
Inventor
博文 土田
祐一 入矢
隆 福田
泰之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24954199A priority Critical patent/JP3719060B2/en
Publication of JP2001073855A publication Critical patent/JP2001073855A/en
Application granted granted Critical
Publication of JP3719060B2 publication Critical patent/JP3719060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ガソリン機関に代表される内燃機関に関し、特に、吸気行程付近で燃料を噴射して均質燃焼を行うとともに、圧縮行程付近で燃料を噴射して成層燃焼を行う筒内噴射式の内燃機関の改良に関する。
【0002】
【従来の技術】
全開出力時等にシリンダ内に略均質な空燃比の混合気を形成していわゆる均質燃焼を行うとともに、低負荷域では、シリンダ内の一部、つまり点火プラグ近傍のみに比較的濃い混合気を形成して平均的な空燃比を非常に大きく得るようにした成層燃焼を行う筒内噴射式内燃機関が、例えば特開平11−036958号公報に記載されている。
【0003】
更に、この公報に記載された筒内噴射式内燃機関では、均質燃焼領域において、吸気行程早期に燃料が噴射された後に、アクセルの踏み込み等により吸気量が急増した場合に、これに見合う量の追加燃料を圧縮行程前半中に追加噴射して、空燃比の過大化を抑制するように構成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の筒内噴射式内燃機関においては、均質燃焼を行う場合に、吸気行程で噴射された燃料は、吸気ポートから燃焼室内に流入する一定の吸気流に乗って筒内に拡散することから、吸気流の主流の部分と、よどむ領域とで燃料の拡散の程度が不均一となり、筒内における混合気の均質度はあまり良くない。この結果、均質燃焼の中でも空燃比を比較的大きく設定した均質リーン燃焼時に、局所的にリッチの領域で燃焼温度が上昇し、NOxの排出量が増加するという問題点があった。また空燃比が理論空燃比の近傍に設定された均質ストイキ燃焼時に、局所的にリッチの領域で酸素不足が生じ、HC,CO等の排出量の増加を招く等の問題があった。
【0005】
特に、上記公報の技術のように、均質燃焼時に燃料噴射を複数回に分けて行う場合には、燃焼室内に均質の混合気を形成することが更に困難となり、安定した均質燃焼を行うことができない。
【0006】
本発明は、このような課題に鑑みてなされたものである。
【0007】
【課題を解決するための手段】
本発明に係る筒内噴射式内燃機関は、燃焼室内に直接燃料を噴射する燃料噴射弁が吸気側に配置され、吸気行程付近で燃料噴射を行うことにより均質燃焼を実現するとともに、圧縮行程付近で燃料噴射を行うことにより成層燃焼を実現するように構成されている。
【0008】
そして、請求項1の発明は、均質燃焼時における1回の吸気行程期間中に、燃焼室内への吸気の流入方向を変化させる吸気方向可変手段と、この吸気行程期間中に吸気の流入方向が異なる複数のタイミングに分けて燃料を噴射する燃料噴射制御手段と、を有し、それぞれのタイミングで噴射された燃料を流入方向の異なる吸気の流れに乗せて燃焼室に拡散させることを特徴としている。
【0009】
このような構成により、それぞれのタイミングで噴射された燃料が流入方向の異なる吸気の流れに乗って燃焼室の全体に良好に拡散され、燃焼室全体に均質な混合気が形成される。この結果、良好な均質燃焼を実現でき、局部的なリッチ状態を生じることが無いため、NOx,HC,CO等の排出量を大幅に低減することが可能となる。
【0010】
請求項1の発明をより具体化した請求項2の発明は、上記吸気方向可変手段が、吸気ポートの燃焼室側の開口縁部の周方向一部分に切欠形成された切欠部を有し、均質燃焼時に、吸気弁の低リフト時に主に上記切欠部を通って燃焼室内へ流入する吸気の流入方向が、高リフト時における吸気の流入方向と異なるように設定したことを特徴としている。
【0011】
この構成によれば、低リフト時における吸気の流入方向が切欠部の形成された方向を指向する形となり、低リフト時と高リフト時で吸気の流入方向を異らせることができる。従って、吸気の流入方向が異なる低リフト時と高リフト時に分けて燃料を噴射することにより、それぞれの吸気の流れに乗って燃料が燃焼室全体に良好に拡散される。
【0012】
請求項2の発明をより具体化した請求項3の発明は、吸気ポートの途中に設けられた吸気遮断弁と、吸気ポートの吸気遮断弁の上流側と下流側とをバイパスするバイパス通路と、を有し、上記吸気遮断弁で吸気ポートを遮断した均質リーン燃焼時に、吸気弁の低リフト時に上記切欠部を通って燃焼室内へ流入する吸気の流入方向と、高リフト時に主にバイパス通路を通って燃焼室へ流入する吸気の流入方向とが互いに異なるように設定したことを特徴としている。
【0013】
この構成によれば、均質リーン燃焼時のおける1回の吸気行程期間中に、吸気の流入方向が、低リフト時には切欠部の形成された方向に、高リフト時にはバイパス通路の中心軸に沿う方向に変化する。
【0014】
また、請求項2の発明をより具体化した請求項4の発明は、各燃焼室の吸気側に一対の吸気ポートが開口しており、かつ、上記燃料噴射弁がシリンダ軸方向視で両吸気ポートの間に配置され、一方の吸気ポートに吸気遮断弁が設けられるとともに、他方の吸気ポートの開口縁部に上記切欠部が形成され、上記吸気遮断弁で一方の吸気ポートを遮断した均質リーン燃焼時に、吸気弁の低リフト時に上記切欠部を通って燃焼室内へ流入する吸気の流入方向と、高リフト時に主に他方の吸気ポートを通って燃焼室へ流入する吸気の流入方向とが互いに異なるように設定したことを特徴としている。
【0015】
この構成によれば、均質リーン燃焼時における1回の吸気行程期間中に、吸気の流入方向が、低リフト時には切欠部の形成された方向に、高リフト時には他方の吸気ポートの中心軸に沿う方向に変化する。
【0016】
更に、請求項2の発明をより具体化した請求項5の発明は、各燃焼室の吸気側に一対の吸気ポートが開口しており、かつ、上記燃料噴射弁がシリンダ軸方向視で両吸気ポートの間に配置され、両吸気ポートの開口縁部に上記切欠部がそれぞれ形成され、各切欠部は、高リフト時における吸気の流入方向と略逆方向となる周方向一部分に形成されていることを特徴としている。
【0017】
この構成によれば、均質燃焼時における1回の吸気行程期間中に、吸気の流入方向が、低リフト時には切欠部の形成された方向に、高リフト時には両吸気ポートの中心軸に沿う方向に変化する。
【0018】
【発明の効果】
以上のように本発明では、均質燃焼時における1回の吸気行程期間中に、燃焼室への吸気の流入方向を変化させるとともに、吸気の流入方向が異なる複数のタイミングに分けて燃料を噴射する構成としたため、それぞれのタイミングで噴射された燃料が流入方向の異なる吸気の流れに乗って燃焼室内の全域にわたって良好に拡散され、燃焼室内に均質の混合気を形成することができる。この結果、局部的なリッチ状態を生じることが無く、安定した均質燃焼が実現され、NOx,HC、COの排出量を大幅に低減することができる。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して説明する。
【0020】
図1,2は、本発明の第1実施例に係る筒内噴射式内燃機関を示している。シリンダブロック10には複数のシリンダ11が形成されており、その上面を覆うように、シリンダヘッド12が固定されている。各シリンダ11には、図外のピストンが摺動可能に嵌合しており、このピストンの上方に、ペントルーフ形の燃焼室1が形成されている。シリンダヘッド12には、燃焼室1の吸気側(図1,2の左側)の傾斜面1aに開口する一対の吸気ポート3a,3bと、排気側(図1,2の右側)の傾斜面1bに開口する一対の排気ポート(図示省略)とが形成されるとともに、各吸気ポート3a,3bを開閉する一対の吸気弁4a,4b及び各排気ポートを開閉する一対の排気弁(図示省略)が設けられている。
【0021】
図1に示すように、これら吸,排気ポートに囲まれたシリンダ11の略中央には点火プラグ13が設けられ、この点火プラグ13の先端が燃焼室1内に臨んでいる。また、電磁式の燃料噴射弁2は、その中心軸が斜め下方へ向かった姿勢で、吸気ポート3a,3bの下側に設けられている。特に、燃料噴射弁2は、図1に示すシリンダ軸方向視で一対の吸気ポート3a,3bの間に配置されている。この燃料噴射弁2は、その先端部が燃焼室1内に臨んでおり、燃焼室1内に直接燃焼を噴射するように構成されている。
【0022】
各吸気ポート3a,3bの途中には、各吸気ポート3a,3bを遮断する(絞る)バタフライ式の吸気遮断弁(絞り弁)5a,5bが設置されている。そして、シリンダヘッド12には、吸気ポート3a,3bにおける各吸気遮断弁5a,5bの上流側と下流側とをバイパスするバイパス通路6が形成されている。つまり、バイパス通路6は、その上流側端部6cで吸気遮断弁5a,5bよりも上流側の吸気ポート3a,3bの合流部3cから分岐しており、途中で二股に分岐して、一方の分岐通路6aが一方の吸気ポート3aの開口部近傍に合流しており、他方の分岐通路6bが他方の吸気ポート3bの開口部近傍に合流している。各分岐通路6a,6bの中心軸は、図1に示すシリンダ軸方向視で燃焼室1の外周部に沿うように設定されている。
【0023】
また、吸気弁4a,4bとの間をシールするバルブシート部8(図3,4)が形成された各吸気ポート3a,3bの燃焼室1側の開口縁部には、シリンダ中央部寄りの周方向一部分に、切欠部7a,7bが切欠形成されている。各切欠部7a,7bは、図3に示すように、バルブシート部8と傾斜面1aとの間の段部を切り欠くように形成され、かつ、図1に示すシリンダ軸方向視で、シリンダ中央部側へ略三日月状に張り出すように形成されている。
【0024】
なお、上記燃料噴射弁2,吸気遮断弁5a,5b等は図示しないECU(エンジン・コントロール・ユニット)に接続されており、このECUによって、燃料噴射時期及び燃料噴射量が制御されるとともに、吸気遮断弁5a,5bが開閉制御される。
【0025】
図3,4は、吸気弁4a(4b)が開き始めた直後の状態、つまりリフト量が約1〜2mm程度の低リフト状態を示しており、図3は、切欠部7a(7b)が形成された部分を示す図2のA−A断面対応図、図4は、切欠部7a,7bのない部分を示す図2のB−B断面対応図である。
【0026】
このような低リフト状態では、主に切欠部7a,7bを通って吸気が燃焼室1内へ流入する。つまり、図4に示す切欠部7a,7bの無い部分に比して、切欠部7a,7bが形成されている部分で、燃焼室1への吸気の流入が促進される。この結果、低リフト時における吸気の流入方向S1は、切欠部7a,7bが形成されている方向、すなわちシリンダ軸方向視でシリンダ中心方向となる。
【0027】
一方、吸気弁4a,4bが比較的高くリフトした高リフト状態では、切欠部7a,7bの有無は吸気の流れにほとんど影響せず、従って、燃焼室1へ流入する吸気の流入方向は、吸気遮断弁5a,5bが閉じていない場合には吸気ポート3a,3bの中心軸に沿う方向、吸気遮断弁5a,5bが閉じている場合にはバイパス通路6a,6bの中心軸に沿う方向S2(図1)となる。
【0028】
図5は、エンジン回転数及びエンジン負荷に対して設定された運転領域を表している。同図に示すように、主に低負荷時には成層リーン領域となり、圧縮行程で燃料を噴射して、点火プラグ13の近傍のみに比較的濃い混合気を形成する成層燃焼が行われる。また、全開出力等の高負荷時には均質ストイキ領域となり、圧縮行程で燃料を噴射して、理論空燃比近傍の混合気を燃焼室1全体に均質に形成する均質ストイキ燃焼が行われる。更に、主に中負荷時には均質リーン領域となり、主に燃費を低減するために、上記の均質ストイキ燃焼時よりも空燃比を大きくした均質リーン燃焼が行われる。
【0029】
この均質リーン運転領域では、主に燃焼室1内のガス流動を強化するために、吸気遮断弁5a,5bを閉とし、バイパス通路6a,6bを通して吸気を燃焼室1へ流入させる。この場合、吸気行程の初期段階では、吸気弁4a,4bが低リフト状態にあり、吸気は切欠部7a,7bを通って燃焼室1へ流入するため、前述のように吸気の流入方向S1は、シリンダ中心方向を指向する。一方、吸気行程の中盤では高リフト状態となるため、燃焼室1へ流入する吸気の流入方向S2が、バイパス通路6a,6bの中心軸に沿う方向、すなわち燃焼室1の外周部に沿う方向となる。このように本実施例では、均質リーン燃焼時における1回の吸気行程期間中に、燃焼室1へ流入する吸気の方向を、低リフト時と高リフト時で大きく変化させている。
【0030】
図6は、この均質リーン燃焼時における燃料噴射時期を示している。本実施例では、必要燃料量を、1回の吸気行程期間中における吸気の方向が異なる複数(ここでは2回)のタイミングに分けて噴射するように制御している。具体的には、1回目の燃料噴射F1は、吸気弁4a,4bが低リフト状態にある時期、すなわち吸気の流入方向S1がシリンダ中心を指向する状態で行われ、2回目の燃料噴射F2は、吸気弁4a,4bが高リフト状態にある時期、すなわち吸気の流入方向S2が燃焼室1の外周部に沿う状態で行われる。
【0031】
従って、1回目に噴射された燃料と2回目に噴射された燃料とが、それぞれ流入方向の異なる吸気の流れに乗って効果的に拡散され、燃焼室1内での燃料の拡散が促進されるため、燃焼室1全体に均質な可燃混合気を形成することができる。この結果、良好な均質リーン燃焼を実現でき、局部的なリッチ状態を生じることが無いので、NOx等の排出量を抑制することが可能となる。
【0032】
なお、均質ストイキ燃焼時では、吸気遮断弁5a,5bが開弁されるため、高リフト時における吸気の流入方向は吸気ポート3a,3bの中心軸に沿う方向となる。この場合でも、1回の吸気行程期間中に、低リフト時の吸入方向S1と高リフト時の吸入方向とが異なる形となる。従って、このように吸気の流入方向が異なる低リフト時と高リフト時に分けて燃料を噴射することにより、燃焼室1内での燃料の拡散が促進され、燃焼室1全体に均質な可燃混合気を形成することができる。この結果、良好な均質ストイキ燃焼を実現でき、局部的なリッチ状態を生じることが無いので、HC,CO等の排出量を抑制することが可能となる。
【0033】
なお、1回目と2回目の燃料の噴射量は同量である必要は無く、それぞれの噴射期間における流入吸気量に応じた噴射割合が効果的である。更に、この吸気量の割合に対する1回目の噴射割合を2回目よりも大きくする方が望ましい。これは、1回目の方が燃料の拡散する時間を長くとれるため、拡散時間の短い2回目の噴射よりも吸気割合に対する噴射割合を大きくしても、十分に燃料を拡散できることから、より均質の程度を高めることができるからである。
【0034】
図7,8は、本発明の第2実施例に係る筒内噴射式内燃機関を示している。なお、以下に示す実施例において、上記第1実施例と同一構成部分には同じ参照符号を付して重複する説明を適宜省略する。
【0035】
この第2実施例は、一方の吸気ポート3aにのみ、この吸気ポート3aを遮蔽する吸気遮断弁5aが設けられるとともに、他方の吸気ポート3bの開口縁部にのみ切欠部17bが形成され、かつ、バイパス通路6a,6b(図1,2)が設けられていない点で、第1実施例と相違している。上記の切欠部17bは、一方の吸気弁4aに近接する周方向一部分に形成されている。
【0036】
均質リーン燃焼時には、吸気遮断弁5aが閉弁され、主として他方の吸気ポート3bから燃焼室1へ吸気が流入する。ここで、吸気行程の初期段階つまり低リフト状態では、主に切欠部17bを通して吸気が燃焼室1へ流入し、その流入方向S3は、図7で下方へ向かう方向となる。従って、燃焼室1内には、図7で反時計回りのスワール流動が生成される。一方、吸気行程の中盤つまり高リフト状態では、燃焼室1へ流入する吸気の流入方向S4は、他方の吸気ポート3bの中心軸に沿う方向、つまり図7で右方向となり、燃焼室1内に図7で時計回りのスワール流動が生成される。すなわち本実施例では、吸気遮断弁5aや切欠部7bを利用して、1回の吸気行程期間中における吸気の流入方向を、低リフト時と高リフト時で大きく変化させている。
【0037】
そして、このように吸気の流入方向が異なる低リフト時と高リフト時の2回に分けて燃料を噴射制御することで、それぞれの吸気の流れに乗って燃料を良好に拡散させることができ、第1実施例と同様、燃焼室1全体に均質な混合気を形成することが可能となる。
【0038】
図9,10は、本発明の第3実施例に係る筒内噴射式内燃機関を示している。この第3実施例では、バイパス通路6a,6bや吸気遮断弁5a,5b(図1,2)が設けられておらず、かつ、各吸気ポート3a,3bの開口縁部に形成される切欠部27a,27bが、シリンダ軸方向視で燃料噴射弁2を指向する周方向一部分に配置されている。つまり、各切欠部27a,27bは、高リフト時における吸気の流入方向S6と略逆方向となる周方向一部分に形成されている。
【0039】
このように実施例では、吸気遮断弁が無いことから、均質リーン燃焼時及び均質ストイキ燃焼時の双方で、吸気の流入方向は同じように変化する。
【0040】
詳述すると、均質燃焼時における1回の吸気行程期間中において、吸気行程初期の低リフト時には、両切欠部27a,27bの形成された方向S5より吸気が燃焼室1内へ流入し、この燃焼室1の外周部に沿って流れる形となる。従って、この低リフト時に噴射された1回目の噴射燃料は、この流れに乗って、主に燃焼室1の外周部に拡散することになる。一方、吸気行程中期の高リフト時には、吸気の流入方向S6は吸気ポート3a,3bの中心軸に沿う方向となるため、この期間に噴射された2回目の噴射燃料は、主に燃焼室1の中央部に拡散することになる。この結果、2回に分けて噴射された燃料は、それぞれの吸気の流れに乗って燃焼室1全体に良好に拡散され、上記第1,第2実施例と同様、燃焼室1内に均質な混合気を形成することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る筒内噴射式内燃機関を上方から見た透視対応図。
【図2】上記第1実施例の筒内噴射式内燃機関を示す断面対応図。
【図3】図1のA−A断面対応図。
【図4】図1のB−B断面対応図。
【図5】エンジン回転数及びエンジン負荷に対して設定された運転領域を示すグラフ。
【図6】均質燃焼時の燃料噴射時期を示すグラフ。
【図7】本発明の第2実施例に係る筒内噴射式内燃機関を上方から見た透視対応図。
【図8】上記第2実施例の筒内噴射式内燃機関を示す断面対応図。
【図9】本発明の第3実施例に係る筒内噴射式内燃機関を上方から見た透視対応図。
【図10】上記第3実施例の筒内噴射式内燃機関を示す断面対応図。
【符号の説明】
1…燃焼室
2…燃料噴射弁
3a,3b…吸気ポート
5a,5b…吸気遮断弁
6…バイパス通路
7a,7b…切欠部
[0001]
[Industrial applications]
The present invention relates to an internal combustion engine typified by a gasoline engine, and in particular, an in-cylinder injection type internal combustion engine that injects fuel in the vicinity of an intake stroke to perform homogeneous combustion, and injects fuel in the vicinity of a compression stroke to perform stratified combustion. Concerning engine improvement.
[0002]
[Prior art]
A so-called homogeneous combustion is performed by forming a substantially homogeneous air-fuel ratio mixture in the cylinder at the time of fully open output, etc., and in the low load range, a relatively rich mixture is only applied to a part of the cylinder, that is, near the spark plug. An in-cylinder injection internal combustion engine that performs stratified combustion so as to obtain an extremely large average air-fuel ratio is described in, for example, Japanese Patent Application Laid-Open No. 11-036958.
[0003]
Furthermore, in the in-cylinder internal combustion engine described in this publication, in the homogeneous combustion region, after fuel is injected early in the intake stroke, when the intake amount suddenly increases due to depression of the accelerator, etc. The additional fuel is additionally injected during the first half of the compression stroke to suppress an excessive increase in the air-fuel ratio.
[0004]
[Problems to be solved by the invention]
However, in the conventional in-cylinder internal combustion engine, when performing homogeneous combustion, the fuel injected in the intake stroke is diffused into the cylinder by riding on a constant intake flow flowing from the intake port into the combustion chamber. For this reason, the degree of fuel diffusion is non-uniform between the mainstream portion of the intake flow and the stagnation region, and the homogeneity of the air-fuel mixture in the cylinder is not very good. As a result, there is a problem that the combustion temperature rises locally in a rich region and the amount of NOx emission increases during homogeneous lean combustion in which the air-fuel ratio is set to a relatively large value even in homogeneous combustion. Further, during homogeneous stoichiometric combustion in which the air-fuel ratio is set in the vicinity of the stoichiometric air-fuel ratio, there is a problem in that oxygen shortage occurs locally in a rich region, leading to an increase in emissions of HC, CO, and the like.
[0005]
In particular, as in the technique of the above publication, when fuel injection is performed in multiple times during homogeneous combustion, it becomes more difficult to form a homogeneous mixture in the combustion chamber, and stable homogeneous combustion can be performed. Can not.
[0006]
The present invention has been made in view of such problems.
[0007]
[Means for Solving the Problems]
In the cylinder injection internal combustion engine according to the present invention, a fuel injection valve for directly injecting fuel into a combustion chamber is arranged on the intake side, fuel injection is performed in the vicinity of the intake stroke, and homogeneous combustion is realized, and in the vicinity of the compression stroke Is configured to realize stratified combustion by performing fuel injection.
[0008]
According to the first aspect of the present invention, the intake direction varying means for changing the inflow direction of the intake air into the combustion chamber during one intake stroke period during homogeneous combustion, and the inflow direction of the intake air during the intake stroke period are provided. and fuel injection control means for injecting fuel separately in different timing, have a, is characterized in that diffused into the combustion chamber put the fuel injected in the respective timings different intake flow of the inflow direction .
[0009]
With such a configuration, fuel injected at each timing rides on the flow of intake air having different inflow directions and is diffused well throughout the combustion chamber, so that a homogeneous air-fuel mixture is formed throughout the combustion chamber. As a result, good homogeneous combustion can be realized, and a local rich state does not occur, so that it is possible to significantly reduce the amount of NOx, HC, CO, etc. emitted.
[0010]
According to a second aspect of the present invention that further embodies the first aspect of the invention, the intake direction varying means has a notch formed in a portion in the circumferential direction of the opening edge of the intake port on the combustion chamber side. During combustion, the inflow direction of the intake air flowing into the combustion chamber mainly through the notch when the intake valve is low lifted is set to be different from the inflow direction of intake air during the high lift.
[0011]
According to this configuration, the inflow direction of the intake air at the time of low lift is directed to the direction in which the notch is formed, and the inflow direction of the intake air can be different between the low lift time and the high lift time. Therefore, by injecting the fuel separately during the low lift and the high lift in which the inflow direction of the intake air is different, the fuel is favorably diffused throughout the combustion chamber along the flow of each intake air.
[0012]
The invention of claim 3 which more specifically embodies the invention of claim 2 includes an intake cutoff valve provided in the middle of the intake port, a bypass passage bypassing the upstream side and the downstream side of the intake cutoff valve of the intake port, In the homogeneous lean combustion where the intake port is shut off by the intake shut-off valve, the inflow direction of the intake air flowing into the combustion chamber through the notch when the intake valve is low lifted, and the bypass passage mainly during high lift It is characterized in that the inflow directions of the intake air flowing through and into the combustion chamber are different from each other.
[0013]
According to this configuration, during one intake stroke period during homogeneous lean combustion, the intake air inflow direction is in the direction along which the notch is formed during low lift, and along the central axis of the bypass passage during high lift. To change.
[0014]
According to a fourth aspect of the present invention, which further embodies the second aspect of the present invention, a pair of intake ports are opened on the intake side of each combustion chamber, and the fuel injection valve is a double intake as viewed in the cylinder axial direction. A homogeneous lean disposed between the ports, provided with an intake shut-off valve at one intake port, and formed with the notch at the opening edge of the other intake port, and shutting off one intake port with the intake shut-off valve During combustion, the inflow direction of intake air that flows into the combustion chamber through the notch when the intake valve is low lifted and the inflow direction of intake air that flows into the combustion chamber mainly through the other intake port during high lift are mutually It is characterized by being set differently.
[0015]
According to this configuration, during one intake stroke period during homogeneous lean combustion, the intake air inflow direction follows the central axis of the other intake port in the direction in which the notch is formed during low lift and in the high lift. Change direction.
[0016]
Further, according to the invention of claim 5, which is a more specific embodiment of the invention of claim 2, a pair of intake ports are opened on the intake side of each combustion chamber, and the fuel injection valve is a double intake as viewed in the cylinder axial direction. Located between the ports, the notches are formed at the opening edges of both intake ports, and each notch is formed in a portion of the circumferential direction that is substantially opposite to the inflow direction of intake during high lift. It is characterized by that.
[0017]
According to this configuration, during one intake stroke period during homogeneous combustion, the intake air inflow direction is in the direction along which the notch is formed during low lift, and in the direction along the central axis of both intake ports during high lift. Change.
[0018]
【The invention's effect】
As described above, according to the present invention, during one intake stroke period during homogeneous combustion, the direction of intake air flow into the combustion chamber is changed and fuel is injected at a plurality of timings with different intake air inflow directions. Due to the configuration, the fuel injected at each timing rides on the flow of intake air having different inflow directions and is diffused well throughout the combustion chamber, so that a homogeneous air-fuel mixture can be formed in the combustion chamber. As a result, a local rich state is not generated, stable homogeneous combustion is realized, and NOx, HC, and CO emissions can be greatly reduced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
1 and 2 show a direct injection internal combustion engine according to a first embodiment of the present invention. A plurality of cylinders 11 are formed in the cylinder block 10, and a cylinder head 12 is fixed so as to cover the upper surface thereof. A piston (not shown) is slidably fitted in each cylinder 11, and a pent roof type combustion chamber 1 is formed above the piston. The cylinder head 12 includes a pair of intake ports 3a and 3b that open on an inclined surface 1a on the intake side (left side in FIGS. 1 and 2) of the combustion chamber 1, and an inclined surface 1b on the exhaust side (right side in FIGS. 1 and 2). And a pair of exhaust valves (not shown) for opening and closing the exhaust ports, and a pair of intake valves 4a and 4b for opening and closing the intake ports 3a and 3b. Is provided.
[0021]
As shown in FIG. 1, a spark plug 13 is provided substantially at the center of the cylinder 11 surrounded by the intake and exhaust ports, and the tip of the spark plug 13 faces the combustion chamber 1. The electromagnetic fuel injection valve 2 is provided on the lower side of the intake ports 3a and 3b in a posture in which the central axis is inclined obliquely downward. In particular, the fuel injection valve 2 is disposed between the pair of intake ports 3a and 3b as viewed in the cylinder axial direction shown in FIG. The tip of the fuel injection valve 2 faces the combustion chamber 1 and is configured to inject combustion directly into the combustion chamber 1.
[0022]
In the middle of each intake port 3a, 3b, butterfly-type intake cutoff valves (throttle valves) 5a, 5b that shut off (throttle) the intake ports 3a, 3b are installed. The cylinder head 12 is formed with a bypass passage 6 that bypasses the upstream side and the downstream side of the intake cutoff valves 5a and 5b in the intake ports 3a and 3b. In other words, the bypass passage 6 branches from the merging portion 3c of the intake ports 3a, 3b upstream of the intake shutoff valves 5a, 5b at the upstream end 6c, and branches into a fork in the middle. The branch passage 6a joins near the opening of one intake port 3a, and the other branch passage 6b joins near the opening of the other intake port 3b. The central axis of each of the branch passages 6a and 6b is set along the outer peripheral portion of the combustion chamber 1 as viewed in the cylinder axial direction shown in FIG.
[0023]
Further, the opening edge on the combustion chamber 1 side of each intake port 3a, 3b in which the valve seat portion 8 (FIGS. 3 and 4) for sealing between the intake valves 4a, 4b is formed is close to the center of the cylinder. Cutout portions 7a and 7b are formed in a part in the circumferential direction. As shown in FIG. 3, each notch 7a, 7b is formed so as to cut out a step portion between the valve seat portion 8 and the inclined surface 1a, and the cylinder is viewed in the cylinder axial direction shown in FIG. It is formed so as to project in a substantially crescent shape toward the center side.
[0024]
The fuel injection valve 2, the intake shut-off valves 5a, 5b and the like are connected to an ECU (Engine Control Unit) (not shown). The ECU controls the fuel injection timing and the fuel injection amount, and also controls the intake air. The shutoff valves 5a and 5b are controlled to open and close.
[0025]
3 and 4 show a state immediately after the intake valve 4a (4b) starts to open, that is, a low lift state in which the lift amount is about 1 to 2 mm. FIG. 3 shows the formation of the notch 7a (7b). FIG. 4 is a cross-sectional view corresponding to the AA cross section of FIG. 2 and shows the portion without the notches 7a and 7b.
[0026]
In such a low lift state, the intake air mainly flows into the combustion chamber 1 through the notches 7a and 7b. That is, inflow of the intake air into the combustion chamber 1 is promoted in the portion where the notches 7a and 7b are formed as compared with the portion where the notches 7a and 7b are not shown in FIG. As a result, the intake air inflow direction S1 at the time of low lift is the direction in which the notches 7a and 7b are formed, that is, the cylinder center direction when viewed in the cylinder axial direction.
[0027]
On the other hand, in the high lift state in which the intake valves 4a and 4b are lifted relatively high, the presence or absence of the notches 7a and 7b hardly affects the flow of the intake air, and therefore the inflow direction of the intake air flowing into the combustion chamber 1 is When the shutoff valves 5a and 5b are not closed, the direction along the central axis of the intake ports 3a and 3b. When the shutoff valves 5a and 5b are closed, the direction S2 along the central axis of the bypass passages 6a and 6b ( Fig. 1).
[0028]
FIG. 5 shows the operation region set for the engine speed and the engine load. As shown in the figure, the stratified charge combustion is performed mainly in the stratified lean region at low load, injecting fuel in the compression stroke, and forming a relatively rich mixture only in the vicinity of the spark plug 13. In addition, a homogeneous stoichiometric region is obtained at a high load such as a fully open output, and homogeneous stoichiometric combustion is performed in which fuel is injected in the compression stroke to uniformly form a mixture near the stoichiometric air-fuel ratio in the entire combustion chamber 1. Further, the homogeneous lean region is mainly performed at a medium load, and the homogeneous lean combustion is performed in which the air-fuel ratio is larger than that during the homogeneous stoichiometric combustion in order to mainly reduce the fuel consumption.
[0029]
In this homogeneous lean operation region, in order to mainly strengthen the gas flow in the combustion chamber 1, the intake shutoff valves 5a and 5b are closed, and the intake air flows into the combustion chamber 1 through the bypass passages 6a and 6b. In this case, in the initial stage of the intake stroke, the intake valves 4a and 4b are in a low lift state, and the intake air flows into the combustion chamber 1 through the notches 7a and 7b. , Oriented in the cylinder center direction. On the other hand, in the middle stage of the intake stroke, a high lift state is established. Therefore, the inflow direction S2 of the intake air flowing into the combustion chamber 1 is a direction along the central axis of the bypass passages 6a and 6b, that is, a direction along the outer peripheral portion of the combustion chamber 1. Become. As described above, in this embodiment, the direction of the intake air flowing into the combustion chamber 1 during the single intake stroke period during the homogeneous lean combustion is greatly changed between the low lift time and the high lift time.
[0030]
FIG. 6 shows the fuel injection timing during the homogeneous lean combustion. In this embodiment, the required amount of fuel is controlled to be injected in a plurality of (in this case, two) timings in which the direction of intake air is different during one intake stroke period. Specifically, the first fuel injection F1 is performed when the intake valves 4a and 4b are in a low lift state, that is, in a state where the intake air inflow direction S1 is directed toward the cylinder center, and the second fuel injection F2 is performed. When the intake valves 4a and 4b are in a high lift state, that is, the intake air inflow direction S2 is along the outer peripheral portion of the combustion chamber 1.
[0031]
Therefore, the fuel injected at the first time and the fuel injected at the second time are effectively diffused on the flow of intake air having different inflow directions, and the diffusion of the fuel in the combustion chamber 1 is promoted. Therefore, a homogeneous combustible air-fuel mixture can be formed in the entire combustion chamber 1. As a result, good homogeneous lean combustion can be realized, and a local rich state does not occur, so that it is possible to suppress the discharge amount of NOx and the like.
[0032]
Note that, during homogeneous stoichiometric combustion, the intake shutoff valves 5a and 5b are opened, so that the inflow direction of intake air during high lift is along the central axis of the intake ports 3a and 3b. Even in this case, during one intake stroke period, the suction direction S1 at the time of low lift and the suction direction at the time of high lift are different. Accordingly, by injecting the fuel separately during the low lift and the high lift in which the intake air inflow directions are different in this way, the diffusion of the fuel in the combustion chamber 1 is promoted, and a homogeneous combustible air-fuel mixture in the entire combustion chamber 1 is achieved. Can be formed. As a result, good homogeneous stoichiometric combustion can be realized, and a local rich state does not occur, so it is possible to suppress emissions such as HC and CO.
[0033]
Note that the first and second fuel injection amounts do not have to be the same, and an injection ratio corresponding to the inflow intake air amount in each injection period is effective. Furthermore, it is desirable to make the first injection ratio with respect to the intake amount ratio larger than the second injection ratio. This is because the fuel can be diffused sufficiently even if the injection ratio with respect to the intake ratio is made larger than the second injection with a short diffusion time because the fuel can be diffused longer in the first time. This is because the degree can be increased.
[0034]
7 and 8 show a direct injection internal combustion engine according to a second embodiment of the present invention. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and repeated description is omitted as appropriate.
[0035]
In the second embodiment, only one intake port 3a is provided with an intake cutoff valve 5a that shields the intake port 3a, and a notch 17b is formed only at the opening edge of the other intake port 3b. The second embodiment is different from the first embodiment in that bypass passages 6a and 6b (FIGS. 1 and 2) are not provided. The notch 17b is formed in a part in the circumferential direction adjacent to the one intake valve 4a.
[0036]
During homogeneous lean combustion, the intake shutoff valve 5a is closed, and intake air mainly flows into the combustion chamber 1 from the other intake port 3b. Here, in the initial stage of the intake stroke, that is, in the low lift state, the intake air mainly flows into the combustion chamber 1 through the notch 17b, and the inflow direction S3 is a downward direction in FIG. Accordingly, a counterclockwise swirl flow in FIG. 7 is generated in the combustion chamber 1. On the other hand, in the middle of the intake stroke, that is, in the high lift state, the inflow direction S4 of the intake air flowing into the combustion chamber 1 is a direction along the central axis of the other intake port 3b, that is, the right direction in FIG. In FIG. 7, a clockwise swirl flow is generated. That is, in the present embodiment, the intake flow direction during one intake stroke period is greatly changed between a low lift and a high lift using the intake cutoff valve 5a and the notch 7b.
[0037]
And, by controlling the fuel injection in two times at the time of low lift and high lift where the inflow direction of the intake air is different in this way, the fuel can be diffused well on the flow of each intake air, As in the first embodiment, a homogeneous air-fuel mixture can be formed in the entire combustion chamber 1.
[0038]
9 and 10 show a direct injection internal combustion engine according to a third embodiment of the present invention. In the third embodiment, the bypass passages 6a and 6b and the intake shut-off valves 5a and 5b (FIGS. 1 and 2) are not provided, and the notches are formed at the opening edges of the intake ports 3a and 3b. 27a and 27b are arranged in a part in the circumferential direction facing the fuel injection valve 2 as viewed in the cylinder axial direction. That is, the notches 27a and 27b are formed in a portion in the circumferential direction that is substantially opposite to the intake air inflow direction S6 during high lift.
[0039]
In this way, in the embodiment, since there is no intake shutoff valve, the intake air inflow direction changes in the same way during both homogeneous lean combustion and homogeneous stoichiometric combustion.
[0040]
More specifically, during one intake stroke period during homogeneous combustion, at the time of low lift at the beginning of the intake stroke, intake air flows into the combustion chamber 1 from the direction S5 in which both the notches 27a and 27b are formed, and this combustion The shape flows along the outer periphery of the chamber 1. Therefore, the first injected fuel injected at the time of this low lift rides on this flow and diffuses mainly to the outer peripheral portion of the combustion chamber 1. On the other hand, at the time of high lift in the middle of the intake stroke, the inflow direction S6 of the intake air is in a direction along the central axis of the intake ports 3a and 3b, so the second injected fuel injected during this period is mainly in the combustion chamber 1. It will diffuse to the center. As a result, the fuel injected in two steps is satisfactorily diffused throughout the combustion chamber 1 along the respective intake flows, and is homogeneous in the combustion chamber 1 as in the first and second embodiments. An air-fuel mixture can be formed.
[Brief description of the drawings]
FIG. 1 is a perspective corresponding view of a direct injection internal combustion engine according to a first embodiment of the present invention as viewed from above.
FIG. 2 is a cross-sectional view showing the direct injection internal combustion engine of the first embodiment.
3 is a cross-sectional view taken along the line AA in FIG.
4 is a cross-sectional view corresponding to BB in FIG. 1;
FIG. 5 is a graph showing an operation region set with respect to an engine speed and an engine load.
FIG. 6 is a graph showing fuel injection timing during homogeneous combustion.
FIG. 7 is a perspective corresponding view of a direct injection internal combustion engine according to the second embodiment of the present invention as viewed from above.
FIG. 8 is a cross-sectional view showing the direct injection internal combustion engine of the second embodiment.
FIG. 9 is a perspective corresponding view of a direct injection internal combustion engine according to the third embodiment of the present invention as viewed from above.
FIG. 10 is a cross-sectional view showing a direct injection internal combustion engine of the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Combustion chamber 2 ... Fuel injection valve 3a, 3b ... Intake port 5a, 5b ... Intake shut-off valve 6 ... Bypass passage 7a, 7b ... Notch

Claims (5)

燃焼室内に直接燃料を噴射する燃料噴射弁が吸気側に配置され、吸気行程付近で燃料噴射を行うことにより均質燃焼を実現するとともに、圧縮行程付近で燃料噴射を行うことにより成層燃焼を実現する筒内噴射式内燃機関において、
均質燃焼時における1回の吸気行程期間中に、燃焼室内への吸気の流入方向を変化させる吸気方向可変手段と、この吸気行程期間中に吸気の流入方向が異なる複数のタイミングに分けて燃料を噴射する燃料噴射制御手段と、を有し、
それぞれのタイミングで噴射された燃料を流入方向の異なる吸気の流れに乗せて燃焼室に拡散させることを特徴とする筒内噴射式内燃機関。
A fuel injection valve that directly injects fuel into the combustion chamber is arranged on the intake side, and realizes homogeneous combustion by injecting fuel near the intake stroke, and realizes stratified combustion by injecting fuel near the compression stroke In a cylinder injection internal combustion engine,
The intake direction changing means for changing the inflow direction of the intake air into the combustion chamber during one intake stroke period during homogeneous combustion, and the fuel is divided into a plurality of timings in which the inflow direction of the intake air is different during the intake stroke period. and fuel injection control means for injecting, the possess,
An in-cylinder injection internal combustion engine characterized in that fuel injected at each timing is diffused in a combustion chamber on an intake air flow having a different inflow direction .
上記吸気方向可変手段が、吸気ポートの燃焼室側の開口縁部の周方向一部分に切欠形成された切欠部を有し、均質燃焼時に、吸気弁の低リフト時に主に上記切欠部を通って燃焼室内へ流入する吸気の流入方向が、高リフト時における吸気の流入方向と異なるように設定したことを特徴とする請求項1に記載の筒内噴射式内燃機関。The intake direction changing means has a notch formed in a part in the circumferential direction of the opening edge on the combustion chamber side of the intake port, and passes through the notch mainly during homogeneous combustion and during low lift of the intake valve. 2. The direct injection internal combustion engine according to claim 1, wherein an inflow direction of intake air flowing into the combustion chamber is set to be different from an inflow direction of intake air during high lift. 吸気ポートの途中に設けられた吸気遮断弁と、吸気ポートの吸気遮断弁の上流側と下流側とをバイパスするバイパス通路と、を有し、
上記吸気遮断弁で吸気ポートを遮断した均質リーン燃焼時に、吸気弁の低リフト時に上記切欠部を通って燃焼室内へ流入する吸気の流入方向と、高リフト時に主にバイパス通路を通って燃焼室へ流入する吸気の流入方向とが互いに異なるように設定したことを特徴とする請求項2に記載の筒内噴射式内燃機関。
An intake cutoff valve provided in the middle of the intake port, and a bypass passage that bypasses the upstream side and the downstream side of the intake cutoff valve of the intake port,
During homogeneous lean combustion with the intake port shut off by the intake shut-off valve, the direction of intake air flowing into the combustion chamber through the notch when the intake valve is lifted low, and the combustion chamber mainly through the bypass passage at high lift 3. The direct injection internal combustion engine according to claim 2, wherein the inflow directions of intake air flowing into the engine are set to be different from each other.
各燃焼室の吸気側に一対の吸気ポートが開口しており、かつ、上記燃料噴射弁がシリンダ軸方向視で両吸気ポートの間に配置され、
一方の吸気ポートに吸気遮断弁が設けられるとともに、他方の吸気ポートの開口縁部に上記切欠部が形成され、
上記吸気遮断弁で一方の吸気ポートを遮断した均質リーン燃焼時に、吸気弁の低リフト時に上記切欠部を通って燃焼室内へ流入する吸気の流入方向と、高リフト時に主に他方の吸気ポートを通って燃焼室へ流入する吸気の流入方向とが互いに異なるように設定したことを特徴とする請求項2に記載の筒内噴射式内燃機関。
A pair of intake ports are opened on the intake side of each combustion chamber, and the fuel injection valve is disposed between both intake ports as viewed in the cylinder axial direction.
An intake shut-off valve is provided at one intake port, and the notch is formed at the opening edge of the other intake port.
During homogeneous lean combustion in which one intake port is shut off by the intake shut-off valve, the direction of intake air flowing into the combustion chamber through the notch when the intake valve is lifted low, and the other intake port mainly during high lift 3. The direct injection internal combustion engine according to claim 2, wherein the inflow directions of the intake air flowing into the combustion chamber are different from each other.
各燃焼室の吸気側に一対の吸気ポートが開口しており、かつ、上記燃料噴射弁がシリンダ軸方向視で両吸気ポートの間に配置され、
両吸気ポートの開口縁部に上記切欠部がそれぞれ形成され、各切欠部は、高リフト時における吸気の流入方向と略逆方向となる周方向一部分に形成されていることを特徴とする請求項2に記載の筒内噴射式内燃機関。
A pair of intake ports are opened on the intake side of each combustion chamber, and the fuel injection valve is disposed between both intake ports as viewed in the cylinder axial direction.
The notch is formed at each opening edge of both intake ports, and each notch is formed in a portion in the circumferential direction that is substantially opposite to the inflow direction of intake air during high lift. 2. The cylinder injection internal combustion engine according to 2.
JP24954199A 1999-09-03 1999-09-03 In-cylinder internal combustion engine Expired - Lifetime JP3719060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24954199A JP3719060B2 (en) 1999-09-03 1999-09-03 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24954199A JP3719060B2 (en) 1999-09-03 1999-09-03 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001073855A JP2001073855A (en) 2001-03-21
JP3719060B2 true JP3719060B2 (en) 2005-11-24

Family

ID=17194532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24954199A Expired - Lifetime JP3719060B2 (en) 1999-09-03 1999-09-03 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3719060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500409B1 (en) * 2005-09-20 2007-05-15 Avl List Gmbh Internal combustion engine
JP5537049B2 (en) * 2009-03-06 2014-07-02 日立オートモティブシステムズ株式会社 In-cylinder injection spark ignition engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186373B2 (en) * 1993-10-18 2001-07-11 トヨタ自動車株式会社 In-cylinder injection spark ignition engine
JP3624631B2 (en) * 1997-06-12 2005-03-02 株式会社日立製作所 Combustion control method for in-cylinder injection engine
JP3858399B2 (en) * 1997-12-11 2006-12-13 日産自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2001073855A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
US6092501A (en) Direct injection gasoline engine with stratified charge combustion and homogeneous charge combustion
US4196701A (en) Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port
JPH0821342A (en) Fuel injection type engine
JP2004124758A (en) Control device for spark ignition type engine
JPH10212980A (en) Four-cycle engine
US20050274354A1 (en) Engine induction system
US20100037853A1 (en) Intake system for an internal combustion engine
JP2004124749A (en) Exhaust device for turbocharged engine
JP3719060B2 (en) In-cylinder internal combustion engine
JP3428372B2 (en) Direct in-cylinder injection spark ignition internal combustion engine
JP3928214B2 (en) Exhaust gas recirculation system for stratified charge combustion engine
JP3896630B2 (en) Exhaust gas purification device for in-cylinder injection engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2005054676A (en) Spark ignition type engine
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JP3711941B2 (en) Control device for spark ignition engine
JP3327940B2 (en) Engine combustion control device
JP3695056B2 (en) In-cylinder direct fuel injection spark ignition engine
JP4291423B2 (en) In-cylinder fuel injection internal combustion engine
JP3639048B2 (en) In-cylinder fuel injection engine
JPS62131916A (en) Spark ignition type two cycle engine
JPS61268845A (en) Control method for air-fuel ratio in internal-combustion engine
JPH0861190A (en) Fuel injection type engine
JPS6131300B2 (en)
JPS6193229A (en) Suction device for internal-combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Ref document number: 3719060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term