JP3717485B2 - Resin pellet manufacturing die and resin pellet manufacturing method using the die - Google Patents

Resin pellet manufacturing die and resin pellet manufacturing method using the die Download PDF

Info

Publication number
JP3717485B2
JP3717485B2 JP2003058219A JP2003058219A JP3717485B2 JP 3717485 B2 JP3717485 B2 JP 3717485B2 JP 2003058219 A JP2003058219 A JP 2003058219A JP 2003058219 A JP2003058219 A JP 2003058219A JP 3717485 B2 JP3717485 B2 JP 3717485B2
Authority
JP
Japan
Prior art keywords
die
resin
pellets
pellet
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003058219A
Other languages
Japanese (ja)
Other versions
JP2004268274A (en
Inventor
禎生 川村
敏和 窪田
均 渡辺
智幸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003058219A priority Critical patent/JP3717485B2/en
Publication of JP2004268274A publication Critical patent/JP2004268274A/en
Application granted granted Critical
Publication of JP3717485B2 publication Critical patent/JP3717485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は切断面の形状が均一で形状の揃ったペレットを製造すること。さらに詳しくは、該ペレットを製造できる押し出しダイを提供し、そのダイを用いて形状を均一にした樹脂ペレットの製造方法を提供することである。
【0002】
【従来の技術】
従来から、熱可塑性樹脂ペレットは、溶融した樹脂を押出機やギヤポンプなどを用い、ダイノズルから連続的に押し出すことにより得られた樹脂ストランドを、冷却水や空気で冷却した後、所定の長さにカッティングすることで製造されている。
【0003】
この様なペレット製造工程において、特に生産性をあげようとして吐出量を大きくすると、ダイノズル出口ダイの中心部と末端部では、ダイの中心部から得られたペレットはその断面積が大きく、ダイの末端部から得られたペレットはその断面積が小さくなり、ペレットサイズにバラツキが発生するという問題点があった。この問題を解決するためには、ダイプレートの長さ方向にあわせてペレット化する回転刃の速度を変えることが考えられるが、これは実用的ではない。
【0004】
さらに、中心部分のストランドが太くなると、隣接するストランドと接触し最悪の場合、ストランドが板状になってしまいペレット化が出来なくなることが挙げられる。また、板状にならないまでも、ストランド同士がくっついてしまうため、複数のペレットからなる「双子ペレット」や「三つ子ペレット」、甚だしい場合には3つ以上のペレットが連なる「多連ペレット」などの「癒着ペレット」が発生する。この様な、癒着ペレットの存在はペレット化後の製品の空輸工程における、空輸ラインの閉塞の原因になったり、後工程でペレットの計量を行なう際に、大きな計量誤差を引き起こす原因になる。さらに、ペレット全体の嵩密度に影響を及ぼし、充填、包装の効率が低下するという問題もある。また、末端部分においては、末端部分のストランドが細くなりすぎて、ストランドをカッティングする前にストランドが切れてしまう、所謂「糸切れ」が起きてしまい、これもまたカッティングが不可能となってしまう。特に、癒着ペレット、糸切れなどの不良現象は、吐出量をあげ、ストランドの引き取り速度を速くすると生じ易くなる。
【0005】
一般に、樹脂ペレット製造方法では、各種の課題を抱えているので、種々改良が図られている。例えば、造粒ダイスの面からは、ノズル孔の径及び長さに工夫を凝らし、いかに小粒子ペレットを造粒したか(例えば、特許文献1参照)、あるいはペレット状に切断された造粒物を長時間にわたって安定して製造することができ得るように改良したことなどが散見される(例えば、特許文献2参照)。さらに、樹脂ペレットの製造方法の面からは、回転刃の構造を改良し切粉やカケが少なく、かつ形状の揃った樹脂ペレットの製造方法が開示されているし(例えば、特許文献3参照)、あるいは樹脂粉量、癒着形ペレットの個数、および水分の重量割合が少なく、成形不良の少ないペレット及びその製造方法などが提供されている(例えば、特許文献4参照)。
【0006】
【特許文献1】
特開平6−206219号公報
【特許文献2】
特開平7−156141号公報
【特許文献3】
特開平11−58373号公報
【特許文献4】
特開2000−289022号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点を解決し、太さや大きさにバラツキがなく、常に均一な形状の樹脂ペレットを安定的に高生産で製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために継続的な検討、実験を重ねた結果、形状の不均一なペレットは、各ダイノズルからの樹脂の吐出量のバラツキに起因することが判明した。さらには、この様なバラツキはダイプレート入口からダイノズル出口までの間の圧力損失を適当な範囲に調節することで抑制できることが判明した。
【0009】
すなわち、押出機やギヤポンプを出てからダイノズルにいたるまでの流動状態は、溶融樹脂の粘度が高いことから層流であることがほとんどである。この様な流動状態下では、押出機もしくはギヤポンプ出口からダイノズルまでの間は、その流路中心部の線速度が速く、流路周辺部では線速度が遅い。したがって、ダイノズルでの樹脂ストランドの線速度も中心部が早く、末端部では遅いという事になり、樹脂の吐出量が均一ではなくなるという現象が顕著になる。この様な状態で樹脂ストランドをカッティングしペレット化を行なうと、樹脂ストランドの引き取り速度が一定であるため、ストランドの太さが中心部では太く、末端部では細いという状態になると考えられる。
【0010】
本発明は、かかる検討、結果に基づいてなされたものであり、ダイから溶融状態で押し出された樹脂ストランドを冷却後に、当該ストランドをカッティングする樹脂ペレット製造方法において、少なくとも一列あたりのダイノズル数が30穴以上を有するダイで、ダイの形状をダイの中心部から周辺部に向かっての削り代tを、ダイの中心部のランド長lに対して0.1≦t/l≦0.55のテーパー加工を施したダイを開発し、かつこのダイを使用することによったペレットの製造方法を提供するものである。
なお、削り代tとは、図4に示すとおりダイの中心ノズル位置を0とした場合の最末端ダイノズル位置の削り代をいう。
【0011】
【発明の実施の形態】
本発明に用いられる熱可塑性樹脂として、特に限定されるものではないが、好ましくはスチレン系樹脂に使用される。スイチレン系樹脂としてはスチレンを単独で重合したポリスチレンや、ゴムにより補強された耐衝撃性ポリスチレン、流動パラフィンにより流動性・可塑性が付与されたポリスチレンなどが挙げられる。
【0012】
また、スチレン系の共重合体も使用することも可能であり、この例としてスチレン−アクリロニトリル共重合体、スチレン−メチルメタクリル酸共重合体、これらの共重合体をゴムで補強した耐衝撃性樹脂なども挙げられる。また、イオン重合などで得られるスチレン−ブタジエン共重合体にも使用可能である。
【0013】
さらに、これらのスチレン系樹脂には各種の添加剤が配合されていてもよい。添加剤としてはブロム系,リン系に代表される難燃剤、金属石鹸,脂肪酸アミド,高級脂肪酸などの滑剤、フェノール系,リン系の酸化防止剤や各種の耐侯剤、帯電防止剤、摺動性改良剤、着色剤などが挙げられる。
【0014】
本発明で樹脂ストランドを押し出す工程は、単軸、二軸の押出機を用いたものや、連続塊状重合法による、直接樹脂をギヤポンプで押し出す工程のいずれでも構わない。また、これらを組み合わせ押出機の先端にギヤポンプが設置されているような工程でも構わない。
【0015】
本発明に使用されるダイプレートは、図1〜図3に模式的に示される構造のものを使用することが出来る。1列あたりのダイノズルの数については特に制限されるものではないが、ダイプレートは1列あたり30穴以上を有するダイノズルが開いているものが好ましい。30穴以下では、樹脂ストランドの水平方向流れのバラツキが小さくなり、本発明の効果が顕著ではなくなる。また、ノズルの配置については1列あたり30穴以上という条件であれば、同様のものが2列以上交互に配置されていても問題は無い。ただし、実際にペレットをカッティングすることを考慮した場合、通常ノズルは5列以下、好ましくは3列以下、さらに好ましくは2列以下の配置とする。
【0016】
ダイノズルは通常、直径dとランド長lでそのプロフィールが記述される。本発明におけるノズル径dは特に制限が無い。ノズル径dはダイプレートでのノズル配置ピッチpとペレット化した後に求められるペレット品の特性、即ちペレット品の順調な空輸、正確な計量、充填、包装の効率など、および樹脂ストランドの溶融物性から決定される。つまり、ノズル径が大きければダイに於ける圧力損失は減少するが、結果として得られるペレットが太いものとなり、ペレット表面積が小さくなる、嵩比重が小さくなるなどの問題点が発生する。一方、ノズル径を小さくした場合は、ダイにおける圧力損失が大きくなり、上流工程の押し出し機やギヤポンプの負荷の増大や、ダイノズルにおけるメルトフラクチャーの発生に伴うペレット化不可などの問題点がある。
【0017】
このダイノズルは最終的に目標とするペレット形状によっても異なるが、通常直径dは2.5〜5.0mmで、隣り合うノズルとの間隔(ピッチ)pは3〜15mmである。また、ダイノズルのランド長lは5〜20mm程度のものが好ましく使われる。
【0018】
ダイプレートの材質については特に限定されるものではないが、ステンレススチールが主として用いられる。
【0019】
本発明で使用したダイプレートの実施の形態を図4に示す。先端面は、中央100mmが水平であり、そこから末端のダイノズルまでの423mmの部分にテーパー加工を施したものである。テーパーはダイプレート中央部からの削り代tと同義である。また、1列あたりのダイノズルの数は90穴、ノズル径はd=4.4mm、ピッチはp=10mm、ランド長はl=12mmであった。中央の水平部は、必ずしも必要なものではない。本発明で肝要なのは、ダイの中心部から末端部に向かってテーパー加工が施されていることである。
【0020】
【作用】
従来の技術では、ダイのノズル径やランド長、およびその加工方法などにノウハウがあったが、ダイプレートのテーパー(ダイプレート中央部からの削り代t)とペレット形状についての関係については知られていなかった。本発明はダイプレートにt/lが0.1から0.55というテーパー加工を施すことで、均一な形状の樹脂ペレットを安定的に高生産で製造することが可能となった。
【0021】
【実施例】
以下、本発明を詳しい実施例に基づいて説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
【0022】
本発明で使用したダイプレートの例を図4に示す。先端面は、中央100mmが水平であり、そこから末端のダイノズルまでの423mmの部分にテーパー加工を施したものである。また、1列あたりのダイノズルの数は90穴、ノズル径はd=4.4mm、ピッチはp=10mm、中央部のランド長はl=12mmであった。そして以下の実施例ではtを変えて実施した。
【0023】
また、本発明の評価では、得られたペレットは正確な真円ではないので、その形状を定義するために、ペレット切断面の長径と短径を測定し、ペレット切断面は楕円形であるものとして、ペレット断面積を算出した。さらに、ダイプレート長さ方向のバラツキを評価するために、ダイプレートを図5に示したとおり長さ方向に8つのセクションに分けて、その各々のセクションから得られたペレットをサンプリングし、その断面積を測定した。各セクションでのペレット形状の代表値としては、サンプリングしたペレットの平均断面積を用いた。これらペレットの断面積のバラツキを評価するために、以下の式で定義される面積偏差を用いた。すなわち、面積偏差=(各セクションでの平均断面積−全ペレットの平均断面積)
【0024】
実施例1
実施例、比較例ともに塊状連続重合法で未反応の溶剤を含むポリスチレン樹脂液を温度230℃、真空条件下で脱揮し、得られた樹脂を温度265℃まで加熱した上で、ギヤポンプを用い8.4トン/時間で、t=2.0mm、t/l=0.17の形状ダイプレートから押出した。得られた樹脂ストランドを温度60℃の冷却水で冷却したのち、ペレット化した。評価の結果を表1に示した。
【0025】
比較例1
実施例1と同一の押出条件で、かつノズル径、ランド長はまったく同様でテーパー加工のみt=0mm、t/l=0とし、溶融したポリスチレン樹脂を用いて実施し、得られたペレットの形状を評価した。評価結果を表2に示した。
【0026】
実施例2
実施例1と同一の押出条件で、かつノズル径、ランド長はまったく同様でテーパー加工のみt=3.5、つまりt/l=0.29としたダイプレートを用いて、実施し、得られたペレットの形状を評価した。評価結果を表3に示した。
【0027】
これらの実施例、比較例の各セクションでの面積偏差を表4にまとめた。表4の結果からも明らかなように、t/l=0よりも0.17、0.29とすることによってより各セクションでの面積偏差が小さくなることが分かる。
【0028】
【表1】

Figure 0003717485
【0029】
【表2】
Figure 0003717485
【0030】
【表3】
Figure 0003717485
【0031】
【表4】
Figure 0003717485
【0032】
【発明の効果】
表4の結果からも明らかなように、ダイの中心部から周辺部に向かっての削り代tを、ダイの中心部のランド長lに対して0.1≦t/l≦0.55とするテーパー加工を施したダイを使用することによる本発明の効果は非常に大きく、樹脂ストランドの太さと、ダイプレートの長さ方向の吐出量を調整することができ、より断面積の均一なペレットを得ることが出来た。これにより、従来とほとんど同様のペレット化工程で、従来より優れた生産性を図ることが可能となり、合成樹脂製造・加工分野での価値はきわめて高い。
【図面の簡単な説明】
【図1】 模式的なダイプレートの正面図
【図2】 模式的なダイプレート長手方向水平断面図
【図3】 模式的なダイプレート短手方向縦断面図
【図4】 本発明で使用した模式的なダイプレートの正面図
【図5】 本発明で使用した模式的なダイプレートのセクション分け概念図[0001]
BACKGROUND OF THE INVENTION
The present invention manufactures pellets having a uniform cut surface and a uniform shape. More specifically, an extrusion die capable of producing the pellet is provided, and a method for producing a resin pellet having a uniform shape using the die is provided.
[0002]
[Prior art]
Conventionally, a thermoplastic resin pellet has a predetermined length after cooling a resin strand obtained by continuously extruding a molten resin from a die nozzle using an extruder or a gear pump with cooling water or air. Manufactured by cutting.
[0003]
In such a pellet manufacturing process, when the discharge rate is increased in order to increase productivity, the pellet obtained from the center of the die has a large cross-sectional area at the center and the end of the die nozzle exit die. The pellet obtained from the end portion has a problem in that its cross-sectional area is reduced and the pellet size varies. In order to solve this problem, it is conceivable to change the speed of the rotary blade for pelletizing in accordance with the length direction of the die plate, but this is not practical.
[0004]
Furthermore, when the strand at the center portion becomes thick, it comes into contact with adjacent strands, and in the worst case, the strand becomes plate-shaped and cannot be pelletized. In addition, since the strands stick to each other even if they are not plate-shaped, such as “twin pellets” or “triplet pellets” composed of a plurality of pellets, and “multiple pellets” in which three or more pellets are connected in extreme cases "Adhesion pellets" are generated. The presence of such adhesion pellets causes blockage of the air transportation line in the air transportation process of the pelletized product, and causes a large measurement error when pellets are weighed in the subsequent process. Furthermore, the bulk density of the whole pellet is affected, and there is a problem that the efficiency of filling and packaging is lowered. In addition, at the end portion, the strand at the end portion becomes too thin, so that the strand breaks before cutting the strand, so-called “thread breakage” occurs, which also makes cutting impossible. . In particular, defective phenomena such as adhesion pellets and thread breakage tend to occur when the discharge rate is increased and the strand take-up speed is increased.
[0005]
In general, the resin pellet manufacturing method has various problems, and various improvements have been made. For example, from the surface of the granulation die, the diameter and length of the nozzle holes are devised, how small particle pellets are granulated (for example, see Patent Document 1), or granulated material cut into pellets In some cases, it has been improved so that it can be manufactured stably over a long period of time (see, for example, Patent Document 2). Furthermore, from the viewpoint of the method of manufacturing resin pellets, a method of manufacturing resin pellets with improved shape of the rotary blade, less chips and chips, and a uniform shape is disclosed (for example, see Patent Document 3). Alternatively, a pellet having a small amount of resin powder, a number of adhesion-type pellets, and a weight ratio of moisture and a small molding defect and a manufacturing method thereof are provided (see, for example, Patent Document 4).
[0006]
[Patent Document 1]
JP-A-6-206219 [Patent Document 2]
JP 7-156141 A [Patent Document 3]
JP 11-58373 A [Patent Document 4]
JP 2000-289022 A [0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method for stably and stably producing resin pellets having a uniform shape without any variation in thickness and size.
[0008]
[Means for Solving the Problems]
As a result of continuous examinations and experiments to solve the above problems, the present inventors have found that pellets with non-uniform shapes are caused by variations in the amount of resin discharged from each die nozzle. . Furthermore, it has been found that such variation can be suppressed by adjusting the pressure loss between the die plate inlet and the die nozzle outlet to an appropriate range.
[0009]
That is, the flow state from the exit of the extruder or gear pump to the die nozzle is mostly a laminar flow because the viscosity of the molten resin is high. Under such a flow state, between the extruder or gear pump outlet and the die nozzle, the linear velocity at the center of the flow channel is high, and the linear velocity is low at the periphery of the flow channel. Therefore, the linear velocity of the resin strand at the die nozzle is also fast at the center and slow at the end, and the phenomenon that the resin discharge amount is not uniform becomes remarkable. When the resin strand is cut and pelletized in such a state, the take-up speed of the resin strand is constant, so that it is considered that the strand is thick at the center and thin at the end.
[0010]
The present invention has been made on the basis of such examinations and results. In the resin pellet manufacturing method of cutting a resin strand extruded in a molten state from a die and then cutting the strand, at least 30 die nozzles per row are provided. In a die having holes or more, the cutting allowance t of the die shape from the central part of the die toward the peripheral part is 0.1 ≦ t / l ≦ 0.55 with respect to the land length l of the central part of the die. A taper-processed die is developed, and a method for producing pellets by using this die is provided.
The cutting allowance t is the cutting allowance of the most distal die nozzle position when the center nozzle position of the die is 0 as shown in FIG.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Although it does not specifically limit as a thermoplastic resin used for this invention, Preferably it is used for a styrene resin. Examples of the water-based resin include polystyrene obtained by polymerizing styrene alone, impact-resistant polystyrene reinforced by rubber, polystyrene imparted with fluidity and plasticity by liquid paraffin, and the like.
[0012]
Styrene copolymers can also be used. Examples thereof include styrene-acrylonitrile copolymers, styrene-methyl methacrylic acid copolymers, and impact-resistant resins obtained by reinforcing these copolymers with rubber. And so on. It can also be used for styrene-butadiene copolymers obtained by ion polymerization.
[0013]
Furthermore, various additives may be blended with these styrene resins. Additives include flame retardants typified by bromine and phosphorus, lubricants such as metal soaps, fatty acid amides and higher fatty acids, phenolic and phosphorus antioxidants, various anti-mold agents, antistatic agents, and sliding properties. Examples include improvers and colorants.
[0014]
In the present invention, the step of extruding the resin strand may be any one using a single-screw or twin-screw extruder or a step of directly extruding the resin with a gear pump by a continuous bulk polymerization method. Moreover, a process in which a gear pump is installed at the tip of the extruder that combines these may be used.
[0015]
As the die plate used in the present invention, one having a structure schematically shown in FIGS. 1 to 3 can be used. The number of die nozzles per row is not particularly limited, but the die plate is preferably a die plate having 30 or more holes per row. If the number of holes is 30 holes or less, the variation in the horizontal flow of the resin strands becomes small, and the effect of the present invention is not remarkable. Further, as long as the nozzle arrangement is 30 holes or more per row, there is no problem even if two or more similar nozzles are alternately arranged. However, in consideration of actually cutting the pellet, the nozzles are usually arranged in 5 rows or less, preferably 3 rows or less, more preferably 2 rows or less.
[0016]
A die nozzle is usually described by a profile with a diameter d and a land length l. The nozzle diameter d in the present invention is not particularly limited. The nozzle diameter d depends on the nozzle arrangement pitch p on the die plate and the characteristics of the pellet product required after pelletization, that is, smooth air transportation of the pellet product, accurate weighing, filling, packaging efficiency, etc., and the melt properties of the resin strand It is determined. That is, if the nozzle diameter is large, the pressure loss in the die is reduced, but the resulting pellet becomes thick, causing problems such as a small pellet surface area and a small bulk specific gravity. On the other hand, when the nozzle diameter is reduced, the pressure loss in the die increases, and there are problems such as an increase in the load on the extruder and gear pump in the upstream process and the inability to pelletize due to the occurrence of melt fracture in the die nozzle.
[0017]
Although this die nozzle varies depending on the final target pellet shape, the diameter d is usually 2.5 to 5.0 mm, and the interval (pitch) p between adjacent nozzles is 3 to 15 mm. The die nozzle land length l is preferably about 5 to 20 mm.
[0018]
The material of the die plate is not particularly limited, but stainless steel is mainly used.
[0019]
An embodiment of the die plate used in the present invention is shown in FIG. The front end surface is horizontal at the center 100 mm, and a taper process is applied to a 423 mm portion from there to the end die nozzle. The taper is synonymous with the machining allowance t from the center of the die plate. The number of die nozzles per row was 90 holes, the nozzle diameter was d = 4.4 mm, the pitch was p = 10 mm, and the land length was l = 12 mm. The central horizontal portion is not always necessary. What is important in the present invention is that the taper is applied from the center of the die toward the end.
[0020]
[Action]
In the prior art, there was know-how in the die nozzle diameter, land length, and processing method, but the relationship between the die plate taper (the machining allowance t from the center of the die plate) and the pellet shape is known. It wasn't. According to the present invention, it is possible to stably produce resin pellets having a uniform shape with high production by performing taper processing with a t / l of 0.1 to 0.55 on the die plate.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated based on a detailed Example, this invention is not restrict | limited at all by these Examples.
[0022]
An example of the die plate used in the present invention is shown in FIG. The front end surface is horizontal at the center 100 mm, and a taper process is applied to a 423 mm portion from there to the end die nozzle. The number of die nozzles per row was 90 holes, the nozzle diameter was d = 4.4 mm, the pitch was p = 10 mm, and the land length at the center was 1 = 12 mm. In the following examples, t was changed.
[0023]
In the evaluation of the present invention, since the obtained pellet is not an exact circle, in order to define its shape, the major axis and minor axis of the pellet cut surface are measured, and the pellet cut surface is elliptical. As a result, the pellet cross-sectional area was calculated. Further, in order to evaluate the variation in the length direction of the die plate, the die plate is divided into eight sections in the length direction as shown in FIG. The area was measured. As a representative value of the pellet shape in each section, the average cross-sectional area of the sampled pellet was used. In order to evaluate the variation in the cross-sectional areas of these pellets, the area deviation defined by the following equation was used. That is, area deviation = (average cross-sectional area in each section-average cross-sectional area of all pellets)
[0024]
Example 1
In both the Examples and Comparative Examples, a polystyrene resin solution containing an unreacted solvent was devolatilized at 230 ° C. under vacuum conditions by the bulk continuous polymerization method, and the resulting resin was heated to a temperature of 265 ° C., and then a gear pump was used. Extrusion was performed from a die plate having a shape of t = 2.0 mm and t / l = 0.17 at 8.4 tons / hour. The obtained resin strand was cooled with cooling water at a temperature of 60 ° C. and then pelletized. The evaluation results are shown in Table 1.
[0025]
Comparative Example 1
The same extrusion conditions as in Example 1, the nozzle diameter and land length were exactly the same, and only taper processing was performed using t = 0 mm and t / l = 0, and using a molten polystyrene resin, and the shape of the pellets obtained Evaluated. The evaluation results are shown in Table 2.
[0026]
Example 2
The same extrusion conditions as in Example 1, the nozzle diameter and land length were exactly the same, and only taper processing was performed using a die plate with t = 3.5, that is, t / l = 0.29. The pellet shape was evaluated. The evaluation results are shown in Table 3.
[0027]
Table 4 shows the area deviation in each section of these examples and comparative examples. As is apparent from the results of Table 4, it can be seen that the area deviation in each section becomes smaller by setting 0.17 and 0.29 than t / l = 0.
[0028]
[Table 1]
Figure 0003717485
[0029]
[Table 2]
Figure 0003717485
[0030]
[Table 3]
Figure 0003717485
[0031]
[Table 4]
Figure 0003717485
[0032]
【The invention's effect】
As is clear from the results in Table 4, the cutting allowance t from the center of the die toward the periphery is 0.1 ≦ t / l ≦ 0.55 with respect to the land length l of the center of the die. The effect of the present invention by using a taper-processed die is very large, the thickness of the resin strand and the discharge amount in the length direction of the die plate can be adjusted, and pellets with a more uniform cross-sectional area I was able to get. As a result, it is possible to achieve superior productivity compared to the conventional pelletizing process almost the same as the conventional one, and the value in the field of synthetic resin manufacturing and processing is extremely high.
[Brief description of the drawings]
1 is a front view of a schematic die plate. FIG. 2 is a schematic horizontal sectional view in the longitudinal direction of the die plate. FIG. 3 is a schematic longitudinal sectional view of the die plate in the lateral direction. Front view of a typical die plate [FIG. 5] Conceptual diagram of sectioning of a typical die plate used in the present invention

Claims (4)

ダイから溶融状態で押し出された樹脂ストランドを冷却後、当該ストランドをカッティングする樹脂ペレット製造方法において、少なくとも一列あたりのダイノズル数が30穴以上を有するダイで、かつダイの中心部から周辺部に向かっての削り代tを、ダイの中心部のランド長lに対して0.1≦t/l≦0.55のテーパー加工を施したダイ。In a resin pellet manufacturing method in which a resin strand extruded in a molten state from a die is cooled, and then the strand is cut, the die has at least 30 holes per one row of die nozzles and extends from the center of the die toward the periphery. A die in which the cutting allowance t is tapered so that the land length l at the center of the die is 0.1 ≦ t / l ≦ 0.55. 請求項1に記載のダイを用いて樹脂ペレットを製造することを特徴とするペレットの製造方法。A method for producing pellets, comprising producing resin pellets using the die according to claim 1. 請求項1に記載のダイを用いてスチレン系樹脂ペレットを製造することを特徴とするペレットの製造方法。A styrene resin pellet is produced using the die according to claim 1. 請求項1に記載のダイを用いて樹脂ペレットを製造する際に、ダイから溶融状態で押し出された樹脂ストランドを冷却水で冷却して樹脂ペレットを製造することを特徴とする請求項2または請求項3記載のペレットの製造方法。When producing resin pellets using the die according to claim 1, resin pellets extruded from the die in a molten state are cooled with cooling water to produce resin pellets. Item 4. A method for producing a pellet according to Item 3.
JP2003058219A 2003-03-05 2003-03-05 Resin pellet manufacturing die and resin pellet manufacturing method using the die Expired - Fee Related JP3717485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058219A JP3717485B2 (en) 2003-03-05 2003-03-05 Resin pellet manufacturing die and resin pellet manufacturing method using the die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058219A JP3717485B2 (en) 2003-03-05 2003-03-05 Resin pellet manufacturing die and resin pellet manufacturing method using the die

Publications (2)

Publication Number Publication Date
JP2004268274A JP2004268274A (en) 2004-09-30
JP3717485B2 true JP3717485B2 (en) 2005-11-16

Family

ID=33121384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058219A Expired - Fee Related JP3717485B2 (en) 2003-03-05 2003-03-05 Resin pellet manufacturing die and resin pellet manufacturing method using the die

Country Status (1)

Country Link
JP (1) JP3717485B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027543A1 (en) * 2006-11-27 2008-05-29 Bühler AG Strand granulation method and apparatus and granules made therefrom
JP2010264629A (en) 2009-05-13 2010-11-25 Japan Steel Works Ltd:The Die support device and extrusion molding die equipped with the same
JP6329997B2 (en) * 2016-07-05 2018-05-23 株式会社日本製鋼所 Crown, extruder equipped with crown, and method for producing resin pellets
JP7278922B2 (en) * 2019-10-18 2023-05-22 株式会社日本製鋼所 Extruder and strand manufacturing method

Also Published As

Publication number Publication date
JP2004268274A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP2676228B2 (en) Die design for underwater pelletization of high melt flow polymers.
JPS61162136A (en) Continuous production of chewing gum
WO2006022839A2 (en) Apparatus for plasticating thermoplastic resin including polypropylene
US6066398A (en) Polycarbonate moulding material for optical discs
US5449484A (en) Process and device for producing extrudates from ultra-high molecular weight polyethylene
JP3717485B2 (en) Resin pellet manufacturing die and resin pellet manufacturing method using the die
JP5536705B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
JP5619067B2 (en) Die design method, design program and design apparatus for strand manufacturing
JP5624534B2 (en) Woody synthetic powder
JP2017159601A (en) Pelletizer and pellet production method using the same
JP5250216B2 (en) Pelletizer and method for producing pellets using the same
KR980700905A (en) Extruder screw
JP6872471B2 (en) Breaker plate, strand manufacturing equipment, pellet manufacturing equipment and pellet manufacturing method
JPS6241016A (en) Screw for molding thermoplastic resin
WO2012137575A1 (en) Device for producing pellet, and method for producing pellet
JPH0688251B2 (en) Polycarbonate resin pellet and manufacturing method thereof
KR100494295B1 (en) Method for preparing hydrophilic resin granule
CN116141635B (en) Process for producing high-performance thermoplastic resin pellets
JP5632222B2 (en) Extruded product manufacturing method
JP5573888B2 (en) Method for producing particulate polymer and granulating apparatus for particulate polymer
JP7192405B2 (en) Mold and mold design method
JPS62170319A (en) Extruder die for thermoplastic melt
JPH08323743A (en) Extrusion mold for thermoplastic resin of pellet
JP4215747B2 (en) Method for producing hydrophilic resin granules
JPH1171510A (en) Polycarbonate molding material for optical disc substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Ref document number: 3717485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees