JP3718624B2 - Hot repair method for converter refractories - Google Patents
Hot repair method for converter refractories Download PDFInfo
- Publication number
- JP3718624B2 JP3718624B2 JP2000270374A JP2000270374A JP3718624B2 JP 3718624 B2 JP3718624 B2 JP 3718624B2 JP 2000270374 A JP2000270374 A JP 2000270374A JP 2000270374 A JP2000270374 A JP 2000270374A JP 3718624 B2 JP3718624 B2 JP 3718624B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- aggregate
- converter
- refractory
- durability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、転炉耐火物の熱間補修方法に関し、とくにスラグコーティングにより炉内耐火物の補修を行う方法に関するものである。
【0002】
【従来の技術】
転炉では、局部的に損耗した部位を補修し、炉寿命延長を図る目的でいくつかの補修方法が採用されており、これらのうち吹き付け補修は、乾燥した吹付材を圧搾空気で搬送し、ノズル部で水分を供給・混合する乾式吹付と、予め吹付材と水分を混合してそれを圧搾空気で搬送する湿式吹付に大別されるが、いずれも水分と混合されたスラリ−を損傷部に吹き付けて補修するものである。焼付け補修は骨材のマグネシアやドロマイトにフェノールレジンやピッチを加えたものであり、手なげあるいは、スクラップシュートなどで炉内に装入され炉内の熱で軟化、流動、固化する。また溶射補修はプロパン、灯油などの燃料と酸素で形成された燃焼火炎中に、耐火物粉体を供給、溶融させ、炉内損傷部に吹付けるもので、吹付けた施工体は緻密で高強度となり、高い耐用が得られる。しかしながら吹付補修方法は通常溶媒として水を用いるため、熱間で使用した場合に水の急激な蒸発に伴う蒸気圧の影響により、吹付材料と耐火物との接着強度の劣化、組織の劣化を生じさせる欠点がある。また焼付け補修法は結合剤としてピッチ、タール等の有機結合剤を用いるので、水を用いないから前記の欠点は緩和されるが、有機結合剤に含まれる揮発分の加熱による分解ガスの発生のため、組織が不良となり耐用性が低下する欠点を有する。一方溶射補修は耐用性がそれなりにあるが、施工に時間を要し、費用も掛かる欠点を有する。
【0003】
さらに前述の方法に代え、転炉内張り耐火物の熱間補修方法として、出鋼後に溶融スラグを炉内に残した状態で炉を前後に傾動するか、またはスラグに外力を付加してスラグを炉壁に吹付け付着させるスラグコーティング法が広く使われるようになってきた。このスラグコーティング法は炉内耐火物表面に付着凝固したスラグ層により、耐火物を補修、保護するものであるが、形成されたスラグ層は吹錬中の溶鋼よりも融点が低いため再溶融されやすく耐用度が非常に小さいという欠点を有している。
【0004】
この欠点を改善するものとして、従来特公昭61―59364号公報に提案の技術がある。出鋼後のスラグを転炉内に残留させてスラグコーティング層を形成して炉内耐火物を熱間補修する方法において、前記転炉内に残留せしめた溶融スラグに対し、100〜200mmの大きさの塊状塩基性耐火物を5〜20重量%投入したのち、鎮静・保持することにより、スラグコーティング層の耐用性を向上させることが知られている。
【0005】
【発明が解決しようとする課題】
この従来技術はそれなりに有用であるが、骨材を耐火物に限定しているため密度は溶媒であるスラグとほぼ同程度(3程度)であった。このため投入する骨材の量は溶媒(残留スラグ)量に応じて一定の範囲内に制御する必要があり、また、適度な形状が必要とされた。そして投入後骨材が溶媒スラグ中を沈降して耐火物表面に定着するためには、両者の密度差が小さいが故に、補修部位を水平状態にして補修することを要し、しかも15分以上の鎮静・保持時間を要することから、転炉の生産性の低下を招く問題も含んでいた。さらにコーティング層を形成する溶媒であるスラグ組成には制約を設けていないので、このためスラグ組成のバラツキにより補修効果が予測しがたいという問題点があった。
【0006】
本発明は、上記の問題点を解消するためになしたものであって、その目的は、転炉耐火物の熱間補修法に係わり、とくに耐用性に優れたスラグコーティング層を形成する方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、転炉内張り耐火物の耐用性を向上させるためには被保護物である耐火物近傍でのスラグコーティングの接着状態が重要であるとの認識から、かさ密度4(Mg/m3)以上の物質を骨材として用いることにより、さらには溶媒であるスラグ中の(T.Fe)濃度を10〜18重量%の範囲に調節することにより、保護すべき耐火物面近傍で強固なスラグコーティング層が得られることによる熱間補修法を可能としたものである。この際骨材としては鉄を含む金属が好ましいが、無機化合物、耐火物なども使用できる。
【0008】
本発明(請求項1に記載の発明)は、転炉の内張り耐火物をスラグコーティングにより補修するにあたり、前記転炉内に(T . Fe)濃度を10〜18重量%の範囲内に調節した溶融スラグを残留せしめ、この溶融スラグに対し、骨材としてかさ密度4(Mg/m 3 )以上、粒度100〜500mmの鉄鋼材を10〜100容積%投入したのち、鎮静、保持することを特徴とする転炉耐火物の熱間補修方法である。転炉内に残留せしめたスラグコーティングの母材となる溶融スラグの密度は3〜4(Mg/m3)程度である。骨材としてかさ密度4(Mg/m3)以上の物質を溶融スラグ中に投入すると骨材のかさ密度と溶融スラグの密度差により埋没して耐火物表面近傍に確実に着地する。この作用は密度差が大きい程大きい。その結果骨材群の間隙を溶融スラグが埋め、そして溶融スラグは骨材により冷却されて固化し、適切な骨材,スラグ比率をもった強固なスラグコーティング層が得られる。
【0009】
また、スラグ中の(T.Fe)濃度は融点などのスラグ性状や流動性と密接な関係があり、またコーティング層としての耐用性にも影響する。(T.Fe)濃度が低い場合には、全体として液相比率が低いためスラグが滓化し難いから、流動性に乏しくスラグコーティングし難いため不適当である。一方(T.Fe)濃度が高い場合には、過度の滓化状態であり流動性は大きいから、骨材も容易に埋没し、骨材群の間隙にスラグがバインダーとして浸透しやすい。しかし、(T.Fe)濃度の高いスラグは融点が低いのでコーティング層は付着するものの転炉吹錬時溶鋼流の侵食に対し耐用性が著しく低くなる。以上からスラグコーティングに適したスラグ中(T.Fe)濃度は10〜18重量%が適切である。
【0010】
また、投入された骨材群は溶融スラグ中に埋没して耐火物面近傍に位置し、溶融スラグが間隙を埋めバインダーとして固化してスラグコーティング層を形成する。この際、過度に大きな骨材を用いると、固化したスラグ中での亀裂発生の起点となり、コーティング層の耐用性が低下する。テストの結果、500mmを超える骨材を投入すると亀裂発生の確率が高くなり、耐用性の低下が確認された。なお、骨材として用いられる骨材の粒度の下限値は、下記段落[0012]の[発明の実施の形態]でも述べるように、溶融スラグ中への骨材の埋没が充分であること及び吹錬中の溶鋼の流れによって洗い流されない観点から決められる。以上からスラグコーティングに適した鉄鋼材の粒度は100〜500mmが適当である。
【0011】
また、骨材として用いられる鉄鋼材のかさ密度(空隙が殆ど無いから密度と同じ数値をもつ)は6.9〜7.85(Mg/m3)で溶融スラグの密度よりはるかに大きいから、スラグ中に投入されると速やかに埋没して確実に耐火物面近傍に定着し、骨材群の充填を緻密にする。また鉄鋼材は密度が大きく、かつ熱伝導度が高いから冷却能が大きく、埋没されると直ちに周りの溶融スラグを冷却、固化して、骨材とスラグが強固に結合したスラグコーティング層が形成されるので、耐用性が増加する。
【0012】
【発明の実施の形態】
本発明の実施は次のようにして行う。転炉で吹錬終了後、出鋼する。かさ密度4(kg/m3)以上の骨材をスクラップシュートに用意するが、鉄鋼材の時は粒度100〜500mmの範囲で補修部位の溶融スラグに対し10〜100容積%、また耐火物であるクロム質やジルコニア質の場合で粒度100〜300mmの範囲で補修部位の溶融スラグに対し20〜100容積%が適当である。骨材の形状は溶融スラグ中への埋没するし易さから塊状が望ましい。この場合の粒度は最大の一辺の長さをいう。なお、骨材の粒度の下限値は溶融スラグ中への骨材の埋没が充分であること及び吹錬中の溶鋼の流れによって洗い流されない観点から決められる。
【0013】
スラグコーティング用の溶融スラグの(T.Fe)濃度は融点、流動性、耐用性の点で10〜18重量%が望ましく、この(T.Fe)濃度の調整はスラグコーティングを実施する前のチャージの残留スラグに対して行うだけで良いものであり、転炉操業で調節可能である。
【0014】
骨材の投入は転炉炉体の傾動により転炉内の耐火物の補修部位にスラグコーティング用の溶融スラグを保持して、その補修部位を目標とし、シュートから均一に骨材が分布するように行う。または局部的に補修する場合は骨材をシュートから局部に投入することも可能である。骨材のかさ密度が4(Mg/m3)以上であるので、骨材は補修部位の溶融スラグ中に速やかに埋没して耐火物表面に定着し、しかも骨材同士が強固に絡み合うとともに骨材間の間隙も大きくなることがない。そして適切な流動性と耐用性を持った溶融スラグが間隙に十分浸透して埋めると同時に骨材により冷却、固化するため強力なバインダーとして機能する。そして、骨材、スラグの容積比率も適切な範囲に維持できることと相まって、転炉耐火物面と良好に接着した耐用性の高いスラグコーティング層を形成して熱間補修することが可能となる。この場合、骨材投入後に良好なスラグコーティング層を得るために、若干の鎮静、保持時間すなわち5−10分間とることが好ましい。通常転炉での耐火物の補修部位は装入側、出鋼側の炉壁と炉底であるが、炉壁面は円弧状であるので補修部位にスラグコーティング用の溶融スラグを保持したとき、部分的に深いスラグのプールが出来るし、炉底の場合も同様なプールが出来る。骨材がとくに鉄鋼材の場合にはかさ密度が大きいこと、冷却能が大きいことで、この深いスラグプールでも、従来法に比しスラグコーティング層を容易に形成させることが出来る特長がある。
【0015】
【実施例】
本発明と従来技術の比較を行うために、出鋼温度1600℃前後の吹錬を行う240t転炉を用いてスラグコーティング層の耐用性テストを実施した。骨材はかさ密度に応じて、不定形耐火物屑( かさ密度2)、MgO−Cれんが(かさ密度3)、Cr2O3質れんが(かさ密度4)、銑鉄(かさ密度7)を用いた。溶融スラグは(T.Fe)濃度9〜20重量%の範囲内に調整したものをスラグコーティング用に供した。耐用性は耐用したヒート数で表し、残存面積が50%に減少したら耐用限界に達したと判断した。転炉耐火物の熱間補修を行うに際し、同転炉出鋼後溶融スラグ約20tにし、次いで同上補修部に溶融スラグを置いて骨材が投入できるように炉を傾動調節して後、骨材を投入して、そのままの状態で10分保持、鎮静して補修を完成させた。
【0016】
本発明と比較例の耐用性について表1と図1に示す。これに依れば骨材のかさ密度4(Mg/m 3 )以上で耐用性の効果が認められ、しかも溶融スラグ中の(T.Fe)濃度が10〜18重量%の範囲であれば、さらに耐用性が向上し25ヒート前後の実績が得られた。
【0017】
【表1】
【0018】
【発明の効果】
以上説明したように、本発明(請求項1に記載の発明)によれば、以下の効果が得られる。すなわち、溶融スラグよりかさ密度の大きい骨材を用いるので、転炉の内張り耐火物のスラグコーティングにおいて骨材が転炉耐火物の表面に定着し、適切な骨材、スラグ比率をもった強固なスラグコーティング層が得られ、耐用性に優れた熱間補修方法が得られる。しかも、(T . Fe)濃度を所定範囲内に調節した流動性に優れた溶融スラグを用いるので、固化した場合には耐用性の良いスラグとなり、スラグコーティング層の耐用性をさらに向上する。また、骨材の粒度を所定範囲内に規定しているので、冷却しても亀裂発生のほとんどないスラグコーティング層を得ることができる。さらには、骨材として鉄鋼材を用いるので緻密であり、かさ密度が大きいから、しかも、冷却能にも優れているので、補修部位が溶融スラグの深いプールであっても、耐用性の高いスラグコーティング層が得られ、熱間補修の効果に大いに寄与する。
【図面の簡単な説明】
【図1】本発明に係る実施例のスラグコーティング層の耐用性に係わるグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot repair method for converter refractories, and more particularly to a method for repairing refractories in a furnace by slag coating.
[0002]
[Prior art]
In the converter, several repair methods have been adopted for the purpose of repairing locally worn parts and extending the life of the furnace. Of these, the spray repair involves transporting the dry spray material with compressed air, There are two main types: dry spraying, which supplies and mixes moisture at the nozzle, and wet spraying, which mixes spraying material and moisture in advance and transports them with compressed air. It is repaired by spraying. Baking repair is the addition of phenolic resin or pitch to the aggregate magnesia or dolomite, and it is inserted into the furnace by hand or scrap chute and softened, fluidized and solidified by the heat in the furnace. Thermal spray repair is to supply and melt refractory powder in a combustion flame formed of propane, kerosene and other fuels and oxygen, and spray it onto the damaged part of the furnace. Strength and high durability are obtained. However, since the spray repair method usually uses water as the solvent, the adhesive strength between the spray material and the refractory deteriorates and the structure deteriorates due to the effect of vapor pressure accompanying rapid evaporation of water when used hot. There are drawbacks. Also, the baking repair method uses organic binders such as pitch and tar as the binder, so the above disadvantages are alleviated because water is not used, but the generation of decomposition gas due to heating of the volatiles contained in the organic binder. For this reason, it has a defect that the structure becomes defective and the durability is lowered. On the other hand, the thermal spray repair has a certain amount of durability, but has a drawback that it takes time for construction and is expensive.
[0003]
Furthermore, instead of the above-mentioned method, as a hot repair method of the converter lining refractory, after leaving the steel, the furnace is tilted back and forth with the molten slag left in the furnace, or external force is applied to the slag to remove the slag. The slag coating method that sprays and adheres to the furnace wall has been widely used. This slag coating method repairs and protects the refractory with a slag layer that adheres and solidifies on the surface of the refractory in the furnace, but the formed slag layer is remelted because it has a lower melting point than the molten steel being blown. It has a drawback that it is easy to use and has a very small durability.
[0004]
As a technique for improving this drawback, there is a technique proposed in Japanese Patent Publication No. 61-59364. In the method of hot repairing the refractory in the furnace by forming the slag coating layer by leaving the slag after steel leaving in the converter, the size of 100 to 200 mm with respect to the molten slag remaining in the converter It is known to improve the durability of the slag coating layer by adding 5 to 20% by weight of the lumpy basic refractory and then calming and holding it.
[0005]
[Problems to be solved by the invention]
Although this prior art is useful as it is, since the aggregate is limited to refractory, the density is almost the same as the solvent slag (about 3). For this reason, it is necessary to control the amount of aggregate to be within a certain range in accordance with the amount of solvent (residual slag), and an appropriate shape is required. In order for the aggregate to settle down in the solvent slag and settle on the surface of the refractory after charging, it is necessary to repair the repaired part in a horizontal state because the density difference between the two is small, and more than 15 minutes. Because of the time required for sedation / retention, there is a problem that the productivity of the converter is reduced. Furthermore, since there is no restriction on the slag composition, which is a solvent for forming the coating layer, there is a problem that the repair effect is difficult to predict due to variations in the slag composition.
[0006]
The present invention has been made to solve the above-mentioned problems, and its object relates to a hot repair method for converter refractories, and a method for forming a slag coating layer having particularly excellent durability. It is to provide.
[0007]
[Means for Solving the Problems]
The present invention, in order to improve the durability of the converter refractory lining from the recognition of an adhesion state of the slag coating on the refractory near a protected object is important, bulk density 4 (M g / m 3 ) By using the above substances as aggregates, and further adjusting the (T.Fe) concentration in the solvent slag to the range of 10 to 18% by weight, it is strong near the refractory surface to be protected. This makes it possible to perform a hot repair method by obtaining a simple slag coating layer. At this time, a metal containing iron is preferable as the aggregate, but inorganic compounds, refractories, and the like can also be used.
[0008]
In the present invention ( invention according to claim 1) , in repairing the lining refractory of the converter by slag coating, the ( T.Fe) concentration in the converter was adjusted within the range of 10 to 18% by weight . The molten slag is allowed to remain, and after the molten slag is charged with 10 to 100% by volume of a steel material having a bulk density of 4 (Mg / m 3 ) or more and a particle size of 100 to 500 mm as an aggregate, it is sedated and retained. This is a hot repair method for converter refractories . The density of the molten slag that becomes the base material of the slag coating that remains in the converter is about 3 to 4 (Mg / m 3 ). When a material having a bulk density of 4 (Mg / m 3 ) or more is put into the molten slag as an aggregate, it is buried by the difference in density between the bulk density of the aggregate and the molten slag and reliably landed near the refractory surface. This effect increases as the density difference increases. As a result, the molten slag fills the gaps in the aggregate group, and the molten slag is cooled and solidified by the aggregate to obtain a strong slag coating layer having an appropriate aggregate and slag ratio.
[0009]
Further, the (T.Fe) concentration in the slag is closely related to the slag properties such as the melting point and the fluidity, and also affects the durability as a coating layer. When the (T.Fe) concentration is low, the liquid phase ratio is low as a whole, so that the slag does not easily hatch, so that the fluidity is poor and the slag coating is difficult to apply. On the other hand, when the (T.Fe) concentration is high, since it is in an excessive hatching state and fluidity is high, the aggregate is also easily buried, and the slag tends to penetrate into the gaps of the aggregate group as a binder. However, since the slag with a high (T.Fe) concentration has a low melting point, the coating layer adheres, but the durability against the erosion of the molten steel flow during converter blowing is significantly reduced. From the above, the concentration of (T.Fe) in slag suitable for slag coating is suitably 10 to 18% by weight.
[0010]
In addition, the aggregate group that has been charged is buried in the molten slag and positioned near the refractory surface, and the molten slag fills the gap and solidifies as a binder to form a slag coating layer. At this time, if an excessively large aggregate is used, it becomes a starting point of crack generation in the solidified slag, and the durability of the coating layer is lowered. As a result of the test, when an aggregate exceeding 500 mm was added, the probability of cracking was increased, and a decrease in durability was confirmed. Note that the lower limit of the particle size of the aggregate used as the aggregate is sufficient to bury the aggregate in the molten slag and blow as described in [Embodiment of the invention] in the following paragraph [0012]. It is determined from the viewpoint of not being washed away by the flow of molten steel during smelting. From the above, the grain size of the steel material suitable for slag coating is suitably 100 to 500 mm.
[0011]
In addition, the bulk density of steel used as an aggregate (having the same numerical value as the density because there is almost no void) is 6.9 to 7.85 (Mg / m 3 ), which is much larger than the density of molten slag. When thrown into the slag, it is immediately buried and surely settles in the vicinity of the refractory surface, and the aggregate group is closely packed. In addition, the steel material has a high density and high thermal conductivity, so it has a high cooling capacity. As soon as it is buried, the surrounding molten slag is cooled and solidified to form a slag coating layer in which the aggregate and slag are firmly bonded. As a result, the durability increases.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is carried out as follows. After finishing blowing in the converter, steel is produced. Aggregate with a bulk density of 4 (kg / m 3 ) or more is prepared for scrap chute. When using steel, 10-100% by volume of molten slag at the repair site with a grain size of 100-500mm, and refractory In the case of a certain chrome or zirconia, 20 to 100% by volume is appropriate for the molten slag at the repair site within a particle size range of 100 to 300 mm. The aggregate is preferably in the form of a lump because it is easily embedded in the molten slag. The particle size in this case refers to the length of one side. The lower limit of the aggregate particle size is determined from the viewpoint that the aggregate is sufficiently buried in the molten slag and that the aggregate is not washed away by the flow of molten steel during blowing.
[0013]
The (T.Fe) concentration of the molten slag for slag coating is preferably 10 to 18% by weight in terms of melting point, fluidity and durability, and the adjustment of this (T.Fe) concentration is the charge before the slag coating is performed. This can be done only for residual slag, and can be adjusted by converter operation.
[0014]
As for the injection of the aggregate, the molten slag for slag coating is held at the repair site of the refractory in the converter by tilting the converter furnace body, and the aggregate is distributed uniformly from the chute with the repair site as a target. To do. Or when repairing locally, it is also possible to throw the aggregate into the local area from the chute. Since the bulk density of the aggregate is 4 (M g / m 3) or more, aggregates are rapidly embedded in the molten slag repair site and fixed to the refractory surface, yet with aggregate each other intertwined firmly The gap between aggregates does not increase. The molten slag with appropriate fluidity and durability sufficiently penetrates and fills the gap, and at the same time functions as a strong binder because it is cooled and solidified by the aggregate. Then, combined with the fact that the volume ratio of aggregate and slag can be maintained in an appropriate range, it is possible to form a highly durable slag coating layer that is well bonded to the converter refractory surface and to perform hot repair. In this case, in order to obtain a good slag coating layer after adding the aggregate, it is preferable to take some sedation and holding time, that is, 5-10 minutes. Normally, the refractory repair parts in the converter are the furnace wall and furnace bottom on the charging side and the output steel side, but the furnace wall surface is arc-shaped, so when holding molten slag for slag coating at the repair part, Partially deep slag pools can be created, and a similar pool can be created at the bottom of the furnace. In particular, when the aggregate is a steel material, the bulk density is large and the cooling ability is large, so that even in this deep slag pool, a slag coating layer can be easily formed as compared with the conventional method.
[0015]
【Example】
In order to compare the present invention with the prior art, a slag coating layer durability test was conducted using a 240-t converter that performs blowing at a steel output temperature of around 1600 ° C. Depending on the bulk density, aggregate refractory waste (bulk density 2), MgO-C brick (bulk density 3), Cr 2 O 3 brick (bulk density 4), pig iron (bulk density 7) It was. The molten slag was adjusted for (T.Fe) concentration in the range of 9 to 20% by weight and used for slag coating. The durability was expressed as the number of heats used, and when the remaining area was reduced to 50%, it was judged that the service life had been reached. When performing hot repair of the converter refractory, the furnace is tilted and adjusted so that the aggregate can be thrown in by placing molten slag in the repair part of the same, and then putting the molten slag in the repair part. The material was put in, held for 10 minutes as it was, and sedated to complete the repair.
[0016]
The durability of the present invention and comparative examples is shown in Table 1 and FIG. This accordance bulk density 4 (M g / m 3) or more at the service of the effect of aggregate was observed if, moreover if the range (T.Fe) concentration in the
[0017]
[Table 1]
[0018]
【The invention's effect】
As described above, according to the present invention (the invention described in claim 1) , the following effects can be obtained. In other words, since aggregates with a bulk density higher than molten slag are used, the aggregates are fixed on the surface of the converter refractory in the slag coating of the converter lining refractory, and a strong aggregate with an appropriate aggregate and slag ratio. A slag coating layer is obtained , and a hot repair method with excellent durability is obtained . Moreover, (T. Fe) because use of excellent melt slag concentration adjusting flowability within the predetermined range, the durability good slag when solidified, further improve the durability of the slag coating layer. Moreover, since the aggregate particle size is defined within a predetermined range, a slag coating layer that hardly generates cracks even when cooled can be obtained . Furthermore, since steel is used as the aggregate, it is dense and has a high bulk density, and is also excellent in cooling capacity, so even if the repair site is a deep pool of molten slag, it has high durability. A coating layer is obtained, which greatly contributes to the effect of hot repair.
[Brief description of the drawings]
FIG. 1 is a graph relating to the durability of a slag coating layer according to an embodiment of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000270374A JP3718624B2 (en) | 2000-09-06 | 2000-09-06 | Hot repair method for converter refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000270374A JP3718624B2 (en) | 2000-09-06 | 2000-09-06 | Hot repair method for converter refractories |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002069524A JP2002069524A (en) | 2002-03-08 |
JP3718624B2 true JP3718624B2 (en) | 2005-11-24 |
Family
ID=18756828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000270374A Expired - Lifetime JP3718624B2 (en) | 2000-09-06 | 2000-09-06 | Hot repair method for converter refractories |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3718624B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104673966A (en) * | 2015-01-22 | 2015-06-03 | 河北钢铁股份有限公司承德分公司 | Method for rapidly maintaining converter lining |
CN115044733A (en) * | 2022-07-13 | 2022-09-13 | 重庆钢铁股份有限公司 | Method for repairing converter cap notch |
-
2000
- 2000-09-06 JP JP2000270374A patent/JP3718624B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002069524A (en) | 2002-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0533689B1 (en) | Dry refractory composition | |
JP2008151425A (en) | Repair method of magnesia carbon brick | |
CA2448361A1 (en) | Method for producing metallic iron | |
JP2001248972A (en) | High durability heat insulator and manufacturing method for the same as well as its application and method for executing the same | |
JP3718624B2 (en) | Hot repair method for converter refractories | |
WO1996027568A1 (en) | Unshaped refractories and gunning refractories prepared therefrom | |
EP0434421A2 (en) | Protective layer for linings in metallurgical furnaces and the like | |
JP4527706B2 (en) | Hot spray repair material | |
CN101006030B (en) | High durability refractory composition | |
JPS5917072B2 (en) | Massive refractories for hot-insertion repair | |
JP3716536B2 (en) | Flame spray repair method | |
JP4516934B2 (en) | Refining vessel repair method | |
JP2004162952A (en) | Hot repairing material and repairing method applying used refractory | |
JP3911716B2 (en) | Thermal spraying repair layer of furnace wall and repair method | |
JP3825312B2 (en) | Slag coating method | |
JP5276620B2 (en) | Baking repair material | |
Ito et al. | Technical development of refractories for steelmaking processes | |
JP3370544B2 (en) | Flame spray repair method | |
JPH05331518A (en) | Method for hot-repairing converter | |
JPH08239274A (en) | Spray repairing material | |
JPS6372474A (en) | Method for repairing ladle bedding part | |
JP3518194B2 (en) | Flame spray repair method for refractories and flame spray repair material for refractories | |
JPS5848510B2 (en) | Hot repair material for fireproof structures | |
JP4731512B2 (en) | Hot repair method for kiln and repair material for kiln used in this method | |
JP2737439B2 (en) | Coating material and method for kiln interior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050905 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3718624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130909 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |