JP3718709B2 - Novel cyclobutane derivative and synthesis method thereof - Google Patents

Novel cyclobutane derivative and synthesis method thereof Download PDF

Info

Publication number
JP3718709B2
JP3718709B2 JP2000229179A JP2000229179A JP3718709B2 JP 3718709 B2 JP3718709 B2 JP 3718709B2 JP 2000229179 A JP2000229179 A JP 2000229179A JP 2000229179 A JP2000229179 A JP 2000229179A JP 3718709 B2 JP3718709 B2 JP 3718709B2
Authority
JP
Japan
Prior art keywords
allene
synthesis
cyclobutane
carbon atoms
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000229179A
Other languages
Japanese (ja)
Other versions
JP2002047215A (en
Inventor
嘉則 山本
慎一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2000229179A priority Critical patent/JP3718709B2/en
Publication of JP2002047215A publication Critical patent/JP2002047215A/en
Application granted granted Critical
Publication of JP3718709B2 publication Critical patent/JP3718709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、新規なシクロブタン誘導体およびその合成方法に係わり、特に高機能性ポリマー原料として使用できる新規なシクロブタン誘導体およびその合成方法に関する。
【0002】
【従来の技術】
ポリエチレンにおけるエチレン、あるいはテフロンにおけるテトラフルオロエチレンのように、不飽和炭化水素はポリマーをはじめとする新素材の合成原料として非常に重要である。一方、近年においては高機能性のポリマーを開発するにあたってポリマー化反応自体について検討する必要性があるのはもちろんであるが、新規なモノマーユニットを導入することも重要になりつつある。
【0003】
ところで、アレンを熱的反応により二量化してジメチレンシクロブタンを得る方法は古くから知られているが、この合成方法は反応条件が厳しい上、生成物が様々な異性体の混合物となるため、合成上の有用性は低く、生成物であるジメチレンシクロブタンを機能性ポリマー原料として利用するには実情に遠く及ばないものであった。
【0004】
【発明の課題】
本発明は、このような従来技術の問題点に鑑みなされたものであり、高機能性ポリマーをはじめとする新素材の合成原料として利用することができる新規なシクロブタン誘導体を提供することを目的とする。本発明はまた、この新規なシクロブタン誘導体を緩和な条件において高収率で合成し得る方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討した結果、様々な置換基を導入してなるシクロブタン誘導体が耐熱性、耐薬品性等の優れた特性を有する高機能性ポリマーの合成原料として有用であることを見出した。
【0006】
本発明者等はまた、この新規なシクロブタン誘導体を高機能性ポリマーの合成原料として実用に供すべくその合成方法について更なる検討を重ねた結果、置換基を有するアレン誘導体の環化二量化反応によれば緩和な条件において高収率で本発明のシクロブタン誘導体を合成することができることをも見出した。
【0007】
本発明は、かかる知見に基づき完成されたものであり、以下の構成を有する。
【0008】
すなわち、本発明は、一般式(1)で表される新規なシクロブタン誘導体を提供する。
【0009】
【化4】

Figure 0003718709
【0010】
式中、Rは炭素数1〜20のパーフルオロアルキル基(例えば、C 13 )、炭素数6〜20のパーフルオロアリール基(例えば、C )、CON(CH )C 、COC 、COC 、又はSO を表す。2個あるRは同一でも異なっていてもよい。
また、本発明は、一般式(2)
【0011】
【化5】
Figure 0003718709
【0012】
[式中、Rは炭素数1〜20のパーフルオロアルキル基(例えば、C 13 )、炭素数6〜20のパーフルオロアリール基(例えば、C )、COOC 、CON(CH )C 、COC 、COC 、又はSO を表す。]で表されるアレン誘導体を二量化することによる
一般式(1)
【0013】
【化6】
Figure 0003718709
【0014】
[式中、Rは一般式(2)におけるRと同義である。2個あるRは同一でも異なっていてもよい。]で表されるシクロブタン誘導体の合成方法を提供する。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の新規シクロブタン誘導体は下記一般式(1)で表される化合物である。
【0016】
【化7】
Figure 0003718709
【0017】
一般式(1)においてRは置換基を表し、好ましくは電子求引基である。このように置換基(好ましくは電子求引基)を導入するのは、効率的にシクロブタン環を構築できるからであり、また所望される高機能性ポリマーの特性等に応じてこれらの置換基をさらに変換することができるからである。
【0018】
本発明において導入される置換基Rの具体例としては、アルキル基、アリール基、COOR、CONR、COR、SO(R〜Rは水素原子又は置換基を表す。)等を挙げることができる。
【0019】
置換基Rについて更に詳細に説明する。Rとして前記一般式(1)に導入され得るアルキル基として、好ましくは直鎖又は分岐状の炭素数1〜20の置換もしくは無置換のアルキル基、例えばメチル、エチル、n−プロピル、i−プロピル等を挙げることができ、アリール基として好ましくは炭素数6〜20の置換もしくは無置換のアリール基、例えばフェニル、ナフチル等を挙げることができる。より好ましくは、少なくとも1個のフッ素原子を有するアルキル基、アリール基(例えばCF11、CF13等)であり、これらはフッ素原子以外に更に置換基を有していてもよい。フッ素原子を導入することにより、本発明のシクロブタンを原料として合成されるポリマーに優れた機能を付与することができる。高い汎用性という観点からはパーフルオロアルキル基もしくはパーフルオロアリール基が好ましく、例えば(CFF、Cが挙げられる。
【0020】
COORにおいて、Rは好ましくは直鎖又は分岐状の炭素数1〜20の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基であり、例えばCOOC、COOCが挙げられる。
CONRにおいて、RおよびRは各々独立に、好ましくは直鎖又は分岐状の炭素数1〜20の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基であり、例えばCON(CH)C、CON(CHが挙げられる。
【0021】
CORにおいて、Rは好ましくは直鎖又は分岐状の炭素数1〜20の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基であり、例えばCOCが挙げられる。
【0022】
SOにおいて、Rは好ましくは直鎖又は分岐状の炭素数1〜20の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基であり、例えば、SO 、SOが挙げられる。
また、Rとして表される2個の置換基は、同一でも異なっていてもよい。
【0023】
本発明のシクロブタン誘導体は、下記一般式(2)
【0024】
【化8】
Figure 0003718709
【0025】
により表されるアレン誘導体(以下、アレン1と称する)の環化二量化反応により合成することができる。一般式(2)においてRは置換基を表し、一般式(1)におけるRと同義である。
【0026】
アレン1の二量化反応により本発明のシクロブタン誘導体(以下、シクロブタン2とも称する)を合成する化学プロセスを下記に示す。
【0027】
【化9】
Figure 0003718709
【0028】
本発明の方法によるシクロブタン2の合成は、ニッケル触媒存在下に室温、あるいはそれ以下の温度で極めて短時間(好ましくは30分〜3時間)撹拌することにより行うことができる。本発明のシクロブタン誘導体は、高分子合成における優れたモノマー原料となりうる可能性がありながら、その効率的な合成方法は知られていなかったが、本発明の方法によれば、アレン1が緩和な条件において高位置選択的に二量化し、本発明のシクロブタン誘導体を高収率で得ることができる。なお、反応機構としては、下式に示すようにメタラサイクル3を経由していると考えられる。
【0029】
【化10】
Figure 0003718709
【0030】
【実施例】
以下に本発明の実施例を示す。
本実施例においては、下記スキームで表される本発明の方法にしたがって本発明のシクロブタン誘導体を合成した。但し、本発明はこれら実施例に限定されるものではない。
【0031】
【化11】
Figure 0003718709
【0032】
前記スキーム中、codはシクロオクタジエン、Phはフェニルを表す。
【0033】
(実施例1)
出発物質として、本明細書に取り入れるBurton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron Lett., 1990, 31. 3699-3702、Hung, M-H. Tetragedron Latt., 1990, 31, 3703-3706に記載された方法に準じて合成したアレン1(Rがn−C13、アレン1aと称する)を用いた。
【0034】
アルゴン雰囲気下、アレン1a(1.0mmol)の無水トルエン溶液(0.5mL)をNi(cod)(28mg、0.1mmol)及びPPh(105mg、0.4mmol)の無水トルエン溶液(0.5mL)に加え、室温にて30分間撹拌した後、アルミナの短いカラムに通し、次いで溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン、あるいはヘキサン:酢酸エチル)にて精製したところ、79%の収率で無色の液体が得られた。
【0035】
以下に示す分析結果から、本合成例で得られた生成物は、1,2−ビス(2,2,3,3,4,4,5,5,6,6,7,7,7−トリデカフルオロ−ヘプチリデン)シクロブタン(2a)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0036】
【化12】
Figure 0003718709
【0037】
H NMR :δ 5.82(t,J=13.9Hz,2H),3.03(bs,4H)
13C NMR:δ 107.5−119.6(m),152.2,108.7,28.9
IR(neat) :2997,2955,1674,1420,1366,1342,1313,1240,1202,1146,1121,1078,1063,978,853,814,735cm−1
1826についての元素分析
計算値:C,30.19; H,0.84
実測値:C,30.25; H,0.92
(実施例2)
出発物質として、本明細書に取り入れるBurton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron Lett., 1990, 31. 3699-3702、Hung, M-H. Tetragedron Lett., 1990, 31, 3703-3706、Cairncross, A.; Sheppard, W. A.; Wonchoba, E. Org. Syn., Coll. Vol. 6, 1988, 875-882に記載された方法に準じて合成したアレン1(RがC、アレン1bと称する)を用いた。
【0038】
出発物質としてアレン1bを用いた以外は実施例1と同様の条件で合成を行った結果、81%の収率で無色の針状結晶(EtO−ヘキサンより再結晶)が得られた。
【0039】
以下に示す分析結果から、本合成例で得られた生成物は、1,2−ビス(2,3,4,5,6−ペンタフルオロフェニリデン)シクロブタン(2b)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0040】
【化13】
Figure 0003718709
【0041】
融点 :133−135℃
H NMR :δ 6.57(s,2H),2.85(s,4H)
13C NMR :δ 149.8,144.4(t,JC−F=246Hz),140.2(t,JC−F=254Hz),137.7(t,JC−F=251Hz),111.0,104.4,29.0
IR(KBr):2991,2969,2943,1652,1520,1494,1414,1375,1352,1306,1150,1126,1080,1038,1005,970,945,929,875,853,799,722cm−1
1810についての元素分析
計算値:C,52.45; H,1.47
実測値:C,52.41; H,1.76
1810についてのHRMS
計算値:412.0309
計算値:412.0282
(実施例3)
出発物質として、本明細書に取り入れるJung, M. E.; Nishimura, N. J. Am. Chem. Soc., 1999, 121, 3529-3530に記載された方法に準じて合成したアレン1(RがCOOC、アレン1cと称する)を用いた。
【0042】
出発物質としてアレン1cを用い、撹拌時の温度を−15〜−10℃とした以外は実施例1と同様の条件で合成を行った結果、71%の収率で無色の粉末が得られた。
【0043】
以下に示す分析結果から、本合成例で得られた生成物は、エチル(2−エトキシカルボニルメチレンシクロブチリデン)アセテート(2c)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0044】
【化14】
Figure 0003718709
【0045】
融点 :66−68℃
H NMR :δ 5.99(s,2H),4.15(q、J=7.2Hz,4H),3.08(s,4H),1.25(t,J=7.2Hz,6H)
13C NMR :δ 166.0,158.6,112.1,60.3,30.6,14.2
IR(KBr) :2983,2946,2909,1711,1692,1648,1476,1448,1370,1338,1231,1217,1187,1124,1034,1016,867,818cm−1
1216についての元素分析
計算値:C,64.27; H,7.19
実測値:C,64.06; H,7.31
1216についてのHRMS
計算値:224.1048
計算値:224.1037
(実施例4)
出発物質として、本明細書に取り入れるDiehl, K.; Himbert, G; Henn, L. Chem. Ber., 1986, 119, 2430-2443に記載された方法に準じて合成したアレン1(RがCON(CH)Ph、アレン1dと称する)を用いた。
【0046】
出発物質としてアレン1dを用い、撹拌を0℃で2時間行った以外は実施例1と同様の条件で合成を行った結果、66%の収率で無色の粉末が得られた。
【0047】
以下に示す分析結果から、本合成例で得られた生成物は、N−メチル−2−{2−[(メチルフェニルカルバモイル)メチレン]シクロブチリデン}−N−フェニルアセトアミド(2d)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0048】
【化15】
Figure 0003718709
【0049】
融点 :166−168℃
H NMR :δ 7.14−7.27(m,6H),7.01(q,J=7.0Hz,4H),5.54(s,2H),3.20(s,6H),3.07(s,4H)
13C NMR :δ 165.7,156.6,143.5,129.3,127.2,126.9,11.0,36.9,30.9
IR(KBr) :2989,2935,1657,1623,1610,1594,1496,1405,1374,1266,1111,834,776,703cm−1
2222についてのHRMS
計算値:346.1680
計算値:346.1694
(実施例5)
出発物質として、本明細書に取り入れるBrandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: Amsterdam, 1981; Chapter 4, pp. 101-102、同Chapter 8, pp.236に記載された方法に準じて合成したアレン1(RがCOC、アレン1eと称する)を用いた。
【0050】
出発物質としてアレン1eを用い、撹拌を−15〜−10℃で3時間行った以外は実施例1と同様の条件で合成を行った結果、34%の収率で淡黄色の粉末が得られた。
【0051】
以下に示す分析結果から、本合成例で得られた生成物は、1−[2−(2−オキソブチリデン)シクロブチリデン]−ブタン−2−オン(2e)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0052】
【化16】
Figure 0003718709
【0053】
融点 :63−65℃
H NMR :δ 6.21(s,2H),2.98(s,4H),2.37(q、J=7.2Hz,4H),0.90(t,J=7.2Hz,6H)
13C NMR :δ 200.3,156.6,118.1,36.2,31.3,7.4
IR(KBr) :2982,2938,2900,1684,1616,1456,1404,1363,1333,1117,1042,847cm−11216についてのHRMS
計算値:192.1149
計算値:192.1151
(実施例6)
出発物質として、本明細書に取り入れるBrandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: Amsterdam, 1981; Chapter 4, pp. 101-102、同Chapter 8, pp.236、Brandsma, L.; Preparative Acetylenic Chemistry, 2nd. Ed.; Elsevier: Amsterdam, 1988; Chepter 3, pp67. に記載された方法に準じて合成したアレン1(RがCOPh、アレン1fと称する)を用いた。
【0054】
出発物質としてアレン1fを用い、撹拌を−15〜−10℃で1.5時間行った以外は実施例1と同様の条件で合成を行った結果、36%の収率で黄色の針状結晶(AcOEt−ヘキサンより再結晶)が得られた。
【0055】
以下に示す分析結果から、本合成例で得られた生成物は、2−[2−(2−オキソ−2−フェニルエチリデン)シクロブチリデン]−1−フェニルエタンオン(2f)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0056】
【化17】
Figure 0003718709
【0057】
融点 :138−140℃
H NMR :δ 7.97(m,4H),7.53(m,6H),7.29(s,2H),3.31(s,4H)
13C NMR :δ 190.2,160.7,138.4,132.9,128.7,128.1,114.2,32.4
IR(KBr) :2976,2938,1654,1599,1574,1447,1356,1304,1224,1204,1171,1015,989,847,780,725cm−1
2016についてのHRMS
計算値:288.1149
計算値:288.1169
(実施例7)
出発物質として、本明細書に取り入れるMa, S.; Wei, Q. J. Org. Chem., 1999, 64, 1026-1028に記載された方法に準じて合成したアレン1(RがSOPh、アレン1gと称する)を用いた。
【0058】
出発物質としてアレン1gを用い、撹拌時間を1.5時間とした以外は実施例1と同様の条件で合成を行った結果、33%の収率で無色の粉末が得られた。
【0059】
以下に示す分析結果から、本合成例で得られた生成物は、1,2−ビス(フェニルスルフォニルメチリデン)シクロブタン(2g)と同定した。この反応は極めて高い位置選択性を示し、位置異性体は全く生成しなかった。
【0060】
【化18】
Figure 0003718709
【0061】
融点 :171−173℃
H NMR :δ 7.85(q,J=7.2Hz,4H),7.50−7.65(m,6H),6.43(s,2H),3.22(s,4H)
13C NMR :δ 153.6,140.7,133.9,129.4,127.5,123.3,29.9
IR(KBr) :3097,3040,3027,2947,1630,1446,1324,1307,1147,1083,815cm−1
2016についてのHRMS
計算値:360.0489
計算値:360.0477
各実施例における反応条件およびシクロブタン2の収率を表1にまとめて示す。
【0062】
【表1】
Figure 0003718709
【0063】
上記実施例1〜7で得られた本発明のシクロブタン誘導体は、例えば加熱して重合させることにより下記一般式で表されるようなポリマーを容易に得ることができる。
【0064】
【化19】
Figure 0003718709
【0065】
かかるポリマーは、耐熱性、耐薬品性等の点で優れた特性を有しており、高機能性素材として好適に用いることができる。
【0066】
【発明の効果】
以上詳述したように、本発明により、高機能性ポリマーをはじめとする新素材の合成原料となり得る新規なシクロブタン誘導体が提供された。また本発明により、かかる新規なシクロブタン誘導体を緩和な条件において高収率で合成し得る方法が提供された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel cyclobutane derivative and a synthesis method thereof, and more particularly to a novel cyclobutane derivative which can be used as a high-functional polymer raw material and a synthesis method thereof.
[0002]
[Prior art]
Unsaturated hydrocarbons, such as ethylene in polyethylene or tetrafluoroethylene in Teflon, are very important as raw materials for the synthesis of new materials including polymers. On the other hand, in recent years, in developing a highly functional polymer, it is of course necessary to study the polymerization reaction itself, but it is also becoming important to introduce new monomer units.
[0003]
By the way, although a method for dimerizing allene by thermal reaction to obtain dimethylenecyclobutane has been known for a long time, this synthesis method has severe reaction conditions and the product becomes a mixture of various isomers. The usefulness in the synthesis was low, and it was far from the actual situation to use the product dimethylenecyclobutane as a functional polymer raw material.
[0004]
[Problems of the Invention]
The present invention has been made in view of such problems of the prior art, and aims to provide a novel cyclobutane derivative that can be used as a raw material for synthesizing new materials including highly functional polymers. To do. Another object of the present invention is to provide a method by which this novel cyclobutane derivative can be synthesized in a high yield under mild conditions.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a cyclobutane derivative into which various substituents are introduced is a raw material for synthesizing a highly functional polymer having excellent characteristics such as heat resistance and chemical resistance. I found it useful.
[0006]
The present inventors also conducted further studies on the synthesis method in order to put this novel cyclobutane derivative into practical use as a raw material for synthesizing a high-functional polymer, and as a result, the cyclization dimerization reaction of an allene derivative having a substituent was performed. It was also found that the cyclobutane derivative of the present invention can be synthesized in a high yield under mild conditions.
[0007]
The present invention has been completed based on such knowledge and has the following configuration.
[0008]
That is, the present invention provides a novel cyclobutane derivative represented by the general formula (1).
[0009]
[Formula 4]
Figure 0003718709
[0010]
In the formula, R is a perfluoroalkyl group having 1 to 20 carbon atoms (for example, C 6 F 13 ), a perfluoroaryl group having 6 to 20 carbon atoms (for example, C 6 F 5 ), CON (CH 3 ) C 6. H 5, COC 2 H 5, COC 6 H 5, or an SO 2 C 6 H 5. Two R may be the same or different.
Further, the present invention provides a compound represented by the general formula (2)
[0011]
[Chemical formula 5]
Figure 0003718709
[0012]
[Wherein, R represents a perfluoroalkyl group having 1 to 20 carbon atoms (for example, C 6 F 13 ), a perfluoroaryl group having 6 to 20 carbon atoms (for example, C 6 F 5 ), COOC 2 H 5 , CON (CH 3 ) represents C 6 H 5 , COC 2 H 5 , COC 6 H 5 , or SO 2 C 6 H 5 . ] General formula (1) by dimerizing the allene derivative represented by
[0013]
[Chemical 6]
Figure 0003718709
[0014]
[Wherein, R has the same meaning as R in formula (2) . Two R may be the same or different. ] The synthesis method of the cyclobutane derivative represented by this is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The novel cyclobutane derivative of the present invention is a compound represented by the following general formula (1).
[0016]
[Chemical 7]
Figure 0003718709
[0017]
In the general formula (1), R represents a substituent, preferably an electron withdrawing group. The reason why the substituents (preferably electron withdrawing groups) are introduced in this manner is that a cyclobutane ring can be efficiently constructed, and these substituents are selected depending on the desired properties of the high-functional polymer. This is because it can be further converted.
[0018]
Specific examples of the substituent R introduced in the present invention include an alkyl group, an aryl group, COOR 1 , CONR 2 R 3 , COR 4 , SO 2 R 5 (where R 1 to R 5 represent a hydrogen atom or a substituent). Etc.).
[0019]
The substituent R will be described in more detail. The alkyl group that can be introduced as R in the general formula (1) is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, n-propyl, i-propyl. Preferred examples of the aryl group include substituted or unsubstituted aryl groups having 6 to 20 carbon atoms such as phenyl and naphthyl. More preferably, it is an alkyl group or aryl group having at least one fluorine atom (for example, CF 2 C 5 H 11 , CF 2 C 6 H 13 etc.), and these further have a substituent in addition to the fluorine atom. May be. By introducing a fluorine atom, an excellent function can be imparted to a polymer synthesized from the cyclobutane of the present invention as a raw material. From the viewpoint of high versatility, a perfluoroalkyl group or a perfluoroaryl group is preferable, and examples thereof include (CF 2 ) 6 F and C 6 F 5 .
[0020]
In COOR 1 , R 1 is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, such as COOC 2 H 5 , COOC 6 H 5 .
In CONR 2 R 3 , R 2 and R 3 are each independently preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. Group, for example, CON (CH 3 ) C 6 H 5 , CON (CH 3 ) 2 .
[0021]
In COR 4 , R 4 is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, such as COC 2 H 5 Is mentioned.
[0022]
In SO 2 R 5 , R 5 is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. 2 C 2 H 5 , SO 2 C 6 H 5 may be mentioned.
Further, the two substituents represented as R may be the same or different.
[0023]
The cyclobutane derivative of the present invention has the following general formula (2)
[0024]
[Chemical 8]
Figure 0003718709
[0025]
Can be synthesized by a cyclization dimerization reaction of an allene derivative represented by the following (hereinafter referred to as allene 1). In general formula (2), R represents a substituent and has the same meaning as R in general formula (1).
[0026]
A chemical process for synthesizing the cyclobutane derivative of the present invention (hereinafter also referred to as cyclobutane 2) by the dimerization reaction of allene 1 is shown below.
[0027]
[Chemical 9]
Figure 0003718709
[0028]
The synthesis of cyclobutane 2 by the method of the present invention can be carried out by stirring for a very short time (preferably 30 minutes to 3 hours) at room temperature or lower in the presence of a nickel catalyst. Although the cyclobutane derivative of the present invention may be an excellent monomer raw material in polymer synthesis, its efficient synthesis method has not been known, but according to the method of the present invention, allene 1 is relaxed. Under the conditions, dimerization is carried out with high regioselectivity, and the cyclobutane derivative of the present invention can be obtained in a high yield. In addition, as a reaction mechanism, it is thought that it passes through the metallacycle 3 as shown in the following formula.
[0029]
[Chemical Formula 10]
Figure 0003718709
[0030]
【Example】
Examples of the present invention are shown below.
In this example, the cyclobutane derivative of the present invention was synthesized according to the method of the present invention represented by the following scheme. However, the present invention is not limited to these examples.
[0031]
Embedded image
Figure 0003718709
[0032]
In the scheme, cod represents cyclooctadiene and Ph represents phenyl.
[0033]
(Example 1)
As a starting material, described in Burton, DJ; Hartgraves, GA; Hsu, J. Tetrahedron Lett., 1990, 31. 3699-3702, Hung, MH. Tetragedron Latt., 1990, 31, 3703-3706. Allene 1 synthesized according to the prepared method (R is called n-C 6 F 13 , allene 1a) was used.
[0034]
Under an argon atmosphere, an anhydrous toluene solution (0.5 mL) of allene 1a (1.0 mmol) was added to an anhydrous toluene solution (0. 0, 0.2 mg) of Ni (cod) 2 (28 mg, 0.1 mmol) and PPh 3 (105 mg, 0.4 mmol). 5 mL), stirred at room temperature for 30 minutes, passed through a short column of alumina, and then the solvent was distilled off. When the residue was purified by silica gel column chromatography (hexane or hexane: ethyl acetate), a colorless liquid was obtained in a yield of 79%.
[0035]
From the analysis results shown below, the product obtained in this synthesis example is 1,2-bis (2,2,3,3,4,5,5,6,6,7,7,7- Identified as tridecafluoro-heptylidene) cyclobutane (2a). This reaction showed very high regioselectivity and no regioisomer was formed.
[0036]
Embedded image
Figure 0003718709
[0037]
1 H NMR: δ 5.82 (t, J = 13.9 Hz, 2H), 3.03 (bs, 4H)
13 C NMR: δ 107.5-119.6 (m), 152.2, 108.7, 28.9
IR (neat): 2997, 2955, 1674, 1420, 1366, 1342, 1313, 1240, 1202, 1146, 1121, 1078, 1063, 978, 853, 814, 735 cm −1
Calculated elemental analysis for C 18 H 6 F 26 : C, 30.19; H, 0.84
Found: C, 30.25; H, 0.92
(Example 2)
As a starting material, Burton, DJ; Hartgraves, GA; Hsu, J. Tetrahedron Lett., 1990, 31. 3699-3702, Hung, MH. Tetragedron Lett., 1990, 31, 3703-3706, Cairncross , A .; Sheppard, WA; Wonchoba, E. Org. Syn., Coll. Vol. 6, 1988, 875-882, allene 1 (R is C 6 F 5 , allene 1b Used).
[0038]
As a result of synthesis under the same conditions as in Example 1 except that allene 1b was used as a starting material, colorless needle crystals (recrystallized from Et 2 O-hexane) were obtained in a yield of 81%.
[0039]
From the analysis results shown below, the product obtained in this synthesis example was identified as 1,2-bis (2,3,4,5,6-pentafluorophenylidene) cyclobutane (2b). This reaction showed very high regioselectivity and no regioisomer was formed.
[0040]
Embedded image
Figure 0003718709
[0041]
Melting point: 133-135 ° C
1 H NMR: δ 6.57 (s, 2H), 2.85 (s, 4H)
13 C NMR: δ 149.8, 144.4 (t, J C-F = 246 Hz), 140.2 (t, J C-F = 254 Hz), 137.7 (t, J C-F = 251 Hz) 111.0, 104.4, 29.0
IR (KBr): 2991, 2969, 2943, 1652, 1520, 1494, 1414, 1375, 1352, 1306, 1150, 1126, 1080, 1038, 1005, 970, 945, 929, 875, 853, 799, 722 cm −1
Calculated elemental analysis for C 18 H 6 F 10 : C, 52.45; H, 1.47
Found: C, 52.41; H, 1.76
HRMS for C 18 H 6 F 10
Calculated value: 412.0309
Calculated value: 412.0282
(Example 3)
As a starting material, allene 1 (R is COOC 2 H 5 , synthesized according to the method described in Jung, ME; Nishimura, NJ Am. Chem. Soc., 1999, 121, 3529-3530, which is incorporated herein. Allen 1c) was used.
[0042]
Synthesis was carried out under the same conditions as in Example 1 except that Allen 1c was used as a starting material and the temperature during stirring was changed to -15 to -10 ° C. As a result, a colorless powder was obtained in a yield of 71%. .
[0043]
From the analysis results shown below, the product obtained in this synthesis example was identified as ethyl (2-ethoxycarbonylmethylenecyclobutylidene) acetate (2c). This reaction showed very high regioselectivity and no regioisomer was formed.
[0044]
Embedded image
Figure 0003718709
[0045]
Melting point: 66-68 ° C
1 H NMR: δ 5.99 (s, 2H), 4.15 (q, J = 7.2 Hz, 4H), 3.08 (s, 4H), 1.25 (t, J = 7.2 Hz, 6H)
13 C NMR: δ 166.0, 158.6, 112.1, 60.3, 30.6, 14.2
IR (KBr): 2983, 2946, 2909, 1711, 1692, 1648, 1476, 1448, 1370, 1338, 1231, 1217, 1187, 1124, 1034, 1016, 867, 818 cm −1
Calculated elemental analysis for C 12 H 16 O 4 : C, 64.27; H, 7.19
Found: C, 64.06; H, 7.31
HRMS for C 12 H 16 O 4
Calculated value: 224.1048
Calculated value: 224.1037
(Example 4)
As starting material, Allen 1 (R is CON) synthesized according to the method described in Diehl, K .; Himbert, G; Henn, L. Chem. Ber., 1986, 119, 2430-2443, incorporated herein. (CH 3 ) Ph, referred to as allene 1d).
[0046]
Synthesis was performed under the same conditions as in Example 1 except that allene 1d was used as a starting material and stirring was performed at 0 ° C. for 2 hours. As a result, a colorless powder was obtained in a yield of 66%.
[0047]
From the analysis results shown below, the product obtained in this synthesis example was identified as N-methyl-2- {2-[(methylphenylcarbamoyl) methylene] cyclobutylidene} -N-phenylacetamide (2d). . This reaction showed very high regioselectivity and no regioisomer was formed.
[0048]
Embedded image
Figure 0003718709
[0049]
Melting point: 166-168 ° C
1 H NMR: δ 7.14-7.27 (m, 6H), 7.01 (q, J = 7.0 Hz, 4H), 5.54 (s, 2H), 3.20 (s, 6H) , 3.07 (s, 4H)
13 C NMR: δ 165.7, 156.6, 143.5, 129.3, 127.2, 126.9, 11.0, 36.9, 30.9
IR (KBr): 2989, 2935, 1657, 1623, 1610, 1594, 1496, 1405, 1374, 1266, 1111, 834, 776, 703 cm −1
HRMS for C 22 H 22 N 2 O 2
Calculated value: 346.1680
Calculated value: 346.1694
(Example 5)
As a starting material, it is described in Brandsma, L .; Verkruijsse, HD Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: Amsterdam, 1981; Chapter 4, pp. 101-102, Chapter 8, pp. 236, incorporated herein. Allen 1 synthesized according to the above method (R is COC 2 H 5 , referred to as allene 1e) was used.
[0050]
Synthesis was performed under the same conditions as in Example 1 except that allene 1e was used as a starting material and stirring was performed at −15 to −10 ° C. for 3 hours. As a result, a pale yellow powder was obtained in a yield of 34%. It was.
[0051]
From the analysis results shown below, the product obtained in this synthesis example was identified as 1- [2- (2-oxobutylidene) cyclobutylidene] -butan-2-one (2e). This reaction showed very high regioselectivity and no regioisomer was formed.
[0052]
Embedded image
Figure 0003718709
[0053]
Melting point: 63-65 ° C
1 H NMR: δ 6.21 (s, 2H), 2.98 (s, 4H), 2.37 (q, J = 7.2 Hz, 4H), 0.90 (t, J = 7.2 Hz, 6H)
13 C NMR: δ 200.3, 156.6, 118.1, 36.2, 31.3, 7.4
IR (KBr): HRMS for 2982, 2938, 2900, 1684, 1616, 1456, 1404, 1363, 1333, 1117, 1042, 847 cm −1 C 12 H 16 O 2
Calculated value: 192.1149
Calculated value: 192.151
(Example 6)
As a starting material, Brandsma, L .; Verkruijsse, HD Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: Amsterdam, 1981; Chapter 4, pp. 101-102, Chapter 8, pp. 236, Brandsma, . L .; Preparative Acetylenic Chemistry, 2 nd Ed .; Elsevier:. Amsterdam, 1988; Chepter 3, pp67 Allen was synthesized according to the method described in 1 (R is COPh, referred to as Allen 1f) was used.
[0054]
Synthesis was performed under the same conditions as in Example 1 except that Allen 1f was used as a starting material and stirring was performed at −15 to −10 ° C. for 1.5 hours. As a result, yellow acicular crystals were obtained in a yield of 36%. (Recrystallized from AcOEt-hexane) was obtained.
[0055]
From the analysis results shown below, the product obtained in this synthesis example was identified as 2- [2- (2-oxo-2-phenylethylidene) cyclobutylidene] -1-phenylethaneone (2f). This reaction showed very high regioselectivity and no regioisomer was formed.
[0056]
Embedded image
Figure 0003718709
[0057]
Melting point: 138-140 ° C
1 H NMR: δ 7.97 (m, 4H), 7.53 (m, 6H), 7.29 (s, 2H), 3.31 (s, 4H)
13 C NMR: δ 190.2, 160.7, 138.4, 132.9, 128.7, 128.1, 114.2, 32.4
IR (KBr): 2976, 2938, 1654, 1599, 1574, 1447, 1356, 1304, 1224, 1204, 1171, 1015, 989, 847, 780, 725 cm −1
HRMS for C 20 H 16 O 2
Calculated value: 288.1149
Calculated value: 288.1169
(Example 7)
As a starting material, allene 1 synthesized according to the method described in Ma, S .; Wei, QJ Org. Chem., 1999, 64, 1026-1028, incorporated in this specification (R is SO 2 Ph, allene 1 g). Used).
[0058]
Synthesis was performed under the same conditions as in Example 1 except that 1 g of allene was used as a starting material and the stirring time was 1.5 hours. As a result, a colorless powder was obtained in a yield of 33%.
[0059]
From the analysis results shown below, the product obtained in this synthesis example was identified as 1,2-bis (phenylsulfonylmethylidene) cyclobutane (2 g). This reaction showed very high regioselectivity and no regioisomer was formed.
[0060]
Embedded image
Figure 0003718709
[0061]
Melting point: 171-173 ° C
1 H NMR: δ 7.85 (q, J = 7.2 Hz, 4H), 7.50-7.65 (m, 6H), 6.43 (s, 2H), 3.22 (s, 4H)
13 C NMR: δ 153.6, 140.7, 133.9, 129.4, 127.5, 123.3, 29.9
IR (KBr): 3097, 3040, 3027, 2947, 1630, 1446, 1324, 1307, 1147, 1083, 815 cm −1
HRMS for C 20 H 16 O 2
Calculated value: 360.0489
Calculated value: 360.0477
The reaction conditions and the yield of cyclobutane 2 in each example are summarized in Table 1.
[0062]
[Table 1]
Figure 0003718709
[0063]
The cyclobutane derivatives of the present invention obtained in the above Examples 1 to 7 can easily obtain a polymer represented by the following general formula, for example, by heating and polymerizing.
[0064]
Embedded image
Figure 0003718709
[0065]
Such a polymer has excellent characteristics such as heat resistance and chemical resistance, and can be suitably used as a highly functional material.
[0066]
【The invention's effect】
As described in detail above, the present invention provides a novel cyclobutane derivative that can be used as a raw material for synthesizing new materials including highly functional polymers. The present invention also provides a method by which such a novel cyclobutane derivative can be synthesized in a high yield under mild conditions.

Claims (4)

一般式(1)で表されるシクロブタン誘導体。
Figure 0003718709
式中、Rは炭素数1〜20のパーフルオロアルキル基、炭素数6〜20のパーフルオロアリール基、CON(CH )C 、COC 、COC 、又はSO を表す。2個あるRは同一でも異なっていてもよい。
A cyclobutane derivative represented by the general formula (1).
Figure 0003718709
In the formula, R is a perfluoroalkyl group having 1 to 20 carbon atoms, a perfluoroaryl group having 6 to 20 carbon atoms, CON (CH 3 ) C 6 H 5 , COC 2 H 5 , COC 6 H 5 , or SO 2. It represents a C 6 H 5. Two R may be the same or different.
Rが 13 、又はC である、請求項1に記載のシクロブタン誘導体。R is C 6 F 13, or C 6 F 5, which is, cyclobutane derivative according to claim 1. 一般式(2)
Figure 0003718709
[式中、Rは炭素数1〜20のパーフルオロアルキル基、炭素数6〜20のパーフルオロアリール基、COOC 、CON(CH )C 、COC 、COC 、又はSO を表す。]で表されるアレン誘導体を二量化することによる
一般式(1)
Figure 0003718709
[式中、Rは一般式(2)におけるRと同義である。2個あるRは同一でも異なっていてもよい。]で表されるシクロブタン誘導体の合成方法。
General formula (2)
Figure 0003718709
[Wherein, R represents a perfluoroalkyl group having 1 to 20 carbon atoms, a perfluoroaryl group having 6 to 20 carbon atoms, COOC 2 H 5 , CON (CH 3 ) C 6 H 5 , COC 2 H 5 , COC 6 H 5 or SO 2 C 6 H 5 is represented. ] General formula (1) by dimerizing the allene derivative represented by
Figure 0003718709
[Wherein, R has the same meaning as R in formula (2). Two R may be the same or different. ] The synthesis method of the cyclobutane derivative represented by this.
Rが 13 、又はC である、請求項3に記載のシクロブタン誘導体の合成方法。R is C 6 F 13, or C 6 F 5, a synthesis method of cyclobutane derivative according to claim 3.
JP2000229179A 2000-07-28 2000-07-28 Novel cyclobutane derivative and synthesis method thereof Expired - Lifetime JP3718709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229179A JP3718709B2 (en) 2000-07-28 2000-07-28 Novel cyclobutane derivative and synthesis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229179A JP3718709B2 (en) 2000-07-28 2000-07-28 Novel cyclobutane derivative and synthesis method thereof

Publications (2)

Publication Number Publication Date
JP2002047215A JP2002047215A (en) 2002-02-12
JP3718709B2 true JP3718709B2 (en) 2005-11-24

Family

ID=18722343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229179A Expired - Lifetime JP3718709B2 (en) 2000-07-28 2000-07-28 Novel cyclobutane derivative and synthesis method thereof

Country Status (1)

Country Link
JP (1) JP3718709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999356B2 (en) 2008-09-25 2011-08-16 Kabushiki Kaisha Toshiba Composition for film formation, insulating film, semiconductor device, and process for producing the semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019009013A2 (en) * 2016-11-08 2019-07-16 Honeywell Int Inc process for the production of fluorinated cyclobutane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999356B2 (en) 2008-09-25 2011-08-16 Kabushiki Kaisha Toshiba Composition for film formation, insulating film, semiconductor device, and process for producing the semiconductor device

Also Published As

Publication number Publication date
JP2002047215A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
KR840002405A (en) Method for preparing cephalosporin
Nozaki et al. Et3B induced stereoselective radical addition of Ph3GeH to carbon-carbon multiple bonds and its application to isomerization of olefins.
JP3718709B2 (en) Novel cyclobutane derivative and synthesis method thereof
BR112020025580A2 (en) preparation process of tricyclic compounds
FLITSCH et al. Alkenylation of Imides and Activated Amides
JPS6148830B2 (en)
JP2019014675A (en) Phenyl phenol derivative and method for producing dibenzofuran derivative using the same
CN108264450B (en) Preparation method of polysubstituted phenol
KR101885084B1 (en) Novel amidation of N-acyl indole derivatives
JPH0334955A (en) Calix arene derivative
US4895947A (en) Process for producing 1-acyl-2-pyrazoline derivative
Dauben et al. Organic reactions at high pressure. Wittig reaction of hindered ketones with nonstabilized ylides.
JP3632069B2 (en) Fluorine-containing monomer and synthesis method thereof
JPH0399084A (en) Separating agent for organic compound
Toyota et al. Silica gel-assisted synthesis of benzo [b] thiophenes from o-(alkylsulfanyl)(ethynyl) benzenes
JPH0586782B2 (en)
JPS61282326A (en) Manufacture of 1,3,5-undecatriene
JPS59172462A (en) Manufacture of sulfur-containing alkylidene-bisphenol
JP4172200B2 (en) Ether compound and process for producing the same
JP2561127B2 (en) Process for producing 4-alkoxy-3-fluorophenylacetylene
JP4052693B2 (en) Liquid crystal compound
JPH0315617B2 (en)
JP4105482B2 (en) Process for producing trihalo-substituted aromatic compounds
US4967022A (en) Process for fluorinated allenes
JPH0656703A (en) Production of perfluoroalkyl-substituted biphenyl derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3718709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term