JP3718620B2 - Fuel supply method and supply device for vertical furnace - Google Patents

Fuel supply method and supply device for vertical furnace Download PDF

Info

Publication number
JP3718620B2
JP3718620B2 JP2000173908A JP2000173908A JP3718620B2 JP 3718620 B2 JP3718620 B2 JP 3718620B2 JP 2000173908 A JP2000173908 A JP 2000173908A JP 2000173908 A JP2000173908 A JP 2000173908A JP 3718620 B2 JP3718620 B2 JP 3718620B2
Authority
JP
Japan
Prior art keywords
calorific value
amount
organic matter
fuel
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000173908A
Other languages
Japanese (ja)
Other versions
JP2001348604A (en
Inventor
健太郎 野沢
康夫 吉田
俊哉 小里
勝郎 出島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000173908A priority Critical patent/JP3718620B2/en
Publication of JP2001348604A publication Critical patent/JP2001348604A/en
Application granted granted Critical
Publication of JP3718620B2 publication Critical patent/JP3718620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉等の竪型炉の燃焼部へ供給される燃料として可燃性有機物、特に有機物廃材を利用する際に、これら可燃性有機物の発熱量を簡単な方法で精度よく測定しつつ、燃焼部への投入熱量を適正に制御し、安定して高い燃焼効率が得られる様に改善された方法と装置に関するものであり、この方法および装置は、例えば各種合成樹脂製品や古タイヤ等の有機物廃材を、高炉等の竪型炉の燃料として利用する際に有効に活用できる。
【0002】
【従来の技術】
現在各社で稼動している代表的な竪型冶金炉である高炉では、コークスを主燃料および酸化鉄の還元剤として使用されてきたが、コークスの製造には比較的高品位の石炭を使用しなければならないこと、その製造には多量のエネルギー消費が伴うこと、等の理由から、より安価な補助燃料として重油、微粉炭、天然ガスなどを高炉羽口部から炉内へ直接吹込む方法が既に実用化されている。例えば銑鉄1トンを製造するのに、補助燃料として微粉炭を250kg以上吹込む技術が開発され、コークスを微粉炭で置換することでコークス使用量の大幅な低減を可能にしている。
【0003】
他方、近年可燃性有機物廃材の排出量は膨大な量に上っており、それらの廃材の殆どは埋立投棄や焼却処理されているが、それらの大部分は自然力による分解性が乏しいことから、埋立て投棄場所の確保が困難になっている。また焼却処理するにしても、NOxやダイオキシンなどの大気汚染が社会問題化してくるにつれて、燃焼条件などの厳密な管理が必要となっている。この様なところから、前述の如く可燃性の有機物廃材を高炉等の竪型炉の補助燃料として利用しようとする研究も進められている。
【0004】
例えば特開平10−88210号公報などには、使用済み合成樹脂製ボトル容器が相当の発熱量を有していることに注目し、これを竪型炉の燃料として有効に活用する方法を開示しており、これらの方法は、廃材を燃料として有効利用しつつ廃棄処理に伴う問題を解消することのできる技術として、今後もますます発展していくものと予測される。即ち通常の有機物廃材は炭化水素を主成分とするものであるから、これを高炉羽口から吹込むと、高温の送風中で燃焼し熱源として有効に消費されると共に、COやH2を主体とする高温の還元性ガスを生成し、炉頂から装入される金属酸化物の昇温・還元・溶融に有効に利用できるからである。
【0005】
ところで、これら可燃性有機物廃材を燃料として有効利用しようとする場合に遭遇する最大の問題点は、回収される場所や時期などによって廃材の発熱量が千差万別であることである。そのため、特定の発熱量を有する重油や微粉炭等の化石燃料を使用する場合の様に安定した燃焼制御がむずかしいという点であり、延いては、例えば高炉燃料等として利用した場合に安定操業を維持できなくなるといった問題を生じてくる。
【0006】
そこでこうした問題を改善するため、大企業や地方公共団体で分別収集された可燃性有機物廃材、例えば合成樹脂ボトル廃材や古タイヤのみを選別して利用し、発熱量を均質化することも試みられている。しかしながら、たとえば合成樹脂廃材一つを取ってもその種類は極めて多く、その種類によって発熱量は著しく異なるので、前述の如く分別使用を図ったとしても、可燃性廃材の発熱量を一定の範囲に収めることは実質的に不可能である。
【0007】
そこで、これらの可燃性有機物廃材を燃料として利用するに当たっては、該廃材の発熱量をその都度事前に測定し、その発熱量に応じて該廃材の供給量や燃焼空気量を適正に制御する必要がある。しかしながら、可燃性廃材の種別などは分別回収の場所や時期などによって著しく異なり、該廃材を燃料源として支障なく実用化するにはその発熱量をその都度測定して供給量を制御しなければならず、そのためには複雑且つ高価な設備と制御手段が必要となるので、実用にそぐわない。
【0008】
他方、石油製品の発熱量を測定する方法としては、たとえばJIS K2279に規定されている如く熱研式ボンベ型熱量計を使用する方法が知られている。この方法は、酸素封入された密閉ボンベ内でサンプルを実際に燃焼させ、燃焼前後の温度差から発熱量を測定する方法であり、発熱量自体は正確に求めることができる。ところがこの方法は、バッチ法により燃料の発熱量を実際に測定する方法であり、標準化された燃料の発熱量を測定する方法としては有効に活用できるが、前述の如く化学成分や配合組成などが不特定且つ不均一な可燃性有機物廃材を燃焼装置へ連続的に供給する際に、当該廃材の発熱量測定に利用することは実質的に不可能である。
【0009】
また前記特開平10-88210号公報には、合成樹脂廃材を高炉等の竪型炉へ燃料として吹き込む際に、供給の前段階で合成樹脂廃材を種別や形態別に予め仕分けし、低還元力で低発熱量の合成樹脂廃材に高還元力で高発熱量の合成樹脂廃材を適量配合して使用することにより、コークス並みの発熱量を確保する技術を提案している。しかしこの方法を実現するには、材質選別装置を用いたかなり厳密な仕分け作業を必要とする他、仕分けされた各材質別の発熱量の測定と、適切な配合比率の計算、更には仕分け廃材毎の供給量比の制御などが煩雑で且つ複雑な制御装置が必要となり、設備面の負担増が軽視できない。しかもこの方法は、高発熱量廃材と低発熱量廃材の需給バランスが一定であることを前提として長期操業を実現できる方法であって、上記需給バランスが不均一である場合は長期的対応ができない。
【0010】
更に合成樹脂廃材の仕分け装置として、例えば光学式材質判定機器による光吸収ピークを利用する方法が公知であるが、これらの方法では測定対象物の混合割合まで知ることはできず、しかも測定結果は測定対象物の性状(色や粒径など)にも大きく影響を受けるため、オンラインで発熱量を正確に推定することは殆ど不可能である。
【0011】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、分別回収されているか否かを問わず、可燃性高分子廃材の如き可燃性有機物の発熱量を簡単な方法でほぼ正確に推定可能とし、高炉の如き竪型炉の補助燃料として支障なく有効に活用することのできる方法と装置を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る燃料供給法とは、高炉の如き竪型炉の燃焼部へ供給される燃料として例えば高分子廃材等の可燃性有機物を利用する際に、可燃性有機物の発熱量と、該有機物に中性子を照射した際に生成される熱中性子量との関係を示した検量線を予め求めておき、燃料部へ供給する有機物に中性子を照射し、生成される熱中性子量を上記検量線にあてはめて該有機物の発熱量を算出し、上記有機物の発熱量と燃料部に供給される供給速度から、該有機物由来の単位時間当たりの投入熱量を計算し、上記単位時間当たりの投入熱量を上記供給速度で制御する方法を採用しており、前記有機物を含めた補助燃料全体としての発熱量をほぼ正確に求めることができ、該発熱量に応じて熱量投入速度を制御することにより、燃焼部での発熱量を容易に制御することができるところに要旨を有している。
【0014】
また本発明の燃料供給装置は、上記方法の実施に有効に利用することのできる制御機構を備えたもので、具体的には、竪型炉の燃焼部へ供給される燃料として可燃性有機物を利用する燃料供給装置であって、該有機物の供給ラインに設けられた該有機物の発熱量測定センサーと、該センサーにより測定された発熱量を基に前記有機物の供給量を投入熱量に換算する換算機構と、燃焼部への熱量投入速度を制御する制御機構を備え、
前記発熱量測定センサーが、前記可燃性有機物に中性子を照射して生成される熱中性子量を、可燃性有機物の発熱量と該有機物に中性子を照射した際に生成する熱中性子量との関係を示した検量線にあてはめて該有機物の発熱量を算出する機構であり、該有機物の種類や配合組成などの如何を問わず全体としての投入熱量を簡単且つ正確に制御することができるところに要旨を有している。
【0015】
この装置における前記制御機構として、前記センサーによって測定される発熱量を基に、燃焼部への熱量投入速度の設定値と該燃焼部での実際の発熱量との差を求める差分機構と、該差分機構によって求められる熱量の差を前記熱投入部にフィードバックして熱量投入速度を制御する機能を備えたものを使用すれば、供給される可燃性有機物全体の投入熱量として制御することができる。
【0016】
【発明の実施の形態および実施例】
上記の様に本発明では、可燃性有機物を高炉羽口などへ燃料として供給する際に、該可燃性有機物の発熱量を簡単な方法で正確に測定し、該発熱量に応じて燃料としての供給量を適正に制御して常に安定した燃焼状態と発熱量を維持することのできる技術を提供するものであるが、本発明は、特に可燃性有機物廃材を有効利用し、その発熱量測定に中性子の照射を用いて該中性子が上記有機物廃材に衝突することによって生じる中性子の量から当該有機物廃材の発熱量を求め、燃焼部への熱量投入速度を制御する方法として極めて有効に活用できるので、以下の説明ではこれらを代表的に取り上げて説明を勧める。
【0017】
中性子の照射によって生成する熱中性子量を水分の定量に利用する技術は既に公知であり、熱中性子水分計がこれに相当する。この方法は、水分を含む供試材に中性子を照射した場合、該中性子が、該中性子に対し質量差の大きい金属原子などに衝突したとき、その衝突にもかかわらず中性子の運動エネルギーは殆ど減衰しないが、中性子に対し質量差の小さな水素原子に中性子が衝突した場合は、その衝突により中性子の運動エネルギーは大幅に減衰されて熱中性子が生成する。そして、生成する該熱中性子量は、被測定試料中に含まれる水素原子の量にほぼ比例するので、中性子を被測定試料に照射した後、生成する(運動エネルギーの減衰した)熱中性子の量を水素原子量に換算すれば、該熱中性子量から試料中に含まれる水素原子量をほぼ正確に求めることができるのである。
【0018】
本発明者らは、こうした中性子の特性、即ち水素原子に衝突したときに熱中性子が生成するという特性を活用し、これを可燃性有機物廃材の発熱量の推定に活用できるのではないかと考えた。即ち可燃性有機物廃材は、質量数の小さな水素(H)や炭素(C)を主たる構成元素とするものであり、これら構成元素への中性子の衝突によって生じる熱中性子量と当該可燃性有機物廃材の発熱量の間に一定の相関関係があるのではないかと考え、その線に沿って研究を進めてきた。
【0019】
その結果、後でも詳述する如く、可燃性有機物廃材に中性子を照射したときに生成する熱中性子の量と、当該有機物廃材の発熱量には一定の相関関係があり、特定の測定条件下で生成する熱中性子量と発熱量の関係を標準の関係式(検量線)として求めておき、当該測定条件下で被測定物たる可燃性有機物廃材への照射によって生じる熱中性子量を定量してこれを上記検量線に当てはめれば、当該可燃性有機物廃材の発熱量をほぼ正確に測定できることを確認した。
【0020】
しかも本発明によって求められる熱中性子の定量値は、入射される中性子の影響領域内に存在する廃材の平均値として出力されるので、有機物廃材の送給量に応じて中性子照射量を適正に設定してやれば、バッチ法はもとより連続法に適用した場合でも、被測定試料である廃材の平均的な発熱量をほぼ正確に求めることができるのである。
【0021】
またこの方法は、質量数の小さい水素原子などへの衝突によって生じる運動エネルギーの減衰した熱中性子を定量する方法であり、測定部位にケーシング材や計測機器部材等として存在する金属部材による影響は殆ど受けないので、当該熱中性子の測定機器は可燃性有機物廃材供給ラインの任意の位置に設置することができ、該測定機器に演算機器(熱中性子の定量値を発熱量に換算する機器など)を接続して自動的に発熱量に換算するプログラムを組み込んでおけば、該供給ラインを連続的に輸送される可燃性有機物廃材の有する発熱量を供給熱量として連続的に求めることができる。
【0022】
従って、該演算機器によって求められる有機物廃材の発熱量を燃焼部への投入熱量制御装置へ送信し、該発熱量に応じて有機物廃材由来の投入熱量を制御すれば、燃焼部における可燃性有機物廃材の発熱量を常時適正に制御することが可能となる。
【0023】
しかもこの方法によれば、有機物廃材が単品であるか多種類の混合物であるかの如何を問わず廃材全体としての発熱量の平均値として求めることができるので、従来例の如く有機物廃材の種別などに応じた選別は一切不要となる。
【0024】
図1は、本発明で使用する発熱量推定装置の原理を説明する概略見取り図であり、図中1は測定ヘッドで、該測定ヘッド1には中性子線源2と熱中性子計数管3が設けられている。そして熱中性子計数管3配置位置の上部はカバー4で閉鎖すると共に、中性子線源2と熱中性子計数管3の間には中性子を遮断する黒鉛などからなる遮蔽板5が設けられている。
【0025】
測定ヘッド1やカバー4の構成素材は特に制限されないが、中性子の衝突エネルギーを減衰することがない様、通常は鉄鋼材等の金属材で構成し、中性子線源としては、例えばCf(カルフォルニウム)など、より一般的には252Cf等が使用され、熱中性子計数管3としては3Heカウンターなどが一本もしくは複数本配置される。
【0026】
そして、該測定ヘッド1の上部に一点鎖線で示す如く試料装入箱6を設け、該試料装入箱6内に被測定物である有機物廃材を満たした状態で該有機物廃材に向けて中性子線源2から中性子を投射すると、中性子は有機物廃材を構成する水素原子を主体とする低質量の原子に衝突して熱中性子が生成する。そして、該熱中性子量が飽和するに要する時間保持した後、該熱中性子量を熱中性子計数管3によってカウントする。得られたカウント数値は信号処理装置7へ送られ、この部分で発熱量に換算される。
【0027】
本発明者らは上記の様な測定装置を使用し、下記の条件で様々の合成樹脂廃材について熱中性子のカウント数と発熱量の関係を調べた。
【0028】
(発熱量測定装置の構成)
中性子線源:252Cf(3.7MBq)
計数管 :3Heカウンター(3本)
ヘッド素材(本体およびカバー):鉄製
試料装入箱:200mm×300mm×70mm
(試料)
(1)プラスチック単体5種(ペレット状):PE,PP,PS,PVC,PET
(2)上記単体の同体積混合物:PE+PP,PP+PS,PS+PET,PET+PVC
(3)その他:PEチップ(PE板の破砕物)、発泡スチロール
(測定法)
▲1▼上記試料を鉄製容器内に装入する(混合物の場合は十分に攪拌する)、
▲2▼中性子を10秒間照射し、熱中性子量をカウントする、
▲3▼得られたカウント数を、予め求めておいた各試料の発熱量としてプロットする。
【0029】
結果は図2に示す通りであり、カウントされた熱中性子量と試料の発熱量(単位体積当たり)との間には一定の相関関係が認められる。即ち、ある定められた条件下で測定される熱中性子量のカウント値と、試料の単位体積当たりの発熱量の間には明らかに相関性が認められるので、これを利用すれば、可燃性有機物廃材の発熱量を容易に推定することができる。
【0030】
なお可燃性有機物廃材は、その種別や混合比率などはもとより、破砕片のサイズや形状、発泡状態、充填密度などによって比重も著しく変わる。特に、中実のプラスチック材と発泡スチロールの如き発泡プラスチック材などの比重は著しく異なり、それに伴って発熱量も大幅に変わってくるが、中性子を利用するこの方法では、前述の如く被測定部位における有機物廃材の単位体積当たりの平均値として求められる熱中性子量を発熱量に換算して求める方法であるから、比重差による誤差を生じることもなく、発熱量を正確に求めることができる。
【0031】
なお上記では、プラスチック材の発熱量を測定する場合を例に挙げて説明したが、この方法は、中性子が質量数の小さい元素に対し選択的に作用して熱中性子を生成するという特性を利用するところに特徴を有しているので、前述した様なプラスチック材の他、水素や炭素を主体とする様々の可燃性有機物廃材、例えば古タイヤ、古紙などの廃材の発熱量、あるいは更に低品位炭などの発熱量測定にも同様に利用することができる。
【0032】
また図示例では発熱量測定の原理図として、バッチ的に発熱量を求める場合を例に挙げて説明したが、この方法では、中性子照射による熱中性子定量部として、測定試料が常に所定の密度で存在する領域さえ確保してやれば、単位体積当たりの熱中性子量、延いては発熱量を連続的且つ正確に求めることができるので、例えば可燃性有機物の連続輸送経路内にその様な定密度領域を設け、当該定密度領域に前述した様な測定ヘッドを設置すれば輸送経路内で可燃性有機物の単位体積当たり(あるいは単位質量当たり)の発熱量を連続的に求めることができる。この場合、同じ測定条件の下で検出されるカウント値と発熱量の関係について予め検量線を求めておき、これを演算部に入力すると共に、実測カウント値を該検量線に当てはめて発熱量に換算するコンピューターシステムを組み込んでおけば、瞬時にして輸送廃材の発熱量を知ることができる。
【0033】
従って、発熱量の測定された該有機物廃材の単位体積(または単位質量)当たりの供給量を、前述した方法により求めた当該有機物廃材の発熱量に応じて制御すれば、燃焼部における発熱量を適正に制御することが可能となる。
【0034】
ちなみに測定要素として中性子を使用する本発明において、中性子および熱中性子は減衰することなく鉄鋼材等の金属材を透過するので、連続輸送ラインの外面に沿う様に測定ヘッドの形状を工夫し、該ラインの外面に接して測定ヘッドを付設すれば、中性子の照射と熱中性子の定量、延いては輸送廃材の発熱量を輸送ラインの外部から簡単且つ連続的に把握することができ、該発熱量に応じて燃焼部への投入熱量を制御することによって、燃焼部における発熱量を適正にコントロールすることが可能となる。
【0035】
従って、上記方法を利用して高炉への補助燃料として可燃性有機物廃材を利用する際に、該有機物廃材を炉に投入するに先立って、下記式(1)によって単位時間当たりの投入熱量を逐次計測しておき、所定の投入熱量からのズレがある場合は、有機物廃材供給速度を下記式(2)〜(4)に示す如くフィードバック制御し、高炉羽口部への熱投入速度が所定値から外れない様に制御すれば、操業状態を適正且つ安定に維持することができる。
【0036】
Q=V'×q'……(1)
ΔQ=Q−Q' ……(2)
ΔV=ΔQ/q'……(3)
V=V'+ΔV……(4)
式中、V'は測定i回目における可燃性有機物廃材の供給速度
q'は測定i回目における可燃性有機物廃材の発熱量
Qは測定時の単位時間当たりの投入熱量
Q'は単位時間当たりの操業計画設定値
ΔQは操業計画設定値と実測投入熱量の差分量
ΔVは供給速度の変更指示量
Vはフィードバック後の供給量
【0037】
しかもこの方法を採用すれば、補助燃料として供給される可燃性有機物によって供給される熱量を常時監視できるので、可燃性有機物の発熱量が急変した場合でも、羽口部への投入熱量を瞬時に調整することができ、高炉操業状態を安定に維持することが可能となる。
【0038】
また、可燃性有機物の発熱量毎の仕分け作業や、発熱量調整のための配合作業などが全く不要になることは、前にも説明した通りである。従って本発明は、可燃性有機物廃材を単独で補助燃料として使用する場合はもとより、石炭粉やコークス粉と混合して使用する場合でも、それら混合物全体として投入熱量の制御に利用することができる。
【0039】
例えば図3は、適量の可燃性有機物廃材を石炭粉やコークス粉と配合して高炉羽口部へ供給する際に、上記本発明の方法を利用する場合の概念説明図であり、図中、8は高炉、9は羽口、10は補助燃料槽、11は発熱量測定装置、12はロードセル、13はロータリーバルブ、14は演算・制御装置、15は供給速度変更指令部、16はキャリヤーガス圧力調整器、L1は補助燃料吹込みライン、L2はキャリヤーガスラインを夫々示している。なお図示例では、説明の便宜のため供給速度変更指令部15を演算・制御装置14とは別部位に記載したが、通常は、供給速度変更指令部15も演算・制御装置14内に組込まれることが多い。
【0040】
この設備を用いて補助燃料の供給を行なうに当たっては、有機物廃材などを含む補助燃料を補助燃料槽10に供給し、該燃料槽10の適所に設けられた発熱量測定装置11によって補助燃料の発熱量を計測しつつ、ロータリーバルブ13を通して補助燃料供給ラインL1からキャリヤーガスと共に高炉の羽口9へ供給する。尚キャリヤーガスは、圧力調整器16で調圧された後、補助燃料槽10方向へのキャリヤーガスラインL2方向および補助燃料供給ラインL1方向へ送られる。上記発熱量測定装置11は、図示する如く補助燃料槽10の適所に設けるのが最も一般的であるが、この他、補助燃料槽10よりも下流側の適所に滞留部を設けてその位置に配置することも可能である。
【0041】
この装置を用いて高炉羽口部への補助燃料供給制御を行なうに当たっては、補助燃料槽10内の可燃性有機物の発熱量を発熱量測定装置11により測定し、その信号を演算・制御装置14へ送ると共に、ロータリーバルブ13からの供給量をロードセル12によって連続的に測定し、その信号も演算・制御装置14へ送る。
【0042】
該演算・制御装置14では、それらの信号によって前記図1,2で説明した様に、補助燃料の単位量当たり発熱量を算出すると共に、ロータリーバルブ13からの供給量により羽口9へ送られる投入熱量を算出する。演算・制御装置14には、高炉操業計画に基づいて設定された投入熱量の設定値が入力されており、該演算・制御装置14では、前記式(1)〜(4)でも説明した様に、操業計画に基づいて設定された投入熱量を、実測される投入熱量と比較する。そして、その差およびその時に計測される燃料槽10内の可燃性有機物の発熱量に応じて供給速度変更量が算出され、その信号は速度変更指令部15からロータリーバルブ13の回転数変更および/またはキャリヤーガスの圧力変更として夫々に指示・調整される。
【0043】
この場合、補助燃料槽10の下部にロータリーフィーダやテーブルフィーダを備えたものでは、それらの回転速度で調整することも可能である。また、補助燃料供給速度を羽口側と補助燃料槽間の差圧で制御することも可能であり、この場合は圧縮機や圧力調整弁の開度調整、或いはこれらを適宜組み合わせて実施することも可能である。
【0044】
かくして本発明によれば、こうした投入熱量の計測および操業計画設定値との比較、その差に応じた供給速度の変更指示を連続的もしくは適当な時間を置いて周期的に実行することにより、高炉羽口部への投入熱量を常時安定に維持することができ、ひいては高炉操業の安定性を著しく高めることが可能となる。
【0045】
ちなみに図4(A),(B)は、内容積4,550m3、出銑量9,000トン/日の大型実高炉に、上記図3に示した様な構成の制御設備を適用し、羽口1本吹込みで可燃性有機物の吹込み制御を行なったときの炉内温度の変化を、従来法と対比して示した実験グラフを示したものである。発熱量測定装置としては、図1に示した様な中性子投射装置[中性子線源:252Cf(3.7MBq)、計数管:3Heカウンター(3本)、ヘッド素材(本体およびカバー):鉄製]と熱中性子係数装置、および検量線をベースに単位体積当たりの発熱量に換算する演算装置を備えたものを使用した。また供給する補助燃料としては、石炭粉:0〜20質量%、廃プラスチック:60〜100質量%および古紙:0〜10質量%の混在品をランダムに投入した。
【0046】
図4(A)は、投入熱量制御を行なうことなく、混在品の抜き取りサンプリングを操業開始前にバッチで測定した発熱量をもとに、目標の投入熱量となるように投入速度一定で操業した従来法、図4(B)は、投入熱量の自動制御を実施した本発明の結果を示している。
【0047】
図4(A)からも明らかな様に、投入熱量制御を行なわない従来法では、羽口直上部の炉体に埋め込まれた煉瓦の温度が経時的に著しく変動しており、これは、羽口から炉内へ供給されるC,Hを主体とする可燃成分の単位時間当たりの投入熱量が変動して羽口先でのコークス消費速度が変動し、レースウエイの形状や炉下部ガスの流れがかなり変動したためと思われる。この様な状態では、炉内温度が安定しないばかりか、高炉装入物の降下異常(スリップや棚吊りなど)を起こし易く、安定操業の維持が困難になる。
【0048】
これに対し、本発明の投入熱量制御を実施した図4(B)では、羽口先の炉体埋め込み煉瓦温度によって確認される炉内温度の変化は極めて少なく、高炉操業の安定性を著しく高め得ることを確認できる。
【0049】
【発明の効果】
本発明は以上の様に構成されており、中性子が低質量元素に対して選択的に作用するという特性を活用することにより、多種多様の可燃性有機物の混合物として回収される廃材であっても、種別毎の分別を全く要することなくその発熱量を簡単な手順及び操作で正確に求めることができ、これを高炉の如き竪型炉羽口部への可燃性有機物、とりわけ可燃性高分子廃材の吹込みに利用することにより、有機物廃材の仕分け作業などを一切行なわなくとも、投入熱量を安定に維持することができ、或いは操業計画設定値にほぼ安定に維持することができ、竪型炉の操業安定性を阻害することなく有機物廃材を補助燃料として簡単且つ有効に活用し得ることになった。
【図面の簡単な説明】
【図1】本発明で使用される可燃性有機物の発熱量測定法とその装置を例示する一部破断概略見取り図である。
【図2】図1の装置を用いて得た可燃性有機物の発熱量と熱中性子のカウント数の関係を例示するグラフである。
【図3】本発明を高炉への補助燃料吹込みに利用した場合の制御例を示す説明図である。
【図4】従来法と本発明を利用して補助燃料を供給した場合との羽口上炉体煉瓦温度の変化を示すグラフである。
【符号の説明】
1 測定ヘッド
2 中性子線源
3 熱中性子計数管
4 カバー
5 遮蔽板
6 試料装入箱
7 信号処理装置
8 高炉
9 羽口
10 補助燃料槽
11 発熱量測定装置
12 ロードセル
13 ロータリーバルブ
14 演算・制御装置
15 供給速度変更指令部
16 キャリヤーガス圧力調整器
1 補助燃料吹込みライン
2 キャリヤーガス供給ライン
[0001]
BACKGROUND OF THE INVENTION
In the present invention, when using combustible organic matter, particularly organic waste materials as fuel to be supplied to the combustion section of a vertical furnace such as a blast furnace, the calorific value of these combustible organic matter is accurately measured by a simple method, The present invention relates to an improved method and apparatus for appropriately controlling the amount of heat input to the combustion section and obtaining a stable and high combustion efficiency. This method and apparatus is used for various synthetic resin products, old tires, etc. Organic waste can be used effectively when used as fuel for vertical furnaces such as blast furnaces.
[0002]
[Prior art]
In blast furnaces, which are typical vertical metallurgical furnaces currently in operation at various companies, coke has been used as a main fuel and a reducing agent for iron oxide, but relatively high grade coal is used for coke production. There is a method of directly injecting heavy oil, pulverized coal, natural gas, etc. into the furnace from the blast furnace tuyere as a cheaper auxiliary fuel because of the large amount of energy consumed in the production. Already put into practical use. For example, in order to produce 1 ton of pig iron, a technology for injecting 250 kg or more of pulverized coal as an auxiliary fuel has been developed. By replacing coke with pulverized coal, the amount of coke used can be significantly reduced.
[0003]
On the other hand, in recent years, the amount of combustible organic waste has increased enormously, and most of the waste has been dumped or incinerated, but most of them are poorly degradable by natural forces. It is difficult to secure a landfill site. Even if incineration is performed, strict management of combustion conditions and the like is required as air pollution such as NOx and dioxin becomes a social problem. In view of this, research has been underway to use combustible organic waste as an auxiliary fuel for vertical furnaces such as blast furnaces as described above.
[0004]
For example, Japanese Patent Laid-Open No. 10-88210 and the like disclose that a used synthetic resin bottle container has a considerable calorific value, and discloses a method of effectively using it as fuel for a vertical furnace. These methods are expected to continue to develop as technologies that can solve the problems associated with disposal while effectively using waste materials as fuel. In other words, normal organic waste is mainly composed of hydrocarbons, so when it is blown from the blast furnace tuyere, it is burned in high-temperature air and effectively consumed as a heat source, and CO and H 2 This is because a high-temperature reducing gas mainly composed of NO is generated and can be effectively used for raising the temperature, reducing and melting the metal oxide charged from the top of the furnace.
[0005]
By the way, the biggest problem encountered when trying to effectively use these combustible organic wastes as fuel is that the amount of heat generated by the wastes varies widely depending on the location and timing of recovery. For this reason, stable combustion control is difficult as in the case of using fossil fuels such as heavy oil and pulverized coal having a specific calorific value, and as a result, stable operation is achieved when used as blast furnace fuel, for example. The problem that it becomes impossible to maintain arises.
[0006]
Therefore, in order to improve these problems, it is also attempted to select and use only combustible organic waste materials, such as synthetic resin bottle waste materials and old tires, collected separately by large corporations and local governments, and homogenize the calorific value. ing. However, for example, even if one plastic resin waste is taken, there are many types, and the calorific value varies greatly depending on the type. Therefore, even if separation is used as described above, the calorific value of combustible waste is kept within a certain range. It is virtually impossible to fit.
[0007]
Therefore, when using these combustible organic wastes as fuel, it is necessary to measure the heat generation amount of the waste materials in advance and appropriately control the supply amount of the waste material and the amount of combustion air according to the heat generation amount. There is. However, the type of combustible waste material varies significantly depending on the location and timing of separation and collection, and in order to use the waste material as a fuel source without hindrance, the amount of heat generated must be measured each time to control the supply amount. For this purpose, complicated and expensive equipment and control means are required, which is not suitable for practical use.
[0008]
On the other hand, as a method for measuring the calorific value of petroleum products, for example, a method using a thermal bomb type calorimeter as defined in JIS K2279 is known. This method is a method in which a sample is actually burned in a sealed bomb filled with oxygen, and a calorific value is measured from a temperature difference before and after the combustion, and the calorific value itself can be accurately obtained. However, this method is a method of actually measuring the calorific value of the fuel by the batch method, and can be effectively used as a standardized method of measuring the calorific value of the fuel. When continuously supplying unspecified and non-uniform flammable organic waste materials to the combustion apparatus, it is practically impossible to use the waste materials for the calorific value measurement.
[0009]
In addition, when the synthetic resin waste material is injected as fuel into a vertical furnace such as a blast furnace, the above-mentioned Japanese Patent Application Laid-Open No. 10-88210 sorts the synthetic resin waste material by type and form in advance before supply, and has low reducing power. We are proposing a technology that secures a calorific value equivalent to that of coke by using an appropriate amount of synthetic resin waste material with high reducing power and high calorific value combined with low calorific value synthetic resin waste material. However, in order to realize this method, in addition to requiring a fairly strict sorting operation using a material selection device, measurement of calorific value for each sorted material, calculation of an appropriate blending ratio, and sorting waste The control of the supply amount ratio for each unit is complicated and requires a complicated control device, and an increase in the burden on the facility cannot be neglected. Moreover, this method is a method that can realize long-term operation on the premise that the balance between supply and demand of high calorific value waste and low calorific value waste is constant, and long-term response is not possible when the above demand and supply balance is uneven. .
[0010]
Furthermore, as methods for sorting synthetic resin waste materials, for example, methods using a light absorption peak by an optical material determination device are known, but in these methods, it is impossible to know the mixing ratio of the measurement object, and the measurement result is Since the properties (color, particle size, etc.) of the measurement object are greatly affected, it is almost impossible to accurately estimate the heat generation amount online.
[0011]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to easily reduce the calorific value of flammable organic matter such as flammable polymer waste, regardless of whether it is separately collected or not. It is an object of the present invention to provide a method and apparatus that can be estimated almost accurately by the method and can be effectively used as an auxiliary fuel for a vertical furnace such as a blast furnace without trouble.
[0012]
[Means for Solving the Problems]
The fuel supply method according to the present invention that has solved the above-mentioned problem is that, when a combustible organic material such as polymer waste is used as fuel to be supplied to a combustion section of a vertical furnace such as a blast furnace, combustible A calibration curve showing the relationship between the calorific value of the organic matter and the amount of thermal neutron produced when the organic matter is irradiated with neutrons is obtained in advance, and the organic matter supplied to the fuel part is irradiated with neutrons and generated. Calculate the calorific value of the organic matter by applying the amount of thermal neutrons to the calibration curve, calculate the calorific value per unit time derived from the organic matter from the calorific value of the organic matter and the supply rate supplied to the fuel part, The method of controlling the amount of heat input per unit time at the above supply rate is adopted, and the calorific value of the auxiliary fuel as a whole including the organic matter can be obtained almost accurately, and the calorific value input rate according to the calorific value To control Ri has the spirit where that can be easily controlled amount of heat generated in the combustion portion.
[0014]
The fuel supply apparatus of the present invention is equipped with a control mechanism that can be effectively used for carrying out the above method. Specifically, a combustible organic substance is used as fuel supplied to the combustion section of the vertical furnace. A fuel supply device to be used, a calorific value measurement sensor for the organic substance provided in the organic substance supply line, and a conversion for converting the supply quantity of the organic substance into an input heat quantity based on the calorific value measured by the sensor Equipped with a mechanism and a control mechanism for controlling the rate of heat input to the combustion section,
The calorific value measurement sensor determines the amount of thermal neutron generated by irradiating the combustible organic substance with neutrons, and the relationship between the calorific value of the combustible organic substance and the amount of thermal neutron generated when the organic substance is irradiated with neutrons. It is a mechanism for calculating the calorific value of the organic matter by applying it to the calibration curve shown, and the gist is that the input calorie as a whole can be controlled easily and accurately regardless of the kind or composition of the organic matter. have.
[0015]
As the control mechanism in this apparatus, based on the calorific value measured by the sensor, a difference mechanism for obtaining a difference between the set value of the heat input rate to the combustion part and the actual calorific value in the combustion part, If an apparatus having a function of controlling the heat input rate by feeding back the difference in heat amount obtained by the differential mechanism to the heat input unit can be controlled as the input heat amount of the entire combustible organic substance to be supplied.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, in the present invention, when the combustible organic material is supplied as fuel to the blast furnace tuyere, the calorific value of the combustible organic material is accurately measured by a simple method, and the fuel as the fuel according to the calorific value is measured. While providing a technique that can maintain the stable combustion state and calorific value at all times by appropriately controlling the supply amount, the present invention is particularly effective in using the combustible organic waste and measuring its calorific value. Since the amount of heat generated from the waste organic material can be determined from the amount of neutrons generated by the neutron irradiation when the neutron collides with the organic waste material, it can be used very effectively as a method of controlling the heat input rate to the combustion part. In the following explanation, these are taken up as representatives and recommended.
[0017]
A technique for utilizing the amount of thermal neutrons generated by neutron irradiation for moisture determination is already known, and a thermal neutron moisture meter corresponds to this. In this method, when neutrons are irradiated onto a specimen containing moisture, when the neutrons collide with a metal atom having a large mass difference with respect to the neutrons, the kinetic energy of the neutrons is almost attenuated despite the collision. However, when a neutron collides with a hydrogen atom having a small mass difference with respect to the neutron, the kinetic energy of the neutron is greatly attenuated by the collision, and a thermal neutron is generated. The amount of thermal neutrons to be generated is approximately proportional to the amount of hydrogen atoms contained in the sample to be measured. Therefore, the amount of thermal neutrons generated (with reduced kinetic energy) after irradiating the sample to be measured with neutrons. Is converted into the amount of hydrogen atoms, the amount of hydrogen atoms contained in the sample can be determined almost accurately from the amount of thermal neutrons.
[0018]
The inventors of the present invention have made use of these characteristics of neutrons, that is, the characteristics that thermal neutrons are generated when they collide with hydrogen atoms, and thought that this could be used for estimating the calorific value of combustible organic waste. . In other words, combustible organic waste is mainly composed of hydrogen (H) and carbon (C) having a small mass number. The amount of thermal neutrons generated by neutron collision with these constituent elements and the combustible organic waste I thought that there was a certain correlation between the calorific values, and I have been researching along that line.
[0019]
As a result, as will be described in detail later, there is a certain correlation between the amount of thermal neutrons generated when flammable organic waste is irradiated with neutrons and the amount of heat generated by the organic waste. The relationship between the amount of generated thermal neutrons and the calorific value is obtained as a standard relational expression (calibration curve), and the amount of thermal neutrons generated by irradiation of the combustible organic waste that is the object under measurement is quantified. Was applied to the calibration curve, it was confirmed that the calorific value of the combustible organic waste can be measured almost accurately.
[0020]
In addition, the thermal neutron quantitative value determined by the present invention is output as the average value of the waste material present in the area affected by the incident neutrons, so the neutron irradiation amount is appropriately set according to the amount of organic waste material supplied. Then, even when applied to the continuous method as well as the batch method, the average calorific value of the waste material as the sample to be measured can be obtained almost accurately.
[0021]
In addition, this method is a method for quantifying thermal neutrons with attenuated kinetic energy caused by collisions with hydrogen atoms with a small mass number, and is hardly affected by metal members existing as casing materials or measuring instrument members at the measurement site. The measurement device for thermal neutrons can be installed at any position on the flammable organic material waste supply line, and arithmetic equipment (such as a device that converts the quantitative value of thermal neutrons into calorific value) can be installed in the measurement device. If a program for connecting and automatically converting to a calorific value is incorporated, the calorific value of the combustible organic waste material transported continuously through the supply line can be obtained continuously as the calorific value.
[0022]
Accordingly, if the calorific value of the organic waste material obtained by the computing device is transmitted to the input heat amount control device for the combustion part, and the input heat quantity derived from the organic waste material is controlled according to the calorific value, the combustible organic waste material in the combustion part It is possible to always properly control the amount of generated heat.
[0023]
In addition, according to this method, it is possible to obtain the average value of the calorific value of the entire waste material regardless of whether the organic waste material is a single product or a mixture of various types. There is no need for sorting according to the situation.
[0024]
FIG. 1 is a schematic sketch for explaining the principle of a calorific value estimation apparatus used in the present invention, in which 1 is a measuring head, and the measuring head 1 is provided with a neutron source 2 and a thermal neutron counter 3. ing. The upper part of the position where the thermal neutron counter 3 is arranged is closed with a cover 4, and a shielding plate 5 made of graphite or the like for blocking neutrons is provided between the neutron source 2 and the thermal neutron counter 3.
[0025]
The constituent material of the measuring head 1 and the cover 4 is not particularly limited, but is usually made of a metal material such as steel material so as not to attenuate the collision energy of neutrons. As a neutron source, for example, Cf (calfornium) ) And more generally 252 Cf or the like is used, and the thermal neutron counter 3 is Three One or more He counters are arranged.
[0026]
A sample charging box 6 is provided on the upper portion of the measuring head 1 as indicated by a one-dot chain line, and a neutron beam is directed toward the organic waste material in a state where the sample waste box 6 is filled with the organic waste material to be measured. When neutrons are projected from the source 2, the neutrons collide with low-mass atoms mainly composed of hydrogen atoms that constitute organic waste, and thermal neutrons are generated. Then, after holding the time required for the thermal neutron amount to be saturated, the thermal neutron amount is counted by the thermal neutron counter 3. The obtained count value is sent to the signal processing device 7 and converted into a calorific value at this portion.
[0027]
The inventors of the present invention have used the measuring apparatus as described above and investigated the relationship between the thermal neutron count and the calorific value for various synthetic resin wastes under the following conditions.
[0028]
(Configuration of calorific value measuring device)
Neutron source: 252 Cf (3.7MBq)
Counter tube: Three He counter (3)
Head material (body and cover): Made of iron
Sample loading box: 200 mm x 300 mm x 70 mm
(sample)
(1) Five types of plastic simple substance (pellet shape): PE, PP, PS, PVC, PET
(2) Same volume mixture of the above simple substance: PE + PP, PP + PS, PS + PET, PET + PVC
(3) Others: PE chip (PE board crushed material), Styrofoam
(Measurement method)
(1) The above sample is charged into an iron container (in the case of a mixture, it is sufficiently stirred)
(2) Irradiate neutrons for 10 seconds and count the amount of thermal neutrons.
(3) The obtained count number is plotted as the calorific value of each sample obtained in advance.
[0029]
A result is as showing in FIG. 2, and a fixed correlation is recognized between the amount of thermal neutrons counted and the calorific value (per unit volume) of a sample. In other words, there is a clear correlation between the count value of the thermal neutron quantity measured under a certain condition and the calorific value per unit volume of the sample. The calorific value of the waste material can be easily estimated.
[0030]
In addition, the specific gravity of combustible organic waste materials varies greatly depending on the size and shape of the crushed pieces, the foamed state, the packing density, etc., as well as the type and mixing ratio. In particular, the specific gravity of a solid plastic material and a foamed plastic material such as styrene foam is significantly different, and the calorific value varies greatly with this, but in this method using neutrons, as described above, the organic matter at the site to be measured Since the thermal neutron amount obtained as an average value per unit volume of the waste material is converted into a calorific value, the calorific value can be accurately obtained without causing an error due to a difference in specific gravity.
[0031]
In the above, the case where the calorific value of a plastic material is measured has been described as an example. However, this method uses the characteristic that neutrons selectively act on an element having a small mass number to generate thermal neutrons. In addition to the plastic materials as described above, various combustible organic waste materials mainly composed of hydrogen and carbon, for example, waste heat such as waste tires and waste paper, or even lower quality It can be used in the same way for measuring the calorific value of charcoal.
[0032]
In the illustrated example, the case where the calorific value is obtained batchwise is described as an example of the principle of calorific value measurement, but in this method, the measurement sample is always at a predetermined density as a thermal neutron quantification unit by neutron irradiation. As long as the existing area is secured, the amount of thermal neutrons per unit volume, and hence the calorific value, can be obtained continuously and accurately. For example, such a constant density area is provided in the continuous transport path of combustible organic matter. If a measuring head as described above is installed in the constant density region, the calorific value per unit volume (or per unit mass) of the combustible organic substance can be obtained continuously in the transport route. In this case, a calibration curve is obtained in advance for the relationship between the count value detected under the same measurement conditions and the calorific value, and this is input to the calculation unit, and the measured count value is applied to the calibration curve to obtain the calorific value. If a computer system for conversion is incorporated, the calorific value of transport waste can be obtained instantaneously.
[0033]
Therefore, if the supply amount per unit volume (or unit mass) of the organic waste material whose calorific value is measured is controlled according to the calorific value of the organic waste material obtained by the above-described method, the calorific value in the combustion part is It becomes possible to control appropriately.
[0034]
By the way, in the present invention that uses neutrons as a measurement element, neutrons and thermal neutrons pass through a metal material such as steel material without being attenuated, so the shape of the measurement head is devised along the outer surface of the continuous transport line, If a measuring head is attached in contact with the outer surface of the line, neutron irradiation and thermal neutron quantification, and in turn, the amount of heat generated by transport waste can be easily and continuously grasped from the outside of the transport line. By controlling the amount of heat input to the combustion section according to the above, it becomes possible to appropriately control the heat generation amount in the combustion section.
[0035]
Accordingly, when combustible organic waste is used as auxiliary fuel to the blast furnace using the above method, prior to charging the organic waste into the furnace, the amount of heat input per unit time is sequentially calculated by the following equation (1). If there is a deviation from the predetermined heat input, the organic waste material supply speed is feedback controlled as shown in the following formulas (2) to (4), and the heat input speed to the blast furnace tuyere is a predetermined value. If control is performed so as not to deviate from the above, the operation state can be maintained appropriately and stably.
[0036]
Q = V '× q' …… (1)
ΔQ = Q−Q ′ (2)
ΔV = ΔQ / q '(3)
V = V '+ ΔV (4)
In the formula, V ′ represents the supply rate of combustible organic waste at the i-th measurement.
q ′ is the calorific value of combustible organic waste at the i-th measurement
Q is the amount of heat input per unit time during measurement.
Q 'is the operation plan set value per unit time
ΔQ is the difference between the operation plan set value and the measured input heat
ΔV is the supply speed change command amount
V is the supply amount after feedback
[0037]
Moreover, if this method is adopted, the amount of heat supplied by the combustible organic material supplied as auxiliary fuel can be monitored at all times, so even if the calorific value of the combustible organic material changes suddenly, the amount of heat input to the tuyere is instantaneous. It is possible to adjust the blast furnace operation state stably.
[0038]
In addition, as described above, the sorting work for each calorific value of the combustible organic substance and the blending work for adjusting the calorific value become unnecessary. Therefore, the present invention can be used for controlling the amount of heat input as a whole of the mixture, not only when combustible organic waste is used alone as auxiliary fuel, but also when mixed with coal powder or coke powder.
[0039]
For example, FIG. 3 is a conceptual explanatory diagram in the case of using the method of the present invention when supplying an appropriate amount of combustible organic waste with coal powder or coke powder and supplying it to the blast furnace tuyere, 8 is a blast furnace, 9 is a tuyere, 10 is an auxiliary fuel tank, 11 is a calorific value measuring device, 12 is a load cell, 13 is a rotary valve, 14 is a calculation / control device, 15 is a supply speed change command section, 16 is a carrier gas Pressure regulator, L 1 Is the auxiliary fuel injection line, L 2 Shows a carrier gas line, respectively. In the illustrated example, the supply speed change command unit 15 is described in a different part from the calculation / control device 14 for convenience of explanation, but the supply speed change command unit 15 is also usually incorporated in the calculation / control device 14. There are many cases.
[0040]
In supplying auxiliary fuel using this facility, auxiliary fuel including organic waste is supplied to the auxiliary fuel tank 10, and the heat generated by the calorific value measuring device 11 provided at an appropriate position of the fuel tank 10 is generated. Auxiliary fuel supply line L through the rotary valve 13 while measuring the amount 1 To the blast furnace tuyere 9 together with the carrier gas. The carrier gas is adjusted by the pressure regulator 16, and then the carrier gas line L toward the auxiliary fuel tank 10 is used. 2 Direction and auxiliary fuel supply line L 1 Sent in the direction. The calorific value measuring device 11 is most commonly provided at an appropriate position of the auxiliary fuel tank 10 as shown in the figure, but in addition to this, a retention portion is provided at an appropriate position on the downstream side of the auxiliary fuel tank 10 at that position. It is also possible to arrange.
[0041]
In performing the auxiliary fuel supply control to the blast furnace tuyere using this device, the calorific value of the combustible organic substance in the auxiliary fuel tank 10 is measured by the calorific value measuring device 11, and the signal is calculated and controlled 14. , The supply amount from the rotary valve 13 is continuously measured by the load cell 12, and the signal is also sent to the calculation / control device 14.
[0042]
The calculation / control device 14 calculates the calorific value per unit amount of auxiliary fuel based on those signals and sends it to the tuyere 9 by the supply amount from the rotary valve 13 as described in FIGS. Calculate the input heat. A set value of the input heat amount set based on the blast furnace operation plan is input to the calculation / control device 14, and the calculation / control device 14 as described in the above formulas (1) to (4). The input heat amount set based on the operation plan is compared with the actually input heat amount. Then, the supply speed change amount is calculated according to the difference and the calorific value of the combustible organic matter in the fuel tank 10 measured at that time, and the signal is sent from the speed change command unit 15 to the rotational speed change of the rotary valve 13 and / or Alternatively, each is indicated and adjusted as a change in carrier gas pressure.
[0043]
In this case, in the case where a rotary feeder or a table feeder is provided at the lower part of the auxiliary fuel tank 10, it is possible to adjust the rotational speed thereof. In addition, the auxiliary fuel supply speed can be controlled by the differential pressure between the tuyere side and the auxiliary fuel tank. In this case, the opening degree of the compressor and the pressure regulating valve is adjusted, or these are appropriately combined. Is also possible.
[0044]
Thus, according to the present invention, the measurement of the input heat amount, the comparison with the operation plan set value, and the change instruction of the supply speed according to the difference are executed continuously or periodically with an appropriate time, so that the blast furnace The amount of heat input to the tuyere can be maintained stably at all times, and as a result, the stability of blast furnace operation can be significantly increased.
[0045]
4A and 4B have an internal volume of 4,550 m. Three When a control facility having the structure shown in FIG. 3 is applied to a large actual blast furnace with a yield of 9,000 tons / day, and control of injecting combustible organic matter with a single tuyere is performed. The experimental graph which showed the change of the in-furnace temperature of this compared with the conventional method is shown. As a calorific value measuring device, a neutron projector as shown in FIG. 252 Cf (3.7 MBq), counter: Three A He counter (three), a head material (main body and cover): iron], a thermal neutron coefficient device, and an arithmetic device for converting the calorific value per unit volume based on a calibration curve were used. As auxiliary fuel to be supplied, mixed products of coal powder: 0 to 20% by mass, waste plastic: 60 to 100% by mass and waste paper: 0 to 10% by mass were randomly added.
[0046]
In FIG. 4 (A), without controlling the input heat amount, the sampling of the mixed product was sampled and operated at a constant input speed so as to achieve the target input heat amount based on the calorific value measured in batches before starting the operation. FIG. 4B shows the result of the present invention in which the input heat amount is automatically controlled.
[0047]
As is clear from FIG. 4 (A), in the conventional method in which the input heat amount control is not performed, the temperature of the brick embedded in the furnace body immediately above the tuyere changes significantly with time. The amount of heat input per unit time of combustible components mainly consisting of C and H supplied from the mouth into the furnace fluctuates, and the coke consumption speed at the tuyere tip fluctuates. It seems to have changed considerably. In such a state, not only the temperature in the furnace is not stable, but also a blast furnace charge descending abnormality (slip, shelf hanging, etc.) is likely to occur, making it difficult to maintain stable operation.
[0048]
On the other hand, in FIG. 4 (B) in which the input heat amount control of the present invention is performed, the change in the furnace temperature confirmed by the temperature of the furnace-embedded brick at the tuyere is extremely small, and the stability of the blast furnace operation can be remarkably enhanced. I can confirm that.
[0049]
【The invention's effect】
The present invention is configured as described above, and by utilizing the property that neutrons selectively act on low-mass elements, even waste materials recovered as a mixture of a wide variety of combustible organic substances. The calorific value can be accurately determined by simple procedures and operations without any separation for each type. Can be used to stably maintain the input calorific value without having to sort organic waste materials at all, or to maintain the operation plan set value almost stably. Organic waste materials can be used as auxiliary fuel easily and effectively without hindering the operational stability of the plant.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a partially broken schematic sketch illustrating a calorific value measurement method and apparatus for combustible organic materials used in the present invention.
FIG. 2 is a graph illustrating the relationship between the calorific value of combustible organic matter and the thermal neutron count obtained using the apparatus of FIG.
FIG. 3 is an explanatory diagram showing an example of control when the present invention is used for injecting auxiliary fuel into a blast furnace.
FIG. 4 is a graph showing changes in the tuyere upper brick temperature when the auxiliary fuel is supplied using the conventional method and the present invention.
[Explanation of symbols]
1 Measuring head
2 Neutron source
3 Thermal Neutron Counter
4 Cover
5 Shield plate
6 Sample loading box
7 Signal processor
8 Blast furnace
9 tuyere
10 Auxiliary fuel tank
11 Calorific value measuring device
12 Load cell
13 Rotary valve
14 Arithmetic / Control Device
15 Supply speed change command section
16 Carrier gas pressure regulator
L 1 Auxiliary fuel injection line
L 2 Carrier gas supply line

Claims (4)

竪型炉の燃焼部へ供給される燃料として可燃性有機物を利用する際に、
可燃性有機物の発熱量と、該有機物に中性子を照射した際に生成される熱中性子量との関係を示した検量線を予め求めておき、
燃料部へ供給する有機物に中性子を照射し、生成される熱中性子量を上記検量線にあてはめて該有機物の発熱量を算出し、
上記有機物の発熱量と燃料部に供給される供給速度から、該有機物由来の単位時間当たりの投入熱量を計算し、
上記単位時間当たりの投入熱量を上記供給速度で制御することを特徴とする堅型炉への燃料供給法。
When using combustible organic substances as fuel supplied to the combustion section of a vertical furnace,
Obtain a calibration curve in advance showing the relationship between the calorific value of the combustible organic matter and the amount of thermal neutron produced when the organic matter is irradiated with neutrons,
Irradiate the organic matter to be supplied to the fuel part with neutrons, calculate the calorific value of the organic matter by applying the generated thermal neutron amount to the calibration curve,
From the calorific value of the organic matter and the supply rate supplied to the fuel part, calculate the input heat amount per unit time derived from the organic matter,
A fuel supply method to a solid furnace, wherein the amount of heat input per unit time is controlled at the supply rate .
可燃性有機物の少なくとも一部として有機物廃材を使用する請求項1に記載の燃料供給法。The fuel supply method according to claim 1, wherein an organic waste material is used as at least a part of the combustible organic matter. 竪型炉の燃焼部へ供給される燃料として可燃性有機物を利用する燃料供給装置であって、
該有機物の供給ラインに設けられた該有機物の発熱量測定センサーと、該センサーにより測定された発熱量を基に前記有機物の供給量を投入熱量に換算する換算機構と、燃焼部への熱量投入速度を制御する制御機構を備え
前記発熱量測定センサーが、前記可燃性有機物に中性子を照射して生成される熱中性子量を、可燃性有機物の発熱量と該有機物に中性子を照射した際に生成する熱中性子量との関係を示した検量線にあてはめて該有機物の発熱量を算出するものであることを特徴とする竪型炉への燃料供給装置。
A fuel supply device that uses combustible organic matter as fuel to be supplied to the combustion section of a vertical furnace,
A sensor for measuring the calorific value of the organic substance provided in the supply line of the organic substance, a conversion mechanism for converting the supply quantity of the organic substance into an input calorific value based on the calorific value measured by the sensor, and a calorific value input to the combustion section With a control mechanism to control the speed ,
The calorific value measurement sensor determines the amount of thermal neutron generated by irradiating the combustible organic matter with neutrons, and the relationship between the calorific value of the combustible organic matter and the amount of thermal neutron generated when the organic matter is irradiated with neutrons. by applying a calibration curve showing the fuel supply device to the shaft furnace, characterized in der Rukoto calculates a calorific value of the organic matter.
前記制御機構が、前記センサーによって測定される発熱量を基に、燃焼部への熱量投入速度の設定値と該燃焼部での実際の発熱量との差を求める差分機構と、該差分機構によって求められる熱量の差を前記熱量投入部にフィードバックして熱量投入速度を制御する機能を備えている請求項に記載の装置。Based on the calorific value measured by the sensor, the control mechanism obtains a difference between the setting value of the heat input rate to the combustion part and the actual calorific value in the combustion part, and the difference mechanism The apparatus according to claim 3 , further comprising a function of controlling a heat input rate by feeding back a required heat amount difference to the heat input unit.
JP2000173908A 2000-06-09 2000-06-09 Fuel supply method and supply device for vertical furnace Expired - Fee Related JP3718620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173908A JP3718620B2 (en) 2000-06-09 2000-06-09 Fuel supply method and supply device for vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173908A JP3718620B2 (en) 2000-06-09 2000-06-09 Fuel supply method and supply device for vertical furnace

Publications (2)

Publication Number Publication Date
JP2001348604A JP2001348604A (en) 2001-12-18
JP3718620B2 true JP3718620B2 (en) 2005-11-24

Family

ID=18676044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173908A Expired - Fee Related JP3718620B2 (en) 2000-06-09 2000-06-09 Fuel supply method and supply device for vertical furnace

Country Status (1)

Country Link
JP (1) JP3718620B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332243A1 (en) * 2021-06-28 2024-03-06 JFE Steel Corporation Supply heat quantity estimation method, supply heat quantity estimation device, supply heat quantity estimation program, and blast furnace operation method
CN117413074A (en) * 2021-06-28 2024-01-16 杰富意钢铁株式会社 Method for estimating heat of supply, apparatus for estimating heat of supply, program for estimating heat of supply, and method for operating blast furnace
WO2023276352A1 (en) * 2021-06-28 2023-01-05 Jfeスチール株式会社 Supplied heat quantity estimation method, supplied heat quantity estimation apparatus, supplied heat quantity estimation program, and method for operating blast furnace
WO2023276353A1 (en) * 2021-06-28 2023-01-05 Jfeスチール株式会社 Supply heat quantity estimation method, supply heat quantity estimation device, supply heat quantity estimation program, and blast furnace operation method

Also Published As

Publication number Publication date
JP2001348604A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
Asanuma et al. Development of waste plastics injection process in blast furnace
GB2423079A (en) Combined gasification and plasma treatment of waste
JP3558039B2 (en) Gasification and melting furnace for waste and gasification and melting method
US20140131929A1 (en) Method for operating a blast furnace
Asamany et al. Evaluating the potential of waste plastics as fuel in cement kilns using bench-scale emissions analysis
JP6032088B2 (en) Waste treatment apparatus and method
Lin et al. Inhibition and promotion: The effect of earth alkali metals and operating temperature on particle agglomeration/defluidization during incineration in fluidized bed
Zhou et al. Research on the slagging characteristics of easy to slagging coal in a pilot scale furnace
JP3718620B2 (en) Fuel supply method and supply device for vertical furnace
JP4660874B2 (en) Operation control method for waste two-stage gasification system
CN112322813A (en) Blast furnace tuyere raceway test simulation technology and method
US11572597B2 (en) P process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
Moriya et al. Effect of large amount of CO-injected gaseous reducing agent on combustibility of pulverized coal analyzed with non-contact measurement
JP3183226B2 (en) Gasification and melting furnace for waste and gasification and melting method
Toporov et al. Burning pulverized coal in CO 2 atmosphere at low oxygen concentrations
JP2000192129A (en) Operation of converter
Straka et al. Numerical model of a shaft furnace operation
TW455629B (en) Operation method for shaft furnace to manufacture a pig iron
Liu et al. Experimental studies of ash film fractions based on measurement of cenospheres geometry in pulverized coal combustion
JP3395943B2 (en) Combustion burners used in metallurgical furnaces
JP2015178932A (en) Reforming method of exhaust gas generated from metallurgical furnace and apparatus for the same
Lee et al. Performance Test and Temperature Simulation of Pilot Scale Thermal Plasma System for Fluff SRF Treatment
JP2001108212A (en) Method of operating waste melting furnace
JP3017015B2 (en) Control method of Si concentration in blast furnace hot metal
Cao et al. The combustion efficiencies of the waste plastics as supplemental fuel for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees