JP3718589B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3718589B2
JP3718589B2 JP07723798A JP7723798A JP3718589B2 JP 3718589 B2 JP3718589 B2 JP 3718589B2 JP 07723798 A JP07723798 A JP 07723798A JP 7723798 A JP7723798 A JP 7723798A JP 3718589 B2 JP3718589 B2 JP 3718589B2
Authority
JP
Japan
Prior art keywords
group
compound
charge
substituent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07723798A
Other languages
Japanese (ja)
Other versions
JPH11271996A (en
Inventor
道彦 佐藤
達弥 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP07723798A priority Critical patent/JP3718589B2/en
Publication of JPH11271996A publication Critical patent/JPH11271996A/en
Application granted granted Critical
Publication of JP3718589B2 publication Critical patent/JP3718589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体に関し、詳しくは導電性支持体上に電荷発生物質、電荷輸送物質を構成成分として含む感光層を有する電子写真感光体において、電荷輸送物質として特定のビススチルベン化合物を少なくとも一種含むことを特徴とする電子写真感光体に関するものである。
【0002】
【従来の技術】
近年、電子写真方式の利用は複写機の分野に限らず、印刷版材、スライドフィルム、マイクロフィルム等の従来では写真技術が使われていた分野へ広がり、またレーザーやLED、CRTを光源とする高速プリンターへの応用も検討されている。従って、電子写真感光体に対する要求も高度で幅広いものになりつつある。これまで電子写真方式の感光体としては、無機系の光導電性物質、例えばセレン、硫化カドミウム、酸化亜鉛、シリコン等が知られており、広く研究され、かつ実用化されている。これらの無機物質は多くの長所を持っているのと同時に、種々の欠点をも有している。例えばセレンには製造条件が難しく、熱や機械的衝撃で結晶化しやすいという欠点があり、硫化カドミウムや酸化亜鉛は耐湿性、耐久性に難がある。シリコンについては帯電性の不足や製造上の困難さが指摘されている。更に、セレンや硫化カドミウムには毒性の問題もある。
【0003】
これに対し、有機系の光導電性物質は成膜性がよく、可撓性も優れていて、軽量であり、透明性もよく、適当な増感方法により広範囲の波長域に対する感光体の設計が容易である等の利点を有していることから、次第にその実用化が注目を浴びている。
【0004】
ところで、電子写真技術において使用される感光体は、一般的に基本的な性質として次のような事が要求される。即ち、(1) 暗所におけるコロナ放電に対して帯電性が高いこと、(2) 得られた帯電電荷の暗所での漏洩(暗減衰)が少ないこと、(3) 光の照射によって帯電電荷の散逸(光減衰)が速やかであること、(4) 光照射後の残留電荷が少ないこと等である。
【0005】
しかしながら、今日まで有機系の光導電性物質としてポリビニルカルバゾールを始めとする光高分子導電性物質に関して多くの研究がなされてきたが、これらは必ずしも皮膜性、可撓性、接着性が十分でなく、又上述の感光体としての基本的な性質を十分に具備しているとはいい難い。
【0006】
一方、有機系の低分子光導電性物質については、感光体形成に用いる結着剤等を選択することにより、皮膜性や接着性、可撓性等機械的強度に優れた感光体を得ることができるものの、高感度の特性を保持し得るのに適した化合物を見出し得ないでいる。
【0007】
このような点を改良してより高感度の特性を有する感光体を得るため、電荷発生機能と電荷輸送機能とを異なる光導電性物質に分担させた有機感光体が開発されている。機能分離型と称されているこのような感光体の特徴は、それぞれの機能に適した材料を広い範囲から選択できることであり、任意の性能を有する感光体を容易に作製し得ることから多くの研究が進められてきた。
【0008】
このうち、電荷発生機能を担当する物質としては、フタロシアニン顔料、スクエアリウム色素、アゾ顔料、ペリレン顔料等の多種の物質が検討され、中でもアゾ顔料は多様な分子構造が可能であり、また、高い電荷発生効率が期待できることから広く研究され、実用化も進んでいる。しかしながら、このアゾ顔料においては、分子構造と電荷発生効率の関係は未だに明らかになっていない。膨大な合成研究を積み重ねて、最適の構造を探索しているのが実情であるが、先に掲げた感光体として求められている基本的な性質や高い耐久性等の要求を十分に満足するものは、未だ得られていない。
【0009】
一方、電荷輸送機能を担当する物質には正孔輸送物質と電子輸送物質がある。正孔輸送物質としてはヒドラゾン化合物やスチリル化合物等、電子輸送性物質としては2,4,7−トリニトロ−9−フルオレノン、ジフェノキノン誘導体等多種の物質が検討され、実用化も進んでいるが、こちらも膨大な合成研究を積み重ねて最適の構造を探索しているのが実情である。事実、これまでに多くの改良がなされてきたが、先に掲げた感光体として求められている基本的な性質や高い耐久性等の要求を十分に満足するものは、未だ得られていない。
【0010】
以上述べたように電子写真感光体の作製には種々の改良が成されてきたが、先に掲げた感光体として要求される基本的な性質や高い耐久性等の要求を十分に満足するものは未だ得られていないのが現状である。
【0011】
【発明が解決しようとする課題】
本発明の目的は、帯電電位が高く高感度で、繰返し使用しても諸特性が変化せず、安定した性能を発揮できる電子写真感光体を提供することである。
【0012】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく研究を行なった結果、電荷輸送物質として特定の構造を有するビススチルベン化合物を用いることによって、極めて良好な感度、耐久性を有する感光体が得られることを見出し、本発明に至った。上記の特定構造を有するビススチルベン化合物とは、下記一般式(1)で示される化合物である。
【0013】
【化2】

Figure 0003718589
【0014】
一般式(1)、において、Aは、置換基を有しても良いアルケニル基。R1 、R2は、水素原子、アルキル基、アルケニル基、アラルキル基、アリール基、複素環基を示し、置換基を有していても良い。R3は、アルキル基、アリール基 、複素環基を示し、置換基を有していても良い。但し、R 3 は、置換基を有していてもよいベンジル基を除く。Ar 1 は、メチレン基、アリーレン基を示し、置換基を有していても良い。Ar2は、アリーレン基を示し、置換基を有しても良い。
【0015】
Aの具体例としては、ビニル基、アリル基、プロペニル基、2−ブテニル基、2−メチルアリル基、スチリル基、シンナミル基等のアルケニル基が挙げられる。R1の具体例としては、水素原子、メチル基、エチル基、プロピル基等のアル キル基、アリル基、メタリル基、2−メチル−1−プロペニル基等のアルケニル基、ベンジル基、α−ナフチルメチル基、β−フェニチルエチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基、チエニル基、フリル基、ピロリル基、ピラニル基、ピリジル基等の複素環基を挙げることができ、これらは置環基を有していても良い。置換基の例としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、上述のアルキル基、アリール基、アラルキル基を挙げることができる。R2の具体例としては、上述したアルキル基、アラルキル基、アリール基、複素環基を示し、これらは上述した置換基を有していても良い。R3の具体例としては、ベンジル基を除く上述したアルキル基、アリール基、複素環基を示し、これらは上述した置換基を有していても良い。
【0016】
Ar 1 の具体例としては、メチレン基、o−フェニレン基、m−フェニレン基 、p−フェニレン基等のフェニレン基、ナフチレン基、フェナンスリレン基等のアリーレン基を挙げることができる。Ar2の具体例としては、メチレン基、上述した アリーレン基が挙げられる。
【0017】
【発明の実施の形態】
本発明に係わる一般式(1)で示されるビススチルベン化合物の具体例を以下に例示するが、これらに限定されるものではない。
【0018】
【化3】
Figure 0003718589
【0019】
【化4】
Figure 0003718589
【0020】
【化5】
Figure 0003718589
【0021】
【化6】
Figure 0003718589
【0022】
【化7】
Figure 0003718589
【0023】
【化8】
Figure 0003718589
【0024】
感光体の形態としては種々のものがあるが、本発明はそのいずれの形態においても用いることができる。例えば、導電性支持体上に光導電性物質である電荷発生物質、電荷輸送物質、およびフィルム形成性結着剤樹脂からなる感光層を設けた単層型感光体、導電性支持体上に電荷発生物質と結着剤樹脂からなる電荷発生層と、電荷輸送物質と結着剤樹脂からなる電荷輸送層を設けた積層型の感光体が挙げられる。電荷発生層と電荷輸送層はどちらが上層となっても構わない。また、必要に応じて導電性支持体と感光層の間に下引き層を、感光体表面にオーバーコート層を、積層型感光体の場合は電荷発生層と電荷輸送層との間に中間層を設けることもできる。本発明に係わる化合物を用いて感光体を作製する支持体としては、金属製ドラム、金属板、導電性加工を施した紙、プラスチックフィルムのシート状、ドラム状あるいはベルト状の支持体等が使用される。
【0025】
本発明に用いる電荷発生物質としては、セレン、カドミウム等の金属や、ペリレン酸無水物、ペリレン酸イミド等のペリレン化合物、アントラキノン誘導体、アンスアンスロン誘導体、ジベンズピレンキノン誘導体、ピラントロン誘導体、ビオラントロン誘導体等のアントラキノン顔料または多環キノン顔料、金属フタロシアニン、無金属フタロシアニン等のフタロシアニン化合物、金属ナフタロシアニン、無金属ナフタロシアニン等のナフタロシアニン化合物、ポルフィリン顔料、キナクリドン顔料、シアニン色素、アズレニウム色素等、また、アゾ化合物も用いられる。なかでも、ビスアゾ化合物、トリスアゾ化合物、フタロシアニン化合物を用いたものは、キャリア発生効率が高く、高感度の感光体を提供するため好ましい。
【0026】
例えばアゾ化合物としては、特開昭47−37543号、特開昭53−95033号、特開昭53−132347号、特開昭53−133445号、特開昭54−12742号、特開昭54−20736号、特開昭54−20737号、特開昭54−21728号、特開昭54−22834号、特開昭55−69148号、特開昭55−69654号、特開昭55−79449号、特開昭55−117151号、特開昭56−46237号、特開昭56−116039号、特開昭56−116040号、特開昭56−119134号、特開昭56−143437号、特開昭57−63537号、特開昭57−63538号、特開昭57−63541号、特開昭57−63542号、特開昭57−63549号、特開昭57−66438号、特開昭57−74746号、特開昭57−78542号、特開昭57−78543号、特開昭57−90056号、特開昭57−90057号、特開昭57−90632号、特開昭57−116345号、特開昭57−202349号、特開昭58−4151号、特開昭58−90644号、特開昭58−144358号、特開昭58−177955号、特開昭59−31962号、特開昭59−33253号、特開昭59−71059号、特開昭59−72448号、特開昭59−78356号、特開昭59−136351号、特開昭59−201060号、特開昭60−15642号、特開昭60−140351号、特開昭60−179746号、特開昭61−11754号、特開昭61−90164号、特開昭61−90165号、特開昭61−90166号、特開昭61−112154号、特開昭61−281245号、特開昭61−51063号、特開昭62−267363号、特開昭63−68844号、特開昭63−89866号、特開昭63−139355号、特開昭63−142063号、特開昭63−183450号、特開昭63−282743号、特開昭64−21455号、特開昭64−78259号、特開平1−200267号、特開平1−202757号、特開平1−319754号、特開平2−72372号、特開平2−254467号、特開平3−278063号、特開平4−96068号、特開平4−96069号、特開平4−147265号、特開平5−142841号、特開平5−303226号、特開平6−324504号、特開平7−168379号公報に記載の化合物が挙げられる。
【0027】
上記アゾ化合物の具体例として、以下の表に示す化合物が挙げられるが、これらに限定されるものではない。また、これらの化合物と他の電荷発生物質を併用することも可能である。
【0028】
【表1】
Figure 0003718589
【0029】
【表2】
Figure 0003718589
【0030】
【表3】
Figure 0003718589
【0031】
【表4】
Figure 0003718589
【0032】
【表5】
Figure 0003718589
【0033】
【表6】
Figure 0003718589
【0034】
【表7】
Figure 0003718589
【0035】
【表8】
Figure 0003718589
【0036】
【表9】
Figure 0003718589
【0037】
【表10】
Figure 0003718589
【0038】
【表11】
Figure 0003718589
【0039】
【表12】
Figure 0003718589
【0040】
【表13】
Figure 0003718589
【0041】
【表14】
Figure 0003718589
【0042】
【表15】
Figure 0003718589
【0043】
【表16】
Figure 0003718589
【0044】
【表17】
Figure 0003718589
【0045】
【表18】
Figure 0003718589
【0046】
【表19】
Figure 0003718589
【0047】
【表20】
Figure 0003718589
【0048】
【表21】
Figure 0003718589
【0049】
【表22】
Figure 0003718589
【0050】
【表23】
Figure 0003718589
【0051】
【表24】
Figure 0003718589
【0052】
【表25】
Figure 0003718589
【0053】
【表26】
Figure 0003718589
【0054】
【表27】
Figure 0003718589
【0055】
【表28】
Figure 0003718589
【0056】
【表29】
Figure 0003718589
【0057】
【表30】
Figure 0003718589
【0058】
【表31】
Figure 0003718589
【0059】
【表32】
Figure 0003718589
【0060】
【表33】
Figure 0003718589
【0061】
【表34】
Figure 0003718589
【0062】
【表35】
Figure 0003718589
【0063】
【表36】
Figure 0003718589
【0064】
【表37】
Figure 0003718589
【0065】
【表38】
Figure 0003718589
【0066】
【表39】
Figure 0003718589
【0067】
【表40】
Figure 0003718589
【0068】
【表41】
Figure 0003718589
【0069】
【表42】
Figure 0003718589
【0070】
【表43】
Figure 0003718589
【0071】
【表44】
Figure 0003718589
【0072】
【表45】
Figure 0003718589
【0073】
また、例えばフタロシアニン化合物であれば、無金属フタロシアニン類、チタニルオキシフタロシアニン類、銅フタロシアニン類、アルミニウムフタロシアニン類、ゲルマニウムフタロシアニン類、クロロガリウムフタロシアニン類、クロロインジウムフタロシアニン類、マグネシウムフタロシアニン類、クロロアルミニウムフタロシアニン類、スズフタロシアニン類、バナジルオキシフタロシアニン類、ガリウムフタロシアニン類、亜鉛フタロシアニン類、コバルトフタロシアニン類、ニッケルフタロシアニン類、ヒドロキシガリウムフタロシアニン類、ジクロロチタニルフタロシアニン類、ジフェノキシゲルマニウムフタロシアニン類等が挙げられる。
【0074】
本発明に係わる支持体上へ、感光層を形成するために用いるフィルム形成性結着剤樹脂としては、利用分野に応じて種々のものがあげられる。例えば複写用感光体の用途では、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、酢ビ・クロトン酸共重合体樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アルキッド樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂等が挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂等は感光体としての電位特性に優れている。又、これらの樹脂は、単独あるいは共重合体として1種又は2種以上を混合して用いることができる。これら結着剤樹脂の光導電性物質に対して加える量は、20〜1000重量%が好ましく、50〜500重量%がより好ましい。
【0075】
積層型感光体の場合、電荷発生層に含有されるこれらの樹脂は、電荷発生物質に対して10〜500重量%が好ましく、50〜150重量%がより好ましい。樹脂の比率が高くなりすぎると電荷発生効率が低下し、また樹脂の比率が低くなりすぎると成膜性に問題が生じる。また、電荷輸送層に含有されるこれらの樹脂は、電荷輸送物質に対して20〜1000重量%が好ましく、50〜500重量%がより好ましい。樹脂の比率が高すぎると感度が低下し、また、樹脂の比率が低くなりすぎると繰り返し特性の悪化や塗膜の欠損を招くおそれがある。
【0076】
これらの樹脂の中には、引っ張り、曲げ、圧縮等の機械的強度に弱いものがある。この性質を改良するために、可塑性を与える物質を加えることができる。具体的には、フタル酸エステル(例えばDOP、DBP等)、リン酸エステル(例えばTCP、TOP等)、セバシン酸エステル、アジピン酸エステル、ニトリルゴム、塩素化炭化水素等が挙げられる。これらの物質は、必要以上に添加すると電子写真特性の悪影響を及ぼすので、その割合は結着剤樹脂に対し20重量%以下が好ましい。
【0077】
その他、感光体中への添加物として酸化防止剤やカール防止剤等、塗工性の改良のためレベリング剤等を必要に応じて添加することができる。
【0078】
一般式(1)で示される化合物は、更に他の電荷輸送物質と組み合わせて用いることができる。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報等に示されているオキサジアゾール類、特公昭45−555号公報等に示されているトリフェニルメタン類、特公昭52−4188号公報等に示されているピラゾリン類、特公昭55−42380号公報等に示されているヒドラゾン類、特開昭56−123544号公報等に示されているオキサジアゾール類等を挙げることができる。一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシド等がある。これらの電荷輸送物質は単独または2種以上組み合わせて用いることができる。
【0079】
また、本発明に係わる有機系の光導電性物質と電荷移動錯体を形成し、更に増感効果を増大させる増感剤として、ある種の電子吸引性化合物を添加することもできる。この電子吸引性化合物としては、例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノン等のキノン類、4−ニトロベンズアルデヒド等のアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、3,3′,5,5′−テトラニトロベンゾフェノン等のケトン類、無水フタル酸、4−クロロナフタル酸無水物等の酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリル等のシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリド等のフタリド類等を挙げることができる。
【0080】
本発明に係わる有機系の光導電性物質は、感光体の形態に応じて上記の種々の添加物質と共に適当な溶剤中に溶解又は分散し、その塗布液を先に述べた導電性支持体上に塗布し、乾燥して感光体を製造することができる。
【0081】
塗布溶剤としては、クロロホルム、ジクロロエタン、ジクロロメタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジオキサン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、エチレングリコールジメチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、蟻酸メチル、メチルセロソルブアセテート等のエステル系溶剤、N,N−ジメチルホルムアミド、アセトニトリル、N−メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶剤及びアルコール系溶剤等を挙げることができる。これらの溶剤は、単独または2種以上の混合溶剤として使用することができる。
【0082】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0083】
実施例1
電荷発生物質(例示化合物K−1)を1重量部とポリビニルブチラール樹脂(電気化学工業製、デンカブチラール#3000−K)1重量部を1,2−ジメトキシエタン100重量部に混合し、ペイントコンディショナーによりガラスビーズと共に4時間分散した。こうして得た分散液をアプリケーターにて、アルミ蒸着ポリエステル上に塗布して、膜厚約0.4μmの電荷発生層を形成した。次にビススチルベン化合物(例示化合物CT−3)10重量部、ポリカーボネート樹脂(帝人化成製、パンライトC−1300)10重量部、2,5−ジ−t−ブチルハイドロキノン(以下TBHと略す)0.2重量部をジクロロメタン150重量部に溶解し、上記電荷発生層の上にアプリケーターで塗布して、膜厚約20μmの電荷輸送層を形成した。
【0084】
このようにして作製した積層型感光体を、室温暗中に一昼夜保管した後、静電記録試験装置(川口電機製、SP−428)により電子写真特性評価を行なった。
測定条件:印加電圧−6kV、スタティックNo.3(ターンテーブルの回転スピードモード:10m/min )、照射光照度2ルックス。
その結果、帯電電位V0が−835V、半減露光量E1/2が0.88ルックス・秒と高感度の値を示した。
【0085】
次にこの感光体をアルミニウム製のドラム素管に張り付け、ドラム感光体評価装置(ジェンテック製、シンシア90)により帯電及び光除電の繰り返し特性を評価した。
測定条件:コロナ印加電圧−5.2kV、プロセス速度160mm/s、TCCDモード2、光除電:タングステンランプアレイ。
帯電後の表面電位(帯電電位V0)及び光除電後の表面電位(残留電位Vr)は1回目の帯電電位V0が−843V、残留電位Vrが−47Vに対し、5000回目の帯電電位V0は−856V、残留電位Vrは−46Vであり、繰り返しによる変化が極めて少ないことがわかった。
【0086】
実施例2〜
実施例1のビススチルベン化合物(例示化合物CT−3)の代わりにそれぞれ表46に示す化合物を用いる他は、実施例1と同様にして感光体を作製してその特性を評価した。半減露光量E1/2、1回目と5000回目の帯電電位の差(ΔV0)及び残留電位の差(ΔVr)を表46に示す。
【0087】
【表46】
Figure 0003718589
【0088】
実施例1016
実施例1の電荷発生物質(例示化合物K−1)及び電荷輸送物質(例示化合物CT−3)の代わりにそれぞれ表47に示す例示化合物を用いた他は、実施例1と同様にして感光体を作製してその特性を評価した。結果を表47に示す。
【0089】
【表47】
Figure 0003718589
【0090】
実施例17
X型無金属フタロシアニン1重量部及びポリエステル樹脂(東洋紡製、バイロン220)1重量部をジオキサン100重量部と混合し、ペイントコンディショナー装置でガラスビーズと共に3時間分散した。こうして得た分散液を、アプリケーターにてアルミ蒸着ポリエステル上に塗布して乾燥し、膜厚約0.2μmの電荷発生層を形成した。次にビススチルベン化合物(例示化合物CT−3)を、ポリアリレート樹脂(ユニチカ製、U−ポリマー)と1:1の重量比で混合し、ジクロロエタンを溶媒として10重量%の溶液を作り、上記の電荷発生層の上にアプリケーターで塗布して膜厚約20μmの電荷輸送層を形成した。
【0091】
この様にして作製した積層型感光体について、静電記録試験装置(川口電機製SP−428)を用いて電子写真特性の評価を行なった。
測定条件:印加電圧−6kV、スタティックNo. 3(ターンテーブルの回転スピードモード:10m/min )。その結果、帯電電位(V0)が−776V、半減露光量(E1/2)が1.1ルックス・秒と高感度の値を示した。
【0092】
更に同装置を用いて、帯電−除電(除電光:白色光で400ルックス×1秒照射)を1サイクルとする繰返し使用に対する特性評価を行った。5000回での繰返しによる帯電電位の変化を求めたところ、1回目の帯電電位(V0)−795Vに対し、5000回目の帯電電位(V0)は−790Vであり、繰返しによる電位の低下が少なく安定した特性を示した。また、1回目の半減露光量(E1/2)1.1ルックス・秒に対して5000回目の半減露光量(E1/2)は1.1ルックス・秒と変化がなく、優れた特性を示した。
【0093】
実施例1825
実施例17の電荷輸送物質(例示化合物CT−3)の代わりに、それぞれ表48に示す例示化合物を用いた他は、実施例17と同様にして感光体を作製してその特性を評価した。結果を表48に示す。
【0094】
【表48】
Figure 0003718589
【0095】
以下の実施例および比較例で用いたフタロシアニンのX線回折スペクトルにおけるピーク位置、および表中で用いた略号を表49に示す。
【0096】
【表49】
Figure 0003718589
【0097】
実施例2639
実施例17の電荷発生物質(X型無金属フタロシアニン)及び電荷輸送物質(例示化合物CT−3)の代わりに、それぞれ表50、表51に示す例示化合物を用いた他は、実施例17と同様にして感光体を作製してその特性を評価した。結果を表50、表51に示す。
【0098】
【表50】
Figure 0003718589
【0099】
【表51】
Figure 0003718589
【0100】
実施例40
X型無金属フタロシアニン1重量部とテトラヒドロフラン40重量部を、ペイントコンディショナー装置でガラスビーズと共に4時間分散処理した。こうして得た分散液に、ビススチルベン化合物(例示化合物CT−3)を2.5重量部、ポリカーボネート樹脂(三菱ガス化学製、PCZ−200)10重量部、テトラヒドロフラン60重量部を加え、さらにペイントコンディショナー装置で30分間分散処理を行った後、アプリケーターにてアルミ蒸着ポリエステル上に塗布し、膜厚約15μmの感光体を形成した。この感光体の電子写真特性を、実施例1と同様にして評価した。ただし、印加電圧のみ+5kVに変更した。その結果、1回目の帯電電位(V0)+405V、半減露光量(E1/2)1.4ルックス・秒、5000回繰り返し後の帯電電位(V0)+405V、半減露光量(E1/2)1.3ルックス・秒と、高感度でしかも変化の少ない、優れた特性を示した。
【0101】
実施例4148
実施例40の電荷輸送物質(例示化合物CT−3)の代わりに、それぞれ表52に示す例示化合物を用いた他は、実施例40と同様にして感光体を作製してその特性を評価した。結果を表52に示す。
【0102】
【表52】
Figure 0003718589
【0103】
実施例4962
実施例40の電荷発生物質(X型無金属フタロシアニン)及び電荷輸送物質(例示化合物CT−3)の代わりに、それぞれ表53、表54に示す例示化合物を用いた他は、実施例40と同様にして感光体を作製してその特性を評価した。結果を表53、表54に示す。
【0104】
【表53】
Figure 0003718589
【0105】
【表54】
Figure 0003718589
【0106】
比較例1
電荷輸送物質としてビススチルベン化合物(例示化合物CT−3)の代わりに下記比較化合物(例示化合物CT−67)を用いた他は、実施例1と同様に感光体を作製してその特性を評価した。その結果、1回目の帯電電位は(V0)−800V、 半減露光量(E1/2)は1.9ルックス・秒と比較的良好な感度を示したが、5000回目の帯電電位(V0)は−220V、半減露光量(E1/2)は1.0ルックス・秒であり、繰り返しによる大幅な電位の低下がみられた。
【0107】
【化9】
Figure 0003718589
【0108】
比較例2
電荷輸送物質としてビススチルベン化合物(例示化合物CT−3)の代わりに、前記比較化合物(例示化合物CT−67)を用いた他は、実施例17と同様に感光体を作製してその特性を評価した。その結果、1回目の帯電電位(V0)は −780V、半減露光量(E1/2)は2.6ルックス・秒であり、感度不足であ った。
【0109】
比較例3
電荷輸送物質としてビススチルベン化合物(例示化合物CT−3)の代わりに下記比較化合物(CT−68)を用いた他は、実施例40と同様に感光体を作製してその特性を評価した。その結果、1回目の帯電電位は(V0)+465V、 半減露光量(E1/2)は2.5ルックス・秒と比較的良好な感度を示したが、5 000回目の帯電電位(V0)は+230V、半減露光量(E1/2)は2.1ルックス・秒であり、繰り返しによる大幅な電位の低下がみられた。
【0110】
【化10】
Figure 0003718589
【0111】
【発明の効果】
以上から明らかなように、本発明に係わる特定構造を有するビススチルベン化合物を利用すれば、帯電電位が高く高感度で、繰り返し使用しても諸特性が変化せず安定した性能を発揮できる電子写真感光体を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor, and more specifically, in an electrophotographic photoreceptor having a photosensitive layer containing a charge generation material and a charge transport material as constituents on a conductive support, at least a specific bisstilbene compound is used as the charge transport material. The present invention relates to an electrophotographic photosensitive member characterized by including one kind.
[0002]
[Prior art]
In recent years, the use of electrophotography is not limited to the field of copying machines, but has spread to fields where photographic technology has been used in the past, such as printing plate materials, slide films, and microfilms, and lasers, LEDs, and CRTs are used as light sources. Applications to high-speed printers are also being studied. Therefore, the demand for electrophotographic photoreceptors is becoming high and wide. Conventionally, as an electrophotographic photoreceptor, inorganic photoconductive substances such as selenium, cadmium sulfide, zinc oxide, silicon, and the like are known, and have been extensively studied and put into practical use. These inorganic materials have many advantages and at the same time have various drawbacks. For example, selenium has the disadvantages that the production conditions are difficult and that it is easily crystallized by heat or mechanical impact, and cadmium sulfide and zinc oxide have difficulty in moisture resistance and durability. Silicon has been pointed out to be insufficiently charged and difficult to manufacture. Furthermore, selenium and cadmium sulfide have toxicity problems.
[0003]
In contrast, organic photoconductive materials have good film-forming properties, excellent flexibility, light weight, good transparency, and design of photoreceptors over a wide range of wavelengths by appropriate sensitization methods. Therefore, its practical application is gradually attracting attention.
[0004]
Incidentally, a photoreceptor used in electrophotographic technology generally requires the following as a basic property. That is, (1) High chargeability to corona discharge in dark place, (2) Little leakage (dark decay) of the obtained charged charge in dark place, (3) Charged charge by light irradiation (4) Less residual charge after light irradiation, etc.
[0005]
However, many studies have been made on photopolymer conductive materials such as polyvinyl carbazole as organic photoconductive materials to date. However, these films do not always have sufficient film properties, flexibility and adhesiveness. Also, it is difficult to say that the above-mentioned basic properties as a photoreceptor are sufficiently provided.
[0006]
On the other hand, for organic low-molecular photoconductive substances, a photoconductor excellent in mechanical strength such as film property, adhesiveness and flexibility can be obtained by selecting a binder used for forming the photoconductor. However, it is impossible to find a compound suitable for maintaining high sensitivity characteristics.
[0007]
In order to improve such a point and obtain a photoconductor having higher sensitivity characteristics, an organic photoconductor in which the charge generation function and the charge transport function are shared by different photoconductive materials has been developed. The feature of such a photoconductor, which is called a function separation type, is that a material suitable for each function can be selected from a wide range, and a photoconductor having an arbitrary performance can be easily produced. Research has progressed.
[0008]
Among these, various substances such as phthalocyanine pigments, squalium dyes, azo pigments, and perylene pigments have been studied as substances responsible for the charge generation function, and among them, azo pigments can have various molecular structures and are high. It has been widely researched because of its expectation of charge generation efficiency, and its practical application is also progressing. However, in this azo pigment, the relationship between the molecular structure and the charge generation efficiency has not yet been clarified. The reality is that we are searching for an optimal structure by accumulating a huge amount of synthetic research, but it fully satisfies the basic properties and high durability requirements for the photoreceptors listed above. Things have not been obtained yet.
[0009]
On the other hand, there are a hole transport material and an electron transport material as the materials responsible for the charge transport function. Various substances such as hydrazone compounds and styryl compounds as hole transporting substances and 2,4,7-trinitro-9-fluorenone and diphenoquinone derivatives as electron transporting substances have been studied and put into practical use. However, the fact is that we are searching for the optimal structure by accumulating a huge amount of synthetic research. In fact, many improvements have been made so far, but a product that sufficiently satisfies the basic properties, high durability, and the like required for the above-mentioned photoreceptor has not been obtained.
[0010]
As described above, various improvements have been made in the production of electrophotographic photoreceptors, but they sufficiently satisfy the basic properties and high durability requirements required for the photoreceptors listed above. Is not yet available.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrophotographic photosensitive member that has high charging potential, high sensitivity, does not change various characteristics even when used repeatedly, and can exhibit stable performance.
[0012]
[Means for Solving the Problems]
As a result of studies conducted by the present inventors to achieve the above-mentioned object, it has been found that a photoreceptor having very good sensitivity and durability can be obtained by using a bis-stilbene compound having a specific structure as a charge transport material. The headline, the present invention has been reached. The bis-stilbene compound having the above specific structure is a compound represented by the following general formula (1).
[0013]
[Chemical formula 2]
Figure 0003718589
[0014]
In General Formula (1), A is an alkenyl group which may have a substituent. R 1 and R 2 represent a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, or a heterocyclic group, and may have a substituent. R 3 represents an alkyl group, an aryl group, or a heterocyclic group, and may have a substituent. However, R 3 excludes a benzyl group which may have a substituent. Ar 1 represents a methylene group or an arylene group, and may have a substituent. Ar 2 represents an arylene group and may have a substituent.
[0015]
Specific examples of A include alkenyl groups such as vinyl group, allyl group, propenyl group, 2-butenyl group, 2-methylallyl group, styryl group, and cinnamyl group. Specific examples of R 1 include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, and a propyl group, an alkenyl group such as an allyl group, a methallyl group, and a 2-methyl-1-propenyl group, a benzyl group, and α-naphthyl. Examples include aralkyl groups such as methyl group and β-phenethylethyl group, aryl groups such as phenyl group and naphthyl group, and heterocyclic groups such as thienyl group, furyl group, pyrrolyl group, pyranyl group and pyridyl group. May have a ring-closing group. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group, the above alkyl groups, aryl groups and aralkyl. The group can be mentioned. Specific examples of R 2 include the above-described alkyl group, aralkyl group, aryl group, and heterocyclic group, and these may have the above-described substituent. Specific examples of R 3 include the above-described alkyl group, aryl group, and heterocyclic group excluding the benzyl group , and these may have the above-described substituent.
[0016]
Specific examples of Ar 1 include a methylene group, an o-phenylene group, and an m-phenylene group. And an arylene group such as a phenylene group such as a p-phenylene group, a naphthylene group, and a phenanthrylene group. Specific examples of Ar 2 include a methylene group and the above-described arylene group.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Although the specific example of the bis stilbene compound shown by General formula (1) concerning this invention is illustrated below, it is not limited to these.
[0018]
[Chemical 3]
Figure 0003718589
[0019]
[Formula 4]
Figure 0003718589
[0020]
[Chemical formula 5]
Figure 0003718589
[0021]
[Chemical 6]
Figure 0003718589
[0022]
[Chemical 7]
Figure 0003718589
[0023]
[Chemical 8]
Figure 0003718589
[0024]
Although there are various types of photoreceptors, the present invention can be used in any form thereof. For example, a single-layer type photoreceptor provided with a photosensitive layer made of a photoconductive substance, a charge generating substance, a charge transporting substance, and a film-forming binder resin on a conductive support, and a charge on the conductive support. Examples thereof include a multilayer type photoreceptor provided with a charge generation layer composed of a generation material and a binder resin, and a charge transport layer composed of a charge transport material and a binder resin. Either the charge generation layer or the charge transport layer may be an upper layer. If necessary, an undercoat layer is provided between the conductive support and the photosensitive layer, an overcoat layer is provided on the surface of the photosensitive member, and in the case of a laminated type photosensitive member, an intermediate layer is provided between the charge generation layer and the charge transporting layer. Can also be provided. As a support for producing a photoreceptor using the compound according to the present invention, a metal drum, a metal plate, paper subjected to conductive processing, a sheet of plastic film, a drum or a belt, and the like are used. Is done.
[0025]
Examples of the charge generating material used in the present invention include metals such as selenium and cadmium, perylene compounds such as perylene acid anhydride and perylene imide, anthraquinone derivatives, anthanthrone derivatives, dibenzpyrenequinone derivatives, pyranthrone derivatives, violanthrone derivatives, etc. Anthraquinone pigments or polycyclic quinone pigments, phthalocyanine compounds such as metal phthalocyanine and metal-free phthalocyanine, naphthalocyanine compounds such as metal naphthalocyanine and metal-free naphthalocyanine, porphyrin pigments, quinacridone pigments, cyanine dyes, azurenium dyes, etc. Compounds are also used. Among these, those using a bisazo compound, a trisazo compound, and a phthalocyanine compound are preferable because they have high carrier generation efficiency and provide a highly sensitive photoconductor.
[0026]
Examples of the azo compound include JP-A-47-37543, JP-A-53-95033, JP-A-53-132347, JP-A-53-133445, JP-A-54-12742, and JP-A-54. -20736, JP-A-54-20737, JP-A-54-21728, JP-A-54-22834, JP-A-55-69148, JP-A-55-69654, JP-A-55-79449 JP, 55-117151, JP 56-46237, JP 56-1116039, JP 56-11640, JP 56-119134, JP 56-143437, JP-A-57-63537, JP-A-57-63538, JP-A-57-63541, JP-A-57-63542, JP-A-57-63549, JP-A-57-66438, JP 57-74746, JP 57-78542, JP 57-78543, JP 57-90056, JP 57-90057, JP 57-90632, JP 57 JP-A-116345, JP-A-57-202349, JP-A-58-4151, JP-A-58-90644, JP-A-58-144358, JP-A-58-177955, JP-A-59-31962. JP-A-59-33253, JP-A-59-71059, JP-A-59-72448, JP-A-59-78356, JP-A-59-136351, JP-A-59-201060, JP 60-15642, JP 60-14351, JP 60-179746, JP 61-11754, JP 61-90164, JP 61-90165, JP 61-90166, JP 61-112154, JP 61-281245, JP 61-51063, JP 62-267363, JP 63-68844, JP 63- 89866, JP 63-139355, JP 63-142033, JP 63-183450, JP 63-282743, JP 64-21455, JP 64-78259 JP-A-1-200267, JP-A-1-202757, JP-A-1-319754, JP-A-2-72372, JP-A-2-254467, JP-A-3-27863, JP-A-4-96068, JP-A-4-96069, JP-A-4-147265, JP-A-5-142841, JP-A-5-303226, JP-A-6-324504, JP-A-7-16 The compound described in 8379 gazette is mentioned.
[0027]
Specific examples of the azo compound include compounds shown in the following table, but are not limited thereto. It is also possible to use these compounds in combination with other charge generation materials.
[0028]
[Table 1]
Figure 0003718589
[0029]
[Table 2]
Figure 0003718589
[0030]
[Table 3]
Figure 0003718589
[0031]
[Table 4]
Figure 0003718589
[0032]
[Table 5]
Figure 0003718589
[0033]
[Table 6]
Figure 0003718589
[0034]
[Table 7]
Figure 0003718589
[0035]
[Table 8]
Figure 0003718589
[0036]
[Table 9]
Figure 0003718589
[0037]
[Table 10]
Figure 0003718589
[0038]
[Table 11]
Figure 0003718589
[0039]
[Table 12]
Figure 0003718589
[0040]
[Table 13]
Figure 0003718589
[0041]
[Table 14]
Figure 0003718589
[0042]
[Table 15]
Figure 0003718589
[0043]
[Table 16]
Figure 0003718589
[0044]
[Table 17]
Figure 0003718589
[0045]
[Table 18]
Figure 0003718589
[0046]
[Table 19]
Figure 0003718589
[0047]
[Table 20]
Figure 0003718589
[0048]
[Table 21]
Figure 0003718589
[0049]
[Table 22]
Figure 0003718589
[0050]
[Table 23]
Figure 0003718589
[0051]
[Table 24]
Figure 0003718589
[0052]
[Table 25]
Figure 0003718589
[0053]
[Table 26]
Figure 0003718589
[0054]
[Table 27]
Figure 0003718589
[0055]
[Table 28]
Figure 0003718589
[0056]
[Table 29]
Figure 0003718589
[0057]
[Table 30]
Figure 0003718589
[0058]
[Table 31]
Figure 0003718589
[0059]
[Table 32]
Figure 0003718589
[0060]
[Table 33]
Figure 0003718589
[0061]
[Table 34]
Figure 0003718589
[0062]
[Table 35]
Figure 0003718589
[0063]
[Table 36]
Figure 0003718589
[0064]
[Table 37]
Figure 0003718589
[0065]
[Table 38]
Figure 0003718589
[0066]
[Table 39]
Figure 0003718589
[0067]
[Table 40]
Figure 0003718589
[0068]
[Table 41]
Figure 0003718589
[0069]
[Table 42]
Figure 0003718589
[0070]
[Table 43]
Figure 0003718589
[0071]
[Table 44]
Figure 0003718589
[0072]
[Table 45]
Figure 0003718589
[0073]
Further, for example, for phthalocyanine compounds, metal-free phthalocyanines, titanyloxyphthalocyanines, copper phthalocyanines, aluminum phthalocyanines, germanium phthalocyanines, chlorogallium phthalocyanines, chloroindium phthalocyanines, magnesium phthalocyanines, chloroaluminum phthalocyanines, Examples thereof include tin phthalocyanines, vanadyloxyphthalocyanines, gallium phthalocyanines, zinc phthalocyanines, cobalt phthalocyanines, nickel phthalocyanines, hydroxygallium phthalocyanines, dichlorotitanyl phthalocyanines, diphenoxygermanium phthalocyanines.
[0074]
As the film-forming binder resin used for forming the photosensitive layer on the support according to the present invention, various resins can be used depending on the application field. For example, in the use of photoconductors for copying, polyvinyl chloride resin, polystyrene resin, polyvinyl acetal resin, polysulfone resin, polycarbonate resin, vinyl acetate / crotonic acid copolymer resin, polyester resin, polyphenylene oxide resin, polyarylate resin, alkyd resin. , Acrylic resin, methacrylic resin, phenoxy resin and the like. Among these, polystyrene resin, polyvinyl acetal resin, polycarbonate resin, polyester resin, polyarylate resin, and the like are excellent in potential characteristics as a photoreceptor. These resins can be used alone or as a copolymer in combination of one or more. The amount of the binder resin added to the photoconductive substance is preferably 20 to 1000% by weight, and more preferably 50 to 500% by weight.
[0075]
In the case of a multilayer photoreceptor, these resins contained in the charge generation layer are preferably 10 to 500% by weight, more preferably 50 to 150% by weight, based on the charge generation material. If the resin ratio is too high, the charge generation efficiency is lowered, and if the resin ratio is too low, there is a problem in film formability. In addition, these resins contained in the charge transport layer are preferably 20 to 1000% by weight, more preferably 50 to 500% by weight with respect to the charge transport material. If the ratio of the resin is too high, the sensitivity is lowered, and if the ratio of the resin is too low, the repeated characteristics may be deteriorated or the coating film may be lost.
[0076]
Some of these resins are weak in mechanical strength such as pulling, bending, and compression. To improve this property, a plasticizing substance can be added. Specific examples include phthalic acid esters (for example, DOP and DBP), phosphoric acid esters (for example, TCP and TOP), sebacic acid esters, adipic acid esters, nitrile rubber, chlorinated hydrocarbons, and the like. When these substances are added more than necessary, the electrophotographic characteristics are adversely affected, and therefore the ratio is preferably 20% by weight or less based on the binder resin.
[0077]
In addition, a leveling agent or the like can be added as necessary to improve the coatability, such as an antioxidant or an anti-curl agent, as additives in the photoreceptor.
[0078]
The compound represented by the general formula (1) can be used in combination with another charge transporting substance. Charge transport materials include hole transport materials and electron transport materials. Examples of the former include, for example, oxadiazoles disclosed in Japanese Patent Publication No. 34-5466, triphenylmethanes disclosed in Japanese Patent Publication No. 45-555, and Japanese Patent Publication No. 52-4188. And the like, hydrazones shown in JP-B-55-42380, oxadiazoles shown in JP-A-56-123544, and the like. On the other hand, examples of the electron transport material include chloranil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 1,3,7-trinitrodibenzothiophene, 1,3,7-trinitrodibenzothiophene-5,5-dioxide, and the like. These charge transport materials can be used alone or in combination of two or more.
[0079]
Moreover, a certain electron withdrawing compound can also be added as a sensitizer that forms a charge transfer complex with the organic photoconductive substance according to the present invention and further enhances the sensitization effect. Examples of the electron attractive compound include quinones such as 2,3-dichloro-1,4-naphthoquinone, 1-nitroanthraquinone, 1-chloro-5-nitroanthraquinone, 2-chloroanthraquinone, phenanthrenequinone, 4- Aldehydes such as nitrobenzaldehyde, ketones such as 9-benzoylanthracene, indandione, 3,5-dinitrobenzophenone, 3,3 ', 5,5'-tetranitrobenzophenone, phthalic anhydride, 4-chloronaphthalic anhydride Cyano compounds such as terephthalalmalononitrile, 9-anthrylmethylidenemalononitrile, 4-nitrobenzalmalononitrile, 4- (p-nitrobenzoyloxy) benzalmalononitrile, 3-benzalphthalide, 3- (α-Cyano-p-nitroben Le) phthalide, 3- (alpha-cyano -p- Nitorobenzaru) -4,5,6,7 can be mentioned phthalides such as tetrachloro phthalide like.
[0080]
The organic photoconductive substance according to the present invention is dissolved or dispersed in an appropriate solvent together with the above-mentioned various additive substances according to the form of the photoreceptor, and the coating solution is applied on the conductive support described above. The photosensitive member can be manufactured by applying to a substrate and drying.
[0081]
Coating solvents include: halogenated hydrocarbons such as chloroform, dichloroethane, dichloromethane, trichloroethane, trichloroethylene, chlorobenzene, dichlorobenzene, aromatic hydrocarbons such as benzene, toluene, xylene, dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, ethylene glycol Ether solvents such as dimethyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, methyl isopropyl ketone and cyclohexanone, ester solvents such as ethyl acetate, methyl formate and methyl cellosolve acetate, N, N-dimethylformamide, acetonitrile, N- Examples include aprotic polar solvents such as methyl pyrrolidone and dimethyl sulfoxide, and alcohol solvents. These solvents can be used alone or as a mixed solvent of two or more.
[0082]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these at all.
[0083]
Example 1
A paint conditioner is prepared by mixing 1 part by weight of a charge generating material (Exemplary Compound K-1) and 1 part by weight of polyvinyl butyral resin (Denka Butyral # 3000-K, manufactured by Denki Kagaku Kogyo) into 100 parts by weight of 1,2-dimethoxyethane. To 4 hours with glass beads. The dispersion thus obtained was applied onto an aluminum vapor-deposited polyester with an applicator to form a charge generation layer having a thickness of about 0.4 μm. Next, 10 parts by weight of a bisstilbene compound (exemplary compound CT-3), 10 parts by weight of a polycarbonate resin (manufactured by Teijin Chemicals, Panlite C-1300), 2,5-di-t-butylhydroquinone (hereinafter abbreviated as TBH) 0 .2 parts by weight was dissolved in 150 parts by weight of dichloromethane and applied on the charge generation layer with an applicator to form a charge transport layer having a thickness of about 20 μm.
[0084]
The laminated photoreceptor thus prepared was stored overnight in the dark at room temperature, and then electrophotographic characteristic evaluation was performed using an electrostatic recording test apparatus (manufactured by Kawaguchi Electric Co., Ltd., SP-428).
Measurement conditions: applied voltage -6 kV, static No. 3 (turntable rotation speed mode: 10 m / min), irradiation light illuminance 2 lux.
As a result, the charging potential V0 was -835V, and the half exposure amount E1 / 2 was 0.88 lux.sec.
[0085]
Next, this photoconductor was attached to an aluminum drum base tube, and the repetition characteristics of charging and photostatic removal were evaluated by a drum photoconductor evaluation device (Gentec, Cynthia 90).
Measurement conditions: Corona applied voltage -5.2 kV, process speed 160 mm / s, TCCD mode 2, photostatic discharge: tungsten lamp array.
As for the surface potential after charging (charging potential V0) and the surface potential after photostatic elimination (residual potential Vr), the first charging potential V0 is −843 V, the residual potential Vr is −47 V, and the 5000th charging potential V0 is − The residual potential Vr was 856 V and -46 V, and it was found that the change due to repetition was extremely small.
[0086]
Example 2-9
A photoconductor was prepared in the same manner as in Example 1 except that the compounds shown in Table 46 were used instead of the bisstilbene compound (Exemplary Compound CT-3) of Example 1, and the characteristics thereof were evaluated. Table 46 shows the half-exposure dose E1 / 2, the difference between the first and 5000th charging potentials (ΔV0), and the difference between the residual potentials (ΔVr).
[0087]
[Table 46]
Figure 0003718589
[0088]
Examples 10-16
A photoconductor in the same manner as in Example 1 except that the example compounds shown in Table 47 were used instead of the charge generation material (Example Compound K-1) and the charge transport material (Example Compound CT-3) of Example 1. Were fabricated and their characteristics were evaluated. The results are shown in Table 47.
[0089]
[Table 47]
Figure 0003718589
[0090]
Example 17
1 part by weight of X-type metal-free phthalocyanine and 1 part by weight of a polyester resin (Toyobo, Byron 220) were mixed with 100 parts by weight of dioxane, and dispersed with glass beads in a paint conditioner device for 3 hours. The dispersion thus obtained was applied onto an aluminum vapor-deposited polyester with an applicator and dried to form a charge generation layer having a thickness of about 0.2 μm. Next, the bis-stilbene compound (Exemplary Compound CT-3) is mixed with polyarylate resin (manufactured by Unitika, U-polymer) at a weight ratio of 1: 1 to make a 10% by weight solution using dichloroethane as a solvent. A charge transport layer having a thickness of about 20 μm was formed on the charge generation layer with an applicator.
[0091]
The laminated photoconductors thus produced were evaluated for electrophotographic characteristics using an electrostatic recording test apparatus (SP-428 manufactured by Kawaguchi Electric).
Measurement conditions: applied voltage -6 kV, static No. 3 (turn table rotation speed mode: 10 m / min). As a result, the charging potential (V0) was -776 V, and the half exposure amount (E1 / 2) was 1.1 lux.sec.
[0092]
Further, using the same apparatus, the characteristics were evaluated for repeated use with one cycle of charge-static elimination (static elimination light: 400 lux × 1 second irradiation with white light). When the change in the charging potential by repeating 5000 times was obtained, the charging potential (V0) at 5000 times was -790 V with respect to the first charging potential (V0) -795 V, and the potential decrease due to repetition was stable and stable. Showed the characteristics. In addition, the first half-exposure (E1 / 2) is 1.1 lux · second, and the 5000th half-exposure (E1 / 2) is 1.1 lux · second. It was.
[0093]
Examples 18-25
Instead of the charge transport material of Example 17 (Compound CT-3), the other with respective exemplary compounds shown in Table 48, and its characteristics were evaluated by producing a photoreceptor in the same manner as in Example 17. The results are shown in Table 48.
[0094]
[Table 48]
Figure 0003718589
[0095]
Table 49 shows the peak positions in the X-ray diffraction spectra of phthalocyanines used in the following Examples and Comparative Examples, and the abbreviations used in the table.
[0096]
[Table 49]
Figure 0003718589
[0097]
Examples 26-39
Instead of the charge generation material (X-type metal-free phthalocyanine), and the charge transport material of Example 17 (Compound CT-3), the other with each table 50, exemplary compounds shown in Table 51, as in Example 17 Thus, a photoconductor was prepared and its characteristics were evaluated. The results are shown in Table 50 and Table 51.
[0098]
[Table 50]
Figure 0003718589
[0099]
[Table 51]
Figure 0003718589
[0100]
Example 40
One part by weight of X-type metal-free phthalocyanine and 40 parts by weight of tetrahydrofuran were dispersed with a glass bead for 4 hours using a paint conditioner device. To the dispersion thus obtained, 2.5 parts by weight of a bisstilbene compound (exemplary compound CT-3), 10 parts by weight of a polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., PCZ-200) and 60 parts by weight of tetrahydrofuran are added, and further a paint conditioner. After carrying out a dispersion treatment for 30 minutes with an apparatus, it was applied onto an aluminum vapor-deposited polyester with an applicator to form a photoreceptor having a film thickness of about 15 μm. The electrophotographic characteristics of this photoreceptor were evaluated in the same manner as in Example 1. However, only the applied voltage was changed to +5 kV. As a result, the first charging potential (V 0) +405 V, half-exposure amount (E 1/2) 1.4 lux · second, charging potential (V 0) +405 V after 5,000 repetitions, half-exposure amount (E 1/2) Excellent characteristics with high sensitivity and little change of 3 lux / second.
[0101]
Examples 41-48
Instead of the charge transport material of Example 40 (Compound CT-3), the other with respective exemplary compounds shown in Table 52, and its characteristics were evaluated by producing a photoreceptor in the same manner as in Example 40. The results are shown in Table 52.
[0102]
[Table 52]
Figure 0003718589
[0103]
Examples 49-62
The same procedure as in Example 40 except that the example compounds shown in Table 53 and Table 54 were used instead of the charge generation material (type X metal-free phthalocyanine) and the charge transport material (example compound CT-3) in Example 40 , respectively. Thus, a photoconductor was prepared and its characteristics were evaluated. The results are shown in Table 53 and Table 54.
[0104]
[Table 53]
Figure 0003718589
[0105]
[Table 54]
Figure 0003718589
[0106]
Comparative Example 1
A photoconductor was prepared and evaluated for its characteristics in the same manner as in Example 1 except that the following comparative compound (Exemplary Compound CT-67) was used instead of the bistilbene compound (Exemplary Compound CT-3) as the charge transport material. . As a result, the first charging potential was (V0) -800V, and the half-exposure amount (E1 / 2) was 1.9 lux · second, indicating a relatively good sensitivity, but the 5000th charging potential (V0) was The -220 V, half-exposure dose (E1 / 2) was 1.0 lux.sec., And a significant decrease in potential due to repetition was observed.
[0107]
[Chemical 9]
Figure 0003718589
[0108]
Comparative Example 2
A photoconductor was prepared in the same manner as in Example 17 except that the comparative compound (Exemplary Compound CT-67) was used in place of the bistilbene compound (Exemplary Compound CT-3) as a charge transport material, and its characteristics were evaluated. did. As a result, the first charging potential (V 0) was −780 V, the half exposure amount (E 1/2) was 2.6 lux · second, and the sensitivity was insufficient.
[0109]
Comparative Example 3
A photoconductor was prepared and evaluated for its characteristics in the same manner as in Example 40 except that the following comparative compound (CT-68) was used as the charge transport material instead of the bisstilbene compound (Exemplary Compound CT-3). As a result, the first charging potential was (V0) + 465V, and the half-exposure amount (E1 / 2) was 2.5 lux.sec. +230 V, half-exposure amount (E1 / 2) was 2.1 lux · second, and a significant decrease in potential due to repetition was observed.
[0110]
[Chemical Formula 10]
Figure 0003718589
[0111]
【The invention's effect】
As can be seen from the above, by using the bisstilbene compound having a specific structure according to the present invention, an electrophotography that exhibits a stable performance without changing various characteristics even when used repeatedly with high charge potential and high sensitivity. A photoreceptor can be provided.

Claims (1)

導電性支持体上に電荷発生物質、電荷輸送物質を構成成分として含む感光層を有する電子写真感光体において、電荷輸送物質として下記一般式(1)で示されるビススチルベン化合物を少なくとも一種含むことを特徴とする電子写真感光体。
Figure 0003718589
(一般式(1)、において、Aは、置換基を有しても良いアルケニル基。R1 、R2は、水素原子、アルキル基、アルケニル基、アラルキル基、アリール基、複素環基を示し、置換基を有していても良い。R3は、アルキル基、アリール基、複素環基を示し、置換基を有していても良い。但し、R 3 は、置換基を有していてもよいベンジル基を除く。Ar 1 は、メチレン基、アリーレン基を示し、置換基を有していても良い。Ar2は、アリーレン基を示し、置換基を有しても良い。)
In an electrophotographic photosensitive member having a photosensitive layer containing a charge generating material and a charge transporting material as constituents on a conductive support, at least one bisstilbene compound represented by the following general formula (1) is included as a charge transporting material. An electrophotographic photosensitive member.
Figure 0003718589
(In General Formula (1), A represents an alkenyl group which may have a substituent. R 1 and R 2 represent a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, or a heterocyclic group. R 3 represents an alkyl group, an aryl group, or a heterocyclic group, and may have a substituent, provided that R 3 has a substituent . Ar 1 represents a methylene group or an arylene group, and may have a substituent, Ar 2 represents an arylene group, and may have a substituent.
JP07723798A 1998-03-25 1998-03-25 Electrophotographic photoreceptor Expired - Fee Related JP3718589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07723798A JP3718589B2 (en) 1998-03-25 1998-03-25 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07723798A JP3718589B2 (en) 1998-03-25 1998-03-25 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH11271996A JPH11271996A (en) 1999-10-08
JP3718589B2 true JP3718589B2 (en) 2005-11-24

Family

ID=13628268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07723798A Expired - Fee Related JP3718589B2 (en) 1998-03-25 1998-03-25 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3718589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489891B2 (en) * 2000-01-26 2010-06-23 保土谷化学工業株式会社 Alkenylamine compound and electrophotographic photosensitive member using the same

Also Published As

Publication number Publication date
JPH11271996A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3685581B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3587942B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3730025B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3718589B2 (en) Electrophotographic photoreceptor
JP4170840B2 (en) Electrophotographic photoreceptor
JP3640756B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3736910B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP2003270812A (en) Electrophotographic photoreceptor
JP3647593B2 (en) Electrophotographic photoreceptor
JPH11258840A (en) Electrophotographic photoreceptor
JPH09297416A (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP2001117247A (en) Electrophotographic photoreceptor
JP3556391B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3649846B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JPH11265080A (en) Electrophotographic photoreceptor
JPH1063019A (en) Organic photoconductive material, and electrophotographic photoreceptor using the same
JPH11265079A (en) Electrophotographic photoreceptor
JP4349586B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP3587941B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP3592455B2 (en) Electrophotographic photoreceptor
JP4162807B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP2004045909A (en) Electrophotographic photoreceptor
JP4275655B2 (en) Organic photoconductive compound and electrophotographic photoreceptor using the same
JP2002244318A (en) Method for manufacturing pigment dispersion liquid for manufacture of electrophotographic photoreceptor and electrophotographic photoreceptor which uses the dispersion liquid
JPH0627706A (en) Electrophotographic photosensitive material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees