JP3718917B2 - Abnormality detection method for fuel cell power generator - Google Patents

Abnormality detection method for fuel cell power generator Download PDF

Info

Publication number
JP3718917B2
JP3718917B2 JP24448296A JP24448296A JP3718917B2 JP 3718917 B2 JP3718917 B2 JP 3718917B2 JP 24448296 A JP24448296 A JP 24448296A JP 24448296 A JP24448296 A JP 24448296A JP 3718917 B2 JP3718917 B2 JP 3718917B2
Authority
JP
Japan
Prior art keywords
water
fuel
fuel cell
thermometer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24448296A
Other languages
Japanese (ja)
Other versions
JPH1092452A (en
Inventor
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP24448296A priority Critical patent/JP3718917B2/en
Publication of JPH1092452A publication Critical patent/JPH1092452A/en
Application granted granted Critical
Publication of JP3718917B2 publication Critical patent/JP3718917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電装置の運転に際して用いられる冷却水やガスの異常検知方法に関する。
【0002】
【従来の技術】
図2は、リン酸型水冷式燃料電池を用いた従来の燃料電池発電装置の燃料ガス供給系、空気供給系、ならびに冷却水系の基本構成を示す模式図である。
模式的に表示した燃料電池本体1は、リン酸を保持した電解質層を燃料極と空気極で挟持して形成した単セルを積層して構成されており、複数層ごとに発電に伴う発熱を除去する冷却板が介装されている。燃料電池本体1の燃料極へは、原燃料を水添脱硫器4で脱硫し、エゼクタポンプ3で水蒸気と混合し、燃料改質器2で改質された水素濃度の高い燃料ガスが供給される。すなわち、原燃料を水添脱硫器4に導入し、水素を添加して付臭剤として原燃料に含まれている硫黄を吸着除去したのち、エゼクタポンプ3において水蒸気分離器5より送られる水蒸気と混合し、燃料改質器2に送って加熱して触媒反応によって水素濃度の高い燃料ガスを生成し、燃料極へと供給している。なお、燃料ガスを燃料極へと供給する配管には、水添脱硫器4に導入する原燃料に燃料ガスの一部を再循環させて混合するためのリサイクルガス回路が接続されており、再循環させた燃料ガスに含まれる水素を水添脱硫器4における脱硫に有効利用するよう構成されている。また、燃料改質器2の燃焼器に、燃料極より反応に寄与しないで排出される残存水素を含む燃料極オフガスと外部よりブロアによって供給される燃焼空気を導入して燃焼させることにより、燃料改質器2の通流ガスを加熱している。一方、燃料電池本体1の空気極へは、反応空気をブロアで取り込んで供給している。空気極より排出される空気極オフガスには、電気化学反応に伴って生じた反応生成水が含まれ、また燃料改質器2の燃焼器より排出される燃焼排ガスには燃焼に伴って生じた燃焼生成水が含まれている。したがって、空気極オフガスと燃焼排ガスは生成水回収装置7へ送って生成水を回収したのち外部へ排出するよう構成されている。
【0003】
燃料電池本体の冷却板には水蒸気分離器5より冷却水を供給して、発電に伴って発生する熱を除去し、燃料電池本体の温度を所定の運転温度に維持している。冷却板において発熱を受け、高温となった冷却水は、冷却水冷却器6により冷却したのち、水蒸気分離器5に戻して水蒸気と水とに分離される。なお、冷却水冷却器6の冷却によって得た熱は外部に取り出し有効利用される。水蒸気分離器5で分離された水蒸気は、前述のようにエゼクタポンプ3に送られ改質に用いられる。また、エゼクタポンプ3への水蒸気の供給により減少する水量を補うため、生成水回収装置7で回収された生成水を水処理装置8で純化して導入している。さらに、水蒸気分離器5には、貯留された水をブローダウンして生成水回収装置7へと送るブローダウン回路が備えられており、貯留水をブローダウン回路より生成水回収装置7へと送り、水処理装置8で純化して水蒸気分離器5に戻すことにより、貯留水の水質低下を防止している。
【0004】
【発明が解決しようとする課題】
図2の構成の燃料電池発電装置において、水蒸気分離器5の貯留水をブローダウンするブローダウン回路、および燃料ガスの一部を再循環させるリサイクルガス回路には、運転時、常に負荷に見合った流量の水あるいはガスが流れている必要がある。したがって、これらの回路には図示されていない固定絞りが組み込まれ、これによって流量を確保するよう構成されている。
【0005】
ところが、長時間にわたり運転を継続すると、各流体に含まれる固形物あるいは析出物が上記の固定絞りに付着し、流量が減少したり、最悪の場合には流れが停止してしまう危険性がある。ブローダウン回路の流量が不足すると、冷却水循環系の不純物が濃縮されて水蒸気分離器5の貯留水の水質が悪化し、エゼクタポンプ3に送られる水蒸気にも不純物が含まれ、エゼクタポンプ3の性能低下をもたらすこととなる。また、リサイクルガス回路の流量が不足すると、水添脱硫器4の水素量が不足して脱硫性能が低下し、硫黄が燃料改質器2へと漏出し改質触媒を被毒させて改質性能の低下をもたらすこととなる。
【0006】
したがって、従来の燃料電池発電装置においては、各回路に流量計10、および流量計9を組み込み、流量を測定して流量の減少を検知し、上記のごとき事態を引き起こさないよう事前に対処する方策を採っている。
しかしながら、このように流量計で流量を監視し異常を検知する場合、定期的に流量計を監視する方法を用いれば、人手が掛かって非効率的であり、発振器付きの流量計を組み込んで信号を制御装置に取り込み、その値より警報信号を発するように構成して監視することとすれば、高価な流量計を用いることが必要となり、コストが高くなるという難点がある。
【0007】
本発明の目的は、上記のごとき従来技術の難点を解消して、ブローダウン回路、あるいはリサイクルガス回路の流量の低下が、安価に、かつ容易に検知できる燃料電池発電装置の異常検知方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては(1)冷却水を通流する冷却板を介装してなる燃料電池本体と、前記冷却板から排出される高温の冷却水を導入して水蒸気と水とに分離して、原燃料を燃料ガスに改質して前記燃料電池本体に供給する燃料改質器に前記水蒸気を供給すると共に前記水を前記冷却板に供給する水蒸気分離器と、燃料電池本体の空気極オフガス及び燃料改質器の燃焼排ガス中に含まれる生成水を回収する生成水回収装置とを備え、前記生成水回収装置で回収した生成水を水処理装置で純化して水蒸気分離器に導入する燃料電池発電装置の異常検知方法において、前記水蒸気分離器の内部の貯留水を前記生成水回収装置に吐出させるブローダウン回路に設けられた温度計の指示値が所定範囲より離脱することにより、ブローダウン水の流量の異常を検知することとする。
【0009】
(2)また、原燃料を導入して含まれる硫黄を水素を添加して脱硫する脱硫器と、燃料電池本体に介装された冷却板から排出される高温の冷却水を導入して水蒸気と水とに分離して水を前記冷却板に供給する水蒸気分離器からの水蒸気と前記脱硫された原燃料とを混合するエゼクタポンプと、水蒸気と混合された原燃料を導入して水素濃度の高い燃料ガスに改質する燃料改質器を備え、かつ、脱硫器に導入する原燃料に燃料改質器で得られた燃料ガスの一部を混合し、含まれる水素を脱硫に用いるリサイクルガス回路を備えた燃料電池発電装置の異常検知方法において、
前記リサイクルガス回路に設けられた温度計の指示値が所定範囲より離脱することによりリサイクルガスの流量の異常を検知することを特徴とする燃料電池発電装置の異常検知方法。
【0010】
(3)さらに、上記(1)(2)において、前記温度計を設けた回路の前記温度計の上流側に、前記回路の放熱を促進する放熱手段を設け、前記温度計の指示値が所定範囲より離脱することにより流量の異常を検知することとする。
ブローダウン回路に流れるブローダウン水の流量、あるいはリサイクルガス回路に流れるリサイクルガスの流量が正常であれば、回路に組み込まれた温度計は正常値、例えば通常のリン酸型水冷式燃料電池を備えた燃料電池発電装置においては 100〜160 ℃を示す。これに対して、なんらかの原因によって回路を流れる流量が低下すると、回路に持ち込まれる流体の熱量と回路の壁面からの放熱量のバランスによって温度測定点の温度が低下し、温度計の指示値が下がることとなる。
【0011】
したがって、上記の(1)のごとくとすれば、温度計の指示値によってリサイクルガスの流量の変動が検出でき、温度計の指示値が所定の正常範囲より離脱するか否かにより流量の異常を検知することができる。また、上記の(2)のごとくとすれば、温度計の指示値によってブローダウン水の流量の変動が検出でき、温度計の指示値が所定の正常範囲より離脱するか否かにより流量の異常を検知することができる。さらに(3)のごとくとすれば、放熱手段によって回路の壁面からの放熱量が増加するので、流量低下時のバランスの変化が大きくなって、流量低下がより感度よく検出されることとなる。
【0012】
【発明の実施の形態】
図1は、本発明による燃料電池発電装置の異常検知方法の実施例を示すリン酸型水冷式燃料電池を用いた燃料電池発電装置の燃料ガス供給系、空気供給系、ならびに冷却水系の基本構成の模式図である。本図において、図2に示した従来の基本構成に用いられているものと同一の機能を有する構成部品には同一の符号が付されており、重複する説明は省略する。
【0013】
本図に示した実施例の特徴は、水蒸気分離器5に備えた内部の貯留水を吐出させるためのブローダウン回路に、従来例の流量計10に代わって、温度計21が備えられ、さらに温度計21の上流側に回路の放熱手段として放熱フィン22が備えられていること、また、燃料改質器で得られた燃料ガスの一部を脱硫器へと再循環させるにリサイクルガス回路に、従来例の流量計9に代わって、温度計11が備えられ、さらに温度計11の上流側に回路の放熱手段として放熱フィン12が備えられていることにある。
【0014】
したがって、本構成においては、何らかの原因によりブローダウン回路を流れるブローダウン水の流量が減少すれば、放熱とのバランスにより温度計21の指示値が大幅に低下するので、温度計21の指示値が所定の範囲より離脱するか否かによって、ブローダウン水の流量の異常が検知できる。また同様に、リサイクルガス回路においても、リサイクルガスの流量が減少すれば、放熱とのバランスにより温度計11の指示値が大幅に低下するので、温度計11の指示値が所定の範囲より離脱するか否かによって、リサイクルガスの流量の異常が検知できる。本構成に用いられる温度計21、および温度計11は、従来例で採用されている発振器付きの流量計に比べて格段に安価であり、また簡単な制御装置で温度異常、すなわち流量異常が検知できるので、本構成の構成の検知手段を用いて監視すれば、安価で、かつ手間をかけず簡単に異常が検知される。
【0015】
なお、図1においては、ブローダウン回路とリサイクルガス回路の双方に温度計を組み込んで異常を検知することとしているが、一方の回路にのみ温度計を組み込んでその回路の流量異常を検知することとしてもよい。また、放熱フィン12、22のごとき放熱手段を組み込めば感度よく流量異常を検知できるが、特に放熱手段を組み込まなくとも、流量が低下すれば温度が低下するので、流量異常が検知できることは例示するまでもなく明らかである。
【0016】
【発明の効果】
上述のように、本発明においては、
(1)請求項1に記載のごとき方法を用いることとしたので、ブローダウン回路の流量の低下が、安価に、かつ容易に検知できることとなった。
(2)また、請求項2に記載のごとき方法を用いることとしたので、リサイクルガス回路の流量の低下が、安価に、かつ容易に検知できることとなった。
【0017】
(3)さらに、請求項3に記載のごとくとすれば、より感度よく流量の低下が検知されるので、安価に、かつ容易に流量の異常を検知する方法として、より好適である。
【図面の簡単な説明】
【図1】本発明による燃料電池発電装置の異常検知方法の実施例を示す燃料電池発電装置の燃料ガス供給系、空気供給系、ならびに冷却水系の基本構成の模式図
【図2】従来の燃料電池発電装置の燃料ガス供給系、空気供給系、ならびに冷却水系の基本構成を示す模式図
【符号の説明】
1 燃料電池本体
2 燃料改質器
3 エゼクタポンプ
4 水添脱硫器
5 水蒸気分離器
6 冷却水冷却器
7 生成水回収器
8 水処理装置
11 温度計
12 放熱フィン
21 温度計
22 放熱フィン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling water or gas abnormality detection method used when operating a fuel cell power generator.
[0002]
[Prior art]
FIG. 2 is a schematic diagram showing a basic configuration of a fuel gas supply system, an air supply system, and a cooling water system of a conventional fuel cell power generator using a phosphoric acid type water-cooled fuel cell.
The fuel cell main body 1 schematically shown is configured by laminating a single cell formed by sandwiching an electrolyte layer holding phosphoric acid between a fuel electrode and an air electrode, and generates heat generated by power generation for each of the plurality of layers. A cooling plate to be removed is interposed. The fuel electrode of the fuel cell main body 1 is supplied with fuel gas having a high hydrogen concentration, which is desulfurized by a hydrodesulfurizer 4, mixed with water vapor by an ejector pump 3, and reformed by the fuel reformer 2. The That is, after introducing the raw fuel into the hydrodesulfurizer 4 and adding hydrogen to adsorb and remove sulfur contained in the raw fuel as an odorant, the steam sent from the steam separator 5 in the ejector pump 3 The fuel gas is mixed, sent to the fuel reformer 2 and heated to produce a fuel gas with a high hydrogen concentration by a catalytic reaction, which is supplied to the fuel electrode. The pipe for supplying the fuel gas to the fuel electrode is connected to a recycle gas circuit for recirculating and mixing a part of the fuel gas to the raw fuel introduced into the hydrodesulfurizer 4. Hydrogen contained in the circulated fuel gas is effectively used for desulfurization in the hydrodesulfurizer 4. Further, by introducing into the combustor of the fuel reformer 2 the fuel electrode off-gas containing residual hydrogen discharged without contributing to the reaction from the fuel electrode and the combustion air supplied from the outside by the blower, The flow gas of the reformer 2 is heated. On the other hand, reaction air is taken in and supplied to the air electrode of the fuel cell main body 1 by a blower. The air electrode off-gas discharged from the air electrode contains reaction product water generated by the electrochemical reaction, and the combustion exhaust gas discharged from the combustor of the fuel reformer 2 is generated by combustion. Contains combustion-generated water. Therefore, the air electrode off gas and the combustion exhaust gas are configured to be sent to the generated water recovery device 7 to recover the generated water and then discharged to the outside.
[0003]
Cooling water is supplied from the water vapor separator 5 to the cooling plate of the fuel cell main body to remove heat generated during power generation, and the temperature of the fuel cell main body is maintained at a predetermined operating temperature. The cooling water that has received heat and has reached a high temperature in the cooling plate is cooled by the cooling water cooler 6 and then returned to the water vapor separator 5 to be separated into water vapor and water. In addition, the heat obtained by cooling the cooling water cooler 6 is taken out and used effectively. The water vapor separated by the water vapor separator 5 is sent to the ejector pump 3 and used for reforming as described above. Further, in order to compensate for the amount of water that is reduced by the supply of water vapor to the ejector pump 3, the generated water recovered by the generated water recovery device 7 is purified and introduced by the water treatment device 8. Further, the steam separator 5 is provided with a blowdown circuit that blows down the stored water and sends it to the generated water recovery device 7, and sends the stored water from the blowdown circuit to the generated water recovery device 7. The water treatment device 8 is purified and returned to the water vapor separator 5 to prevent the water quality from deteriorating.
[0004]
[Problems to be solved by the invention]
In the fuel cell power generator of the configuration of FIG. 2, the blow-down circuit for blowing down the water stored in the water vapor separator 5 and the recycle gas circuit for recirculating a part of the fuel gas always meet the load during operation. There must be a flow of water or gas. Accordingly, a fixed restrictor (not shown) is incorporated in these circuits, thereby ensuring a flow rate.
[0005]
However, if the operation is continued for a long time, there is a risk that solids or precipitates contained in each fluid adhere to the fixed restrictor and the flow rate is reduced or the flow stops in the worst case. . If the flow rate of the blow-down circuit is insufficient, impurities in the cooling water circulation system are concentrated and the quality of the stored water in the water vapor separator 5 deteriorates, and the water vapor sent to the ejector pump 3 contains impurities, and the performance of the ejector pump 3 is reduced. Will result in a decline. In addition, when the flow rate of the recycle gas circuit is insufficient, the amount of hydrogen in the hydrodesulfurizer 4 is insufficient and the desulfurization performance is reduced, and sulfur leaks to the fuel reformer 2 to poison the reforming catalyst and reform. The performance will be reduced.
[0006]
Therefore, in the conventional fuel cell power generator, the flow meter 10 and the flow meter 9 are incorporated in each circuit, the flow rate is measured to detect a decrease in the flow rate, and measures are taken in advance so as not to cause the above situation. Is adopted.
However, when monitoring the flow rate with a flow meter and detecting anomalies in this way, using the method of periodically monitoring the flow meter is inefficient and labor intensive, and a signal with a built-in flow meter with an oscillator is used. If the control device is configured to monitor and the alarm signal is generated from the value, it is necessary to use an expensive flow meter, which increases the cost.
[0007]
An object of the present invention is to provide a fuel cell power generation apparatus abnormality detection method that can easily and inexpensively detect a decrease in the flow rate of a blow-down circuit or a recycle gas circuit by solving the problems of the prior art as described above. There is to do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, (1) a fuel cell body having a cooling plate through which cooling water flows and a high-temperature cooling water discharged from the cooling plate are introduced. A steam separator for separating the steam into water and reforming the raw fuel into fuel gas and supplying the steam to a fuel reformer that supplies the fuel cell body and supplying the water to the cooling plate; And a product water recovery device that recovers the product water contained in the air electrode off-gas of the fuel cell main body and the combustion exhaust gas of the fuel reformer, and the product water recovered by the product water recovery device is purified by a water treatment device. In the method for detecting an abnormality of the fuel cell power generator introduced into the steam separator, the indicated value of the thermometer provided in the blow-down circuit for discharging the stored water inside the steam separator to the generated water recovery device is within a predetermined range. By leaving more And to detect an abnormality of the flow rate of blowdown.
[0009]
(2) In addition, desulfurizer that introduces raw fuel and adds sulfur to desulfurize sulfur, and high-temperature cooling water discharged from a cooling plate interposed in the fuel cell main body, Ejector pump that mixes water vapor from a water vapor separator that supplies water to the cooling plate after being separated into water and the desulfurized raw fuel, and a high hydrogen concentration by introducing the raw fuel mixed with water vapor A recycle gas circuit comprising a fuel reformer for reforming into fuel gas, mixing a part of the fuel gas obtained by the fuel reformer with the raw fuel introduced into the desulfurizer, and using the contained hydrogen for desulfurization In an abnormality detection method for a fuel cell power generation device comprising:
An abnormality detection method for a fuel cell power generation apparatus, wherein an abnormality in a flow rate of a recycle gas is detected when an indication value of a thermometer provided in the recycle gas circuit departs from a predetermined range.
[0010]
(3) Further, in (1) and (2) above, a heat dissipating means for promoting heat dissipating in the circuit is provided on the upstream side of the thermometer of the circuit provided with the thermometer, and the indicated value of the thermometer is predetermined. An abnormality in the flow rate is detected by moving away from the range.
If the flow rate of the blowdown water flowing in the blowdown circuit or the flow rate of the recycle gas flowing in the recycle gas circuit is normal, the thermometer incorporated in the circuit has a normal value, for example, a normal phosphoric acid type water cooled fuel cell. In fuel cell power generators, the temperature is 100 to 160 ° C. On the other hand, when the flow rate flowing through the circuit decreases due to some cause, the temperature at the temperature measurement point decreases due to the balance between the amount of heat of the fluid brought into the circuit and the amount of heat released from the wall surface of the circuit, and the indicated value of the thermometer decreases. It will be.
[0011]
Therefore, as described in (1) above, fluctuations in the flow rate of the recycle gas can be detected based on the indicated value of the thermometer, and an abnormality in the flow rate is determined depending on whether or not the indicated value of the thermometer deviates from a predetermined normal range. Can be detected. Further, if the above (2) is taken, it is possible to detect fluctuations in the flow rate of the blow-down water based on the indicated value of the thermometer, and an abnormal flow rate depends on whether or not the indicated value of the thermometer deviates from a predetermined normal range. Can be detected. Further, as in (3), the amount of heat radiation from the wall surface of the circuit is increased by the heat radiating means, so that the change in the balance when the flow rate decreases is increased, and the flow rate decrease is detected with higher sensitivity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a basic configuration of a fuel gas supply system, an air supply system, and a cooling water system of a fuel cell power generation apparatus using a phosphoric acid type water-cooled fuel cell, showing an embodiment of a fuel cell power generation apparatus abnormality detection method according to the present invention. FIG. In this figure, components having the same functions as those used in the conventional basic configuration shown in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
[0013]
A feature of the embodiment shown in the figure is that a blow-down circuit for discharging the internal stored water provided in the steam separator 5 is provided with a thermometer 21 instead of the conventional flow meter 10, In the recycle gas circuit, the heat dissipating fins 22 are provided on the upstream side of the thermometer 21 as a circuit heat dissipating means, and a part of the fuel gas obtained by the fuel reformer is recirculated to the desulfurizer. Instead of the conventional flow meter 9, a thermometer 11 is provided, and a heat radiating fin 12 is provided on the upstream side of the thermometer 11 as a heat radiating means of the circuit.
[0014]
Therefore, in this configuration, if the flow rate of the blowdown water flowing through the blowdown circuit is reduced for some reason, the indicated value of the thermometer 21 is significantly reduced due to the balance with heat dissipation. An abnormality in the flow rate of the blow-down water can be detected depending on whether or not it departs from the predetermined range. Similarly, in the recycle gas circuit, if the flow rate of the recycle gas is reduced, the indicated value of the thermometer 11 is significantly reduced due to the balance with heat dissipation, so that the indicated value of the thermometer 11 departs from a predetermined range. Whether or not the recycle gas flow rate is abnormal can be detected. The thermometer 21 and the thermometer 11 used in this configuration are much cheaper than the flowmeter with an oscillator employed in the conventional example, and a temperature abnormality, that is, a flow abnormality is detected by a simple control device. Therefore, if monitoring is performed using the detection means having the configuration of this configuration, an abnormality can be easily detected at a low cost and with little effort.
[0015]
In FIG. 1, a thermometer is incorporated in both the blowdown circuit and the recycle gas circuit to detect an abnormality, but a thermometer is incorporated only in one circuit to detect an abnormal flow rate in that circuit. It is good. In addition, the flow rate abnormality can be detected with high sensitivity if a heat radiating means such as the heat radiating fins 12 and 22 is incorporated. However, even if the heat radiating means is not particularly incorporated, the temperature decreases if the flow rate decreases, so that the flow rate abnormality can be detected. It will be clear soon.
[0016]
【The invention's effect】
As described above, in the present invention,
(1) Since the method as described in claim 1 is used, a decrease in the flow rate of the blow-down circuit can be easily detected at low cost.
(2) Since the method as described in claim 2 is used, a decrease in the flow rate of the recycle gas circuit can be detected at low cost and easily.
[0017]
(3) Furthermore, if it is as described in Claim 3, since the fall of a flow volume is detected more sensitively, it is more suitable as a method of detecting the abnormality of a flow volume cheaply and easily.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the basic configuration of a fuel gas supply system, an air supply system, and a cooling water system of a fuel cell power generation apparatus showing an embodiment of an abnormality detection method for a fuel cell power generation apparatus according to the present invention. Schematic diagram showing the basic configuration of the fuel gas supply system, air supply system, and cooling water system of the battery power generation system.
DESCRIPTION OF SYMBOLS 1 Fuel cell main body 2 Fuel reformer 3 Ejector pump 4 Hydrodesulfurizer 5 Steam separator 6 Cooling water cooler 7 Generated water collector 8 Water treatment device 11 Thermometer 12 Radiation fin 21 Thermometer 22 Radiation fin

Claims (3)

冷却水を通流する冷却板を介装してなる燃料電池本体と、前記冷却板から排出される高温の冷却水を導入して水蒸気と水とに分離して、原燃料を燃料ガスに改質して前記燃料電池本体に供給する燃料改質器に前記水蒸気を供給すると共に前記水を前記冷却板に供給する水蒸気分離器と、燃料電池本体の空気極オフガス及び燃料改質器の燃焼排ガス中に含まれる生成水を回収する生成水回収装置とを備え、前記生成水回収装置で回収した生成水を水処理装置で純化して水蒸気分離器に導入する燃料電池発電装置の異常検知方法において、
前記水蒸気分離器の内部の貯留水を前記生成水回収装置に吐出させるブローダウン回路に設けられた温度計の指示値が所定範囲より離脱することにより、ブローダウン水の流量の異常を検知することを特徴とする燃料電池発電装置の異常検知方法。
A fuel cell body that is provided with a cooling plate through which cooling water flows, and high-temperature cooling water discharged from the cooling plate are introduced and separated into water vapor and water, and the raw fuel is converted into fuel gas. the water vapor separator supplied to the cooling plate, the cathode off-gas and the fuel reformer of the combustion exhaust gas of the fuel cell body to the water with and quality supplying the steam to the fuel reformer for supplying to the fuel cell body In a method for detecting an abnormality in a fuel cell power generation apparatus, comprising: a generated water recovery device that recovers generated water contained therein, wherein the generated water recovered by the generated water recovery device is purified by a water treatment device and introduced into a steam separator ,
Detecting an abnormality in the flow rate of blowdown water when an indication value of a thermometer provided in a blowdown circuit that discharges the stored water inside the water vapor separator to the generated water recovery device deviates from a predetermined range. An abnormality detection method for a fuel cell power generator characterized by the above.
原燃料を導入して含まれる硫黄を水素を添加して脱硫する脱硫器と、燃料電池本体に介装された冷却板から排出される高温の冷却水を導入して水蒸気と水とに分離して水を前記冷却板に供給する水蒸気分離器からの水蒸気と前記脱硫された原燃料とを導入して混合するエゼクタポンプと、水蒸気と混合された原燃料を導入して水素濃度の高い燃料ガスに改質する燃料改質器を備え、かつ、脱硫器に導入する原燃料に燃料改質器で得られた燃料ガスの一部を混合し、含まれる水素を脱硫に用いるリサイクルガス回路を備えた燃料電池発電装置の異常検知方法において、
前記リサイクルガス回路に設けられた温度計の指示値が所定範囲より離脱することによりリサイクルガスの流量の異常を検知することを特徴とする燃料電池発電装置の異常検知方法。
A desulfurizer that introduces raw fuel and desulfurizes the sulfur contained in it by adding hydrogen, and high-temperature cooling water discharged from a cooling plate interposed in the fuel cell body is introduced to separate water vapor and water. An ejector pump that introduces and mixes water vapor from a water vapor separator that supplies water to the cooling plate and the desulfurized raw fuel, and a fuel gas having a high hydrogen concentration by introducing the raw fuel mixed with water vapor Equipped with a fuel reformer that reforms the fuel, and a recycle gas circuit that mixes part of the fuel gas obtained in the fuel reformer with the raw fuel introduced into the desulfurizer and uses the hydrogen contained in the desulfurization In the fuel cell power generator abnormality detection method,
An abnormality detection method for a fuel cell power generation apparatus, wherein an abnormality in a flow rate of a recycle gas is detected when an indication value of a thermometer provided in the recycle gas circuit departs from a predetermined range.
前記温度計を設けた回路の前記温度計の上流側に、前記回路の放熱を促進する放熱手段を設け、前記温度計の指示値が所定範囲より離脱することにより流量の異常を検知することを特徴とする請求項1または2に記載の燃料電池発電装置の異常検知方法。A heat dissipating means for promoting heat dissipation of the circuit is provided upstream of the thermometer of the circuit provided with the thermometer, and an abnormal flow rate is detected when the indicated value of the thermometer deviates from a predetermined range. The abnormality detection method for a fuel cell power generator according to claim 1 or 2, characterized in that:
JP24448296A 1996-09-17 1996-09-17 Abnormality detection method for fuel cell power generator Expired - Fee Related JP3718917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24448296A JP3718917B2 (en) 1996-09-17 1996-09-17 Abnormality detection method for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24448296A JP3718917B2 (en) 1996-09-17 1996-09-17 Abnormality detection method for fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH1092452A JPH1092452A (en) 1998-04-10
JP3718917B2 true JP3718917B2 (en) 2005-11-24

Family

ID=17119331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24448296A Expired - Fee Related JP3718917B2 (en) 1996-09-17 1996-09-17 Abnormality detection method for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3718917B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914863B2 (en) * 2011-10-20 2016-05-11 パナソニックIpマネジメント株式会社 Hydrogen generator, operation method of hydrogen generator, and fuel cell system
JP5938557B2 (en) * 2012-04-03 2016-06-22 パナソニックIpマネジメント株式会社 Hydrogen generator
EP2937924B1 (en) * 2012-12-19 2018-02-07 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating fuel cell system
JP6101929B2 (en) * 2013-03-08 2017-03-29 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP6290729B2 (en) * 2014-06-30 2018-03-07 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPH1092452A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
EP1620911B1 (en) Solid oxide fuel cell with selective anode tail gas circulation
JP3739636B2 (en) Temperature monitoring and control method for fuel processor
WO1999004443A1 (en) Fuel cell power plant with electrochemical autothermal reformer
JP2012155978A (en) Fuel cell system
JP3718917B2 (en) Abnormality detection method for fuel cell power generator
RU2443040C2 (en) Fuel elements system
KR100700547B1 (en) Fuel cell system
JP2007503106A (en) Method and apparatus for removing contaminants from a hydrogen treatment carrier stream in a fuel cell generator
JP2012104321A (en) Fuel cell power generation system
JP3780714B2 (en) Fuel cell power generator
WO2015039673A1 (en) Fuel cell system and operation method thereof
JP2002280033A (en) Exhaust heat treatment method of fuel cell generator and device
JPH11283653A (en) Fuel cell power generating device and its deterioration diagnostic method
JPH11233130A (en) Fuel cell power generating facility
JP2006040553A (en) Fuel cell system
JP5316126B2 (en) Fuel cell power generator
JP2008135270A (en) Fuel cell system
JP3994324B2 (en) Fuel cell power generator
JP2002100382A (en) Fuel cell power generator
JP2837529B2 (en) Fuel cell exhaust heat utilization system degradation alarm device and degradation determination method
JP3741257B2 (en) Fuel cell power generator
JP2004002120A (en) Carbon monoxide stripping-off device
JP2011103309A (en) Fuel cell system
JP7195196B2 (en) Unburned gas monitoring method and fuel cell system
JP2011175745A (en) Fuel cell system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees