JP3717021B2 - POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME - Google Patents
POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME Download PDFInfo
- Publication number
- JP3717021B2 JP3717021B2 JP18723697A JP18723697A JP3717021B2 JP 3717021 B2 JP3717021 B2 JP 3717021B2 JP 18723697 A JP18723697 A JP 18723697A JP 18723697 A JP18723697 A JP 18723697A JP 3717021 B2 JP3717021 B2 JP 3717021B2
- Authority
- JP
- Japan
- Prior art keywords
- polyallylamine
- hydrophilic
- temperature
- polyallylamine derivative
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RMRSSUUSVFQMPN-UHFFFAOYSA-N CC(CN)C(C)(C)C(C)(C)C Chemical compound CC(CN)C(C)(C)C(C)(C)C RMRSSUUSVFQMPN-UHFFFAOYSA-N 0.000 description 1
- 0 CC*NCC(C)* Chemical compound CC*NCC(C)* 0.000 description 1
Images
Landscapes
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規なポリアリルアミン誘導体、その製造方法、及びそれを用いた親水性・疎水性熱可逆型材料に関する。
【0002】
【従来の技術】
ポリアリルアミンは、側鎖にアミノ基を有する独特な構造を有する高分子であり、また、水に良く溶け、水中でプラスに荷電するカチオン系高分子である。ポリアリルアミンは、その特異的な性質を利用して、反応性染料用染料固着剤、直接染料用染料固着剤、インクジェット記録用紙処理剤等、多くの分野で使用されている。また、ハロゲン化銀写真感光材料、徐放性医薬組成物、イオン交換樹脂、機能膜等の分野でポリアリルアミンを使用することが提案されている。
一方、ポリアリルアミンの側鎖のアミノ基を種々の置換アミノ基に変えたポリアリルアミン誘導体は、ポリアリルアミンと比べて異なる性質と用途を有する可能性があり、そのため、さらに新規なポリアリルアミン誘導体が求められている。
【0003】
また、ポリアリルアミン誘導体等のポリカチオン系高分子を含む親水性・疎水性熱可逆型材料は少ないが、遮光材料等の種々の分野で新規な親水性・疎水性熱可逆型材料の提供が求められている。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、新規なポリアリルアミン誘導体、その製造方法、及びそれを用いた親水性・疎水性熱可逆型材料の提供である。
【0005】
【課題を解決するための手段】
本発明は、一般式
【0006】
【化3】
[式中、R1 は−CH2 CH(−OH)R2 を示し(ただし、R2 は、炭素数1〜8のアルキル基またはアルコキシメチル基を示す)、xは0≦x<1を示し、yは0≦y≦1を示し、zは0≦z≦1を示し、x,y,zはそれぞれの構成単位のモル分率を示し、yとzが共に0であることはない]
を主要構成成分として含むポリアリルアミン誘導体である。
また、本発明は、ポリアリルアミンと、一般式
【0007】
【化4】
(ただし、R2 は、炭素数1〜8のアルキル基またはアルコキシメチル基を示す)
で表わされるエポキシ化合物とを反応させることを特徴とする、一般式
【0008】
【化5】
[式中、R1 は−CH2 CH(−OH)R2 を示し(ただし、R2 は、炭素数1〜8のアルキル基またはアルコキシメチル基を示す)、xは0≦x<1を示し、yは0≦y≦1を示し、zは0≦z≦1を示し、x,y,zはそれぞれの構成単位のモル分率を示し、yとzが共に0であることはない]
を主要構成成分として含むポリアリルアミン誘導体の製造方法である。
【0009】
さらにまた、本発明は、上記のポリアリルアミン誘導体と、水とを含む親水性・疎水性熱可逆型材料である。なお、本明細書において、親水性・疎水性熱可逆型材料とは、相転移温度より低温域では溶液状態であり、かつ、相転移温度より高温域ではエマルジョン状態にあるものである。
【0010】
【発明の実施の形態】
本発明のポリアリルアミン誘導体は、前記の式(I)で示されるが、ポリアリルアミンのNH2 の一部または全部がNHR1 またはNR1 2 に置換されていることに特徴がある。置換基R1 は、−CH2 CH(−OH)R2 で示される。ここで、R2 は、炭素数1〜8のアルキル基または炭素数1〜8のアルコキシメチル基を示す。
【0011】
前記の式(I)で、ポリアリルアミン誘導体の構成単位のモル分率x,y,zは、xは0≦x<1であり、yは0≦y≦1であり、zは0≦z≦1であり、かつ、yとzが共に0であることはないが、通常、x+y+z=1の関係にある。また、ポリアリルアミン誘導体を親水性・疎水性熱可逆型材料に使用するときは、ポリアリルアミン誘導体の水溶性を押さえて低温域で相転移が起こりやすくするため、ポリアリルアミン誘導体中のアリルアミン構成単位のモル分率xの範囲は、0〜0.95の範囲が好ましく、0〜0.85の範囲がさらに好ましい。
【0012】
本発明のポリアリルアミン誘導体は、例えば、ポリアリルアミンの水溶液に、ポリアリルアミンのモノマー単位に対し好ましくは200モル%以下、さらに好ましくは5〜200モル%、特に好ましくは15〜200モル%の特定のエポキシ化合物を、20〜60℃で加えてさらに反応させるだけで、簡単に製造できる。これを下記の化学反応式で示す。
【0013】
【化6】
(ただし、式中、mは5以上の整数を示し、R2 は炭素数1〜8のアルキル基またはアルコキシメチル基を示し、nはポリアリルアミンのモノマー単位に対し200モル%以下を示す)。
【0014】
この方法では、特別な後処理をすることなく、また、特に副生成物を生成することなく、ポリアリルアミン水溶液と式IIで示されるエポキシ化合物とから、簡単に、本発明のポリアリルアミン誘導体と、水との混合物である親水性・疎水性熱可逆型材料が製造できる。したがって、ポリアリルアミン誘導体を、親水性・疎水性熱可逆型材料のために製造するときは、単に市販されている2つの試薬を混合し、得られる混合物を20〜60℃の状態にし、特別な後処理をすることなく、そのまま、親水性・疎水性熱可逆型材料となるので、この方法は、好ましい。
【0015】
原料のポリアリルアミンの重合度mは、通常5以上であり、好ましくは10〜5000である。原料のポリアリルアミンはフリータイプが好ましい。フリータイプとしては、既知のポリアリルアミンの付加塩、好ましくはその塩酸塩を、アルカリで中和した後、副生する中和塩を透析により除去したものを使用することができる。また、フリータイプのポリアリルアミンとしては、市販の分子量約1万の15%ポリアリルアミン水溶液(日東紡績(株)製PAA−15)、分子量約1万の10%ポリアリルアミン水溶液(日東紡績(株)製PAA−10C)、分子量約1万の20%ポリアリルアミン水溶液(日東紡績(株)製PAA−L)、分子量約10万の20%ポリアリルアミン水溶液(日東紡績(株)製PAA−H)等をそのまま、使用しても良い。本発明の材料を製造する際、原料のポリアリルアミンは、濃度として、例えば、1〜70%で用いることができる。なお、本明細書では、濃度に用いた%は、特に記載しない限り、重量%を表わすものとする。
【0016】
原料のエポキシ化合物は、一般的には、前記の式(II)により表わされるが、1,2−エポキシプロパン、1,2−エポキシ−n−ブタン、1,2−エポキシ−n−ペンタン、1,2−エポキシ−n−ヘキサン、1,2−エポキシ−n−ヘプタン、1,2−エポキシ−n−オクタン、メチルグリシジルエーテル、エチルグリシジルエーテル、n−プロピルグリシジルエーテル、iso−プロピルグリシジルエーテル、n−ブチルグリシジルエーテル、n−ペンチルグリシジルエーテルを例示できる。
原料のエポキシ化合物(II)の使用量は、ポリアリルアミンのモノマー単位に対し好ましくは200モル%以下、より好ましくは5〜200モル%、さらに好ましくは15〜200モル%である。
【0017】
ポリアリルアミンとエポキシ化合物(II)との反応に使用する溶媒は、水が好ましい。ポリアリルアミン誘導体を親水性・疎水性熱可逆型材料に使用する場合、反応終了後、そのまま、特別な後処理をすることなしに、目的のポリアリルアミン誘導体と水との混合物からなる親水性・疎水性熱可逆型材料が得られるからである。
【0018】
ポリアリルアミンとエポキシ化合物(II)との反応の反応温度は、通常20〜60℃、好ましくは30〜50℃である。また、反応時間は、反応条件により異なるが、通常0.5時間〜24時間で終了することができる。
【0019】
本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料に使用するときは、ポリアリルアミン誘導体の濃度を、溶解性及び使用目的によって変えることができるが、一般的には0.01〜80%、好ましくは0.05〜50%、特に好ましくは0.1〜30%で用いることができる。
【0020】
本発明においては、親水性・疎水性熱可逆型材料は、食塩等の塩その他の必要な添加剤を加えて相転移温度を変化させることができる。また、本発明の親水性・疎水性熱可逆型材料は、感温性を示す範囲内であれば、エタノール等の、水溶性の有機溶媒を加えても良い。
【0021】
本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料として使用する際は、その相転移温度は、重合体の種類、水溶液の濃度、存在する塩の種類と量、その他の条件により変化させることができる。すなわち、ポリアリルアミン誘導体の濃度、添加する食塩濃度、pHの変化によって相転移の発現を調節することができる。しかし、水のない状態では、ポリアリルアミン誘導体は、通常、可逆的な相転移を示さない。また、酸性溶液中では、ポリアリルアミン誘導体の水溶性が上昇するため、温度を上昇させてもエマルジョンになりにくく、その相転移を発現しにくい。
【0022】
また、温度と透過率との関係曲線からは、従来知られているアリルアミン系重合体の親水性・疎水性熱可逆材料に比べ、本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料に使用すると、相転移が狭い温度範囲で起こりやすい特徴を有するので、使いやすい。
【0023】
本発明のポリアリルアミン誘導体は、アミノ基を有する重合体を含有するので水溶液中では塩基性を示す。したがって、本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料として使用すると、該材料は、温度に感応するばかりでなく、pHにも感応することができる。すなわち、該材料は、酸性にすると温度に関係なく液体で透明になりやすく、塩基性にすると親水性・疎水性熱可逆型材料となる。そのため、該材料は、親水性・疎水性熱可逆型材料であり、かつ、pH可逆型材料である。
【0024】
このような特徴を有する親水性・疎水性熱可逆型材料は、その物質相の温度可逆性を利用して、各種機能材料に使うことができる。例えば、該材料は、温度が高くなると遮光し温度が低くなると透過するという特徴を持つ遮光材料に使用し得る。また、温度依存性水溶性接着剤や被覆材料などにも広範囲に使用し得る。
【0025】
本発明のポリアリルアミン誘導体と、水との混合物が、親水性・疎水性熱可逆型材料となりうる理由は、ポリマ−への水和水の存在の有無により、ポリマー分子のコイル/グロビュール変換が起こるためと考えられる。すなわち、このポリアリルアミン誘導体は、系の温度を上昇させると、相転移温度を境にコイル型構造からグロビュール(糸まり)構造に変換すると考えられる。
【0026】
このような変換が起こる理由としては、水和水が、低温域ではポリマー中のOH基またはアミノ基に水素結合をするのに対し、高温域では水和水が脱離し、その脱離に伴う系のエントロピーの上昇を、ポリマー鎖が収縮することにより補償できるためと考えられる。また、相転移温度より高温域では、絡み合った高分子鎖が疎水性相互作用によりさらに会合し、また、グロビュール同士が凝集するなどして、系の透過率が低下してエマルジョンになりやすいためと考えられる。本発明では、種々の条件で相転移温度等の転移状態が異なる。
【0027】
【実施例】
実施例1
ポリアリルアミン誘導体(式IでR2 がCH2OCH2CH3,x=0,y=0.6,z=0.4)の製造
ポリアリルアミン水溶液(日東紡績(株)製,PAA−10C)を14.82%ポリアリルアミン水溶液に調製し、それから192.65g(ポリアリルアミンのモノマー単位で0.5モル)を取り出し、300mlセパラブルフラスコに入れ攪拌し、約40℃に維持しながら、それにエチルグリシジルエーテル(東京化成(株))0.70モル(ポリアリルアミンのモノマー単位に対し140モル%)を少しずつ加えた。その後、同温度で反応混合物を5.5時間攪拌することにより、ポリアリルアミン誘導体(式Iで、R2 がCH2OCH2CH3,x=0,y=0.6,z=0.4)と水との混合物を得た。
【0028】
つぎに、その混合物に、ポリアリルアミン誘導体のモノマー単位に対して120モル%の塩酸を加えた後、アセトン中に再沈させた。この沈殿した白色沈殿物をろ別し、乾燥剤として五酸化二リンを用いてその沈殿物を真空乾燥することにより、ポリアリルアミン誘導体(式Iで、R2 がCH2 OCH2 CH3 ,x=0,y=0.6,z=0.4)の塩酸塩を得た。この塩酸塩の元素分析の結果は、C:50.08%,H:9.52%,N:6.11%であった。これらの値は、ポリアリルアミン誘導体(式Iで、R2 がCH2 OCH2 CH3 ,x=0,y=0.6,z=0.4)の塩酸塩の理論値C:50.36%,H:9.35%,N:6.23%と一致した。
図1にこの塩酸塩のIRスペクトルを示した。1120cm-1に脂肪族エーテルのC−O−Cの逆対称伸縮振動に基づく吸収が確認された。
【0029】
実施例2〜21 親水性・疎水性熱可逆型材料の製造とその相転移の確認
ポリアリルアミン水溶液(日東紡績(株)製,PAA−10C)を14.82%ポリアリルアミン水溶液に調製し、それから192.65g(アリルアミンのモノマー単位で0.5モル)を取り出し、300mlセパラブルフラスコに入れ攪拌し、約40℃に維持しながら、それに表1記載のエポキシ化合物を少しずつ加えた。その後、同温で反応混合物を5.5時間攪拌することにより、ポリアリルアミン誘導体と水との混合物を得た。その混合物を、そのまま、親水性・疎水性熱可逆型材料として用い、以下のようにして相転移を確認した。
【0030】
その混合物が約40℃で白濁しているときは、その混合物を氷水等でゆっくり冷却していき、白濁状態から溶液状態に変化するときの温度を透明化温度として求めた。また、混合物が約40℃で透明になっているときは、ゆっくり加熱していき、溶液状態から白濁状態に変化するときの温度を透明化温度として求めた。これらの結果を表1に示す。いずれも、これらの材料に対して相転移を確認した。
【0031】
【表1】
【0032】
実施例22〜29 ポリアリルアミン誘導体水溶液を5%または10%含む親水性・疎水性熱可逆型材料の製造
実施例2〜21で製造した親水性・疎水性熱可逆型材料から、表2に示すポリアリルアミン誘導体を含む材料を選び、それを水で希釈することにより、ポリアリルアミン誘導体を5%または10%含む親水性・疎水性熱可逆型材料を製造した。
【0033】
(熱可逆型材料の相転移温度の測定)
実施例22〜29で製造した親水性・疎水性熱可逆型材料を分光光度計のセルに入れて循環水によりセルの温度を変化させてゆき500nmでの透過率を測定した。昇温または降温は1分間に1℃づつ変化させた。その結果を温度−透過率曲線として図2〜図6に示す。その結果、この親水性・疎水性熱可逆型材料は、狭い温度範囲で透過率の変化が起こることが判明した。
さらに、水溶液のときの透過率の1/2の透過率になる温度を、温度−透過率曲線から読み取ることにより親水性・疎水性熱可逆型材料の相転移温度を求めた。その結果を表2に示す。なお、表2でPAAはポリアリルアミンを意味する。
【0034】
【表2】
【0035】
【発明の効果】
本発明のポリアリルアミン誘導体は、ポリアリルアミンと比べて異なる性質を有する新規なポリアリルアミン誘導体である。本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料として用いると、該材料は、用いるポリアリルアミン誘導体の種類、置換基の割合、ポリアリルアミン誘導体の濃度、pHの変化により、相転移の発現を調節することができる。該材料は、相転移が狭い温度範囲で起こりやすいので、相転移温度付近では温度に鋭敏に反応する。また、該材料は、水中で塩基性を有するという特徴を持つ。加えて、本発明のポリアリルアミン誘導体を親水性・疎水性熱可逆型材料として用いる際は、ポリアリルアミンに特定のエポキシ化合物を加えて20〜60℃にするだけで、副生成物なく簡単に、該材料を製造できるという特徴を有する。
【図面の簡単な説明】
【図1】実施例1で製造したポリアリルアミン誘導体(式IでR2 がCH2 OCH2 CH3 ,x=0,y=0.6,z=0.4)の塩酸塩のIRスペクトルを示す。縦軸に透過率(%)、横軸に波数(cm-1)を示す。
【図2】実施例22で製造したポリアリルアミン誘導体(式IでR2 がCH2 CH3 ,x=0.2,y=0.8,z=0)を10%含む親水性・疎水性熱可逆型材料の温度−透過率曲線を示す。縦軸に透過率(%)、横軸に温度(℃)を示す。
【図3】実施例23で製造したポリアリルアミン誘導体(式IでR2 が(CH2 )3 CH3 ,x=0.7,y=0.3,z=0)を10%含む親水性・疎水性熱可逆型材料の温度−透過率曲線を示す。縦軸に透過率(%)、横軸に温度(℃)を示す。
【図4】実施例24で製造したポリアリルアミン誘導体(式IでR2 がCH2 OCH2 CH3 ,x=0,y=0.6,z=0.4)を10%含む親水性・疎水性熱可逆型材料及び実施例25で製造したポリアリルアミン誘導体(式IでR2 がCH2 OCH2 CH3 ,x=0,y=0,z=1)を10%含む親水性・疎水性熱可逆型材料の温度−透過率曲線を示す。縦軸に透過率(%)、横軸に温度(℃)を示す。
【図5】実施例26で製造したポリアリルアミン誘導体(式IでR2 がCH2 OCH(CH3 )2 ,x=0.3,y=0.7,z=0)を10%含む親水性・疎水性熱可逆型材料及び実施例27で製造したポリアリルアミン誘導体(式IでR2 がCH2 OCH(CH3 )2 ,x=0,y=0.9,z=0.1)を10%含む親水性・疎水性熱可逆型材料の温度−透過率曲線を示す。縦軸に透過率(%)、横軸に温度(℃)を示す。
【図6】実施例28で製造したポリアリルアミン誘導体(式IでR2 がCH2 O(CH2 )3 CH3 ,x=0.7,y=0.3,z=0)を5%含む親水性・疎水性熱可逆型材料及び実施例29で製造したポリアリルアミン誘導体(式IでR2 がCH2 O(CH2 )3 CH3 ,x=0.6,y=0.4,z=0)を5%含む親水性・疎水性熱可逆型材料の温度−透過率曲線を示す。縦軸に透過率(%)、横軸に温度(℃)を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel polyallylamine derivative, a production method thereof, and a hydrophilic / hydrophobic thermoreversible material using the same.
[0002]
[Prior art]
Polyallylamine is a polymer having a unique structure having an amino group in the side chain, and is a cationic polymer that dissolves well in water and is positively charged in water. Polyallylamine is used in many fields by utilizing its specific properties, such as a dye fixing agent for reactive dyes, a dye fixing agent for direct dyes, and an ink jet recording paper processing agent. It has also been proposed to use polyallylamine in the fields of silver halide photographic light-sensitive materials, sustained-release pharmaceutical compositions, ion exchange resins, functional membranes and the like.
On the other hand, polyallylamine derivatives in which the side chain amino group of polyallylamine is changed to various substituted amino groups may have different properties and uses compared to polyallylamine. Therefore, new polyallylamine derivatives are desired. It has been.
[0003]
In addition, there are few hydrophilic / hydrophobic thermoreversible materials containing polycationic polymers such as polyallylamine derivatives, but there is a need to provide novel hydrophilic / hydrophobic thermoreversible materials in various fields such as light shielding materials. It has been.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a novel polyallylamine derivative, a production method thereof, and a hydrophilic / hydrophobic thermoreversible material using the same.
[0005]
[Means for Solving the Problems]
The present invention relates to a general formula:
[Chemical 3]
[Wherein, R 1 represents a -CH 2 CH (-OH) R 2 ( provided that, R 2 represents an alkyl group or an alkoxymethyl group having 1 to 8 carbon atoms), x is a 0 ≦ x <1 Y represents 0 ≦ y ≦ 1, z represents 0 ≦ z ≦ 1, x, y, z represents the mole fraction of each constituent unit, and neither y nor z is 0. ]
Is a polyallylamine derivative containing as a main component.
The present invention also provides a polyallylamine and a general formula
[Formula 4]
(However, R < 2 > shows a C1-C8 alkyl group or alkoxymethyl group)
A reaction with an epoxy compound represented by the general formula:
[Chemical formula 5]
[Wherein, R 1 represents a -CH 2 CH (-OH) R 2 ( provided that, R 2 represents an alkyl group or an alkoxymethyl group having 1 to 8 carbon atoms), x is a 0 ≦ x <1 Y represents 0 ≦ y ≦ 1, z represents 0 ≦ z ≦ 1, x, y, z represents the mole fraction of each constituent unit, and neither y nor z is 0. ]
It is a manufacturing method of the polyallylamine derivative which contains as a main structural component.
[0009]
Furthermore, the present invention is a hydrophilic / hydrophobic thermoreversible material containing the above polyallylamine derivative and water. In the present specification, the hydrophilic / hydrophobic thermoreversible material is a solution in a region lower than the phase transition temperature and an emulsion in a region higher than the phase transition temperature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The polyallylamine derivative of the present invention is represented by the above formula (I), but is characterized in that a part or all of NH 2 of the polyallylamine is substituted with NHR 1 or NR 1 2 . The substituent R 1 is represented by —CH 2 CH (—OH) R 2 . Here, R < 2 > shows a C1-C8 alkyl group or a C1-C8 alkoxymethyl group.
[0011]
In the above formula (I), the molar fraction x, y, z of the constituent unit of the polyallylamine derivative is such that x is 0 ≦ x <1, y is 0 ≦ y ≦ 1, and z is 0 ≦ z. ≦ 1 and y and z are not both 0, but normally, x + y + z = 1. In addition, when polyallylamine derivatives are used in hydrophilic / hydrophobic thermoreversible materials, the water solubility of the polyallylamine derivatives is suppressed and phase transition is likely to occur at low temperatures. The range of the molar fraction x is preferably in the range of 0 to 0.95, and more preferably in the range of 0 to 0.85.
[0012]
The polyallylamine derivative of the present invention is, for example, in an aqueous solution of polyallylamine, preferably 200 mol% or less, more preferably 5 to 200 mol%, particularly preferably 15 to 200 mol%, based on the monomer unit of polyallylamine. The epoxy compound can be produced simply by adding it at 20 to 60 ° C. and allowing it to react further. This is shown by the following chemical reaction formula.
[0013]
[Chemical 6]
(Wherein, m represents an integer of 5 or more, R 2 represents an alkyl group having 1 to 8 carbon atoms or an alkoxymethyl group, and n represents 200 mol% or less based on the monomer unit of polyallylamine).
[0014]
In this method, the polyallylamine derivative of the present invention can be simply obtained from the polyallylamine aqueous solution and the epoxy compound represented by the formula II without any special post-treatment and without generating a by-product. A hydrophilic / hydrophobic thermoreversible material that is a mixture with water can be produced. Therefore, when producing a polyallylamine derivative for a hydrophilic / hydrophobic thermoreversible material, simply mix two commercially available reagents and bring the resulting mixture to a temperature of 20-60 ° C. This method is preferred because it becomes a hydrophilic / hydrophobic thermoreversible material as it is without post-treatment.
[0015]
The polymerization degree m of the raw material polyallylamine is usually 5 or more, preferably 10 to 5000. The raw material polyallylamine is preferably a free type. As the free type, a known polyallylamine addition salt, preferably a hydrochloride thereof, is neutralized with an alkali, and a neutralized salt produced as a by-product is removed by dialysis. In addition, as a free type polyallylamine, a commercially available 15% polyallylamine aqueous solution having a molecular weight of about 10,000 (PAA-15 manufactured by Nittobo Co., Ltd.), 10% polyallylamine aqueous solution having a molecular weight of about 10,000 (Nittobo Co., Ltd.) PAA-10C), 20% polyallylamine aqueous solution with molecular weight of about 10,000 (PAA-L made by Nittobo Co., Ltd.), 20% polyallylamine aqueous solution with molecular weight of about 100,000 (PAA-H made by Nittobo Co., Ltd.), etc. May be used as is. When the material of the present invention is produced, the raw material polyallylamine can be used at a concentration of, for example, 1 to 70%. In the present specification, “%” used for the concentration represents “% by weight” unless otherwise specified.
[0016]
The raw material epoxy compound is generally represented by the above formula (II), but 1,2-epoxypropane, 1,2-epoxy-n-butane, 1,2-epoxy-n-pentane, , 2-epoxy-n-hexane, 1,2-epoxy-n-heptane, 1,2-epoxy-n-octane, methyl glycidyl ether, ethyl glycidyl ether, n-propyl glycidyl ether, iso-propyl glycidyl ether, n Examples include -butyl glycidyl ether and n-pentyl glycidyl ether.
The amount of the raw material epoxy compound (II) used is preferably 200 mol% or less, more preferably 5 to 200 mol%, still more preferably 15 to 200 mol%, based on the polyallylamine monomer unit.
[0017]
The solvent used for the reaction of polyallylamine and epoxy compound (II) is preferably water. When a polyallylamine derivative is used for a hydrophilic / hydrophobic thermoreversible material, the hydrophilic / hydrophobic composed of a mixture of the desired polyallylamine derivative and water without any special post-treatment after the completion of the reaction. This is because a thermally reversible material is obtained.
[0018]
The reaction temperature of the reaction between polyallylamine and epoxy compound (II) is usually 20 to 60 ° C, preferably 30 to 50 ° C. Moreover, although reaction time changes with reaction conditions, it can be normally complete | finished in 0.5 hour-24 hours.
[0019]
When the polyallylamine derivative of the present invention is used for a hydrophilic / hydrophobic thermoreversible material, the concentration of the polyallylamine derivative can be changed depending on the solubility and the intended use. %, Preferably 0.05 to 50%, particularly preferably 0.1 to 30%.
[0020]
In the present invention, the hydrophilic / hydrophobic thermoreversible material can be changed in phase transition temperature by adding a salt or other necessary additive such as salt. In addition, the hydrophilic / hydrophobic thermoreversible material of the present invention may contain a water-soluble organic solvent such as ethanol as long as it is within the range showing temperature sensitivity.
[0021]
When the polyallylamine derivative of the present invention is used as a hydrophilic / hydrophobic thermoreversible material, its phase transition temperature varies depending on the type of polymer, the concentration of aqueous solution, the type and amount of salt present, and other conditions. Can be made. That is, the expression of the phase transition can be controlled by changing the concentration of the polyallylamine derivative, the salt concentration to be added, and the pH. However, in the absence of water, polyallylamine derivatives usually do not exhibit a reversible phase transition. In addition, in an acidic solution, the water solubility of the polyallylamine derivative is increased, so that even if the temperature is increased, it is difficult to become an emulsion and the phase transition is not easily exhibited.
[0022]
Further, from the relationship curve between temperature and transmittance, the polyallylamine derivative of the present invention is more hydrophilic / hydrophobic thermoreversible material than the conventionally known allylamine polymer hydrophilic / hydrophobic thermoreversible material. It is easy to use because it has a characteristic that phase transition is likely to occur in a narrow temperature range.
[0023]
Since the polyallylamine derivative of the present invention contains a polymer having an amino group, it exhibits basicity in an aqueous solution. Therefore, when the polyallylamine derivative of the present invention is used as a hydrophilic / hydrophobic thermoreversible material, the material can be sensitive not only to temperature but also to pH. That is, the material is easily liquid and transparent regardless of temperature when acidified, and becomes a hydrophilic / hydrophobic thermoreversible material when basic. Therefore, the material is a hydrophilic / hydrophobic thermoreversible material and a pH reversible material.
[0024]
The hydrophilic / hydrophobic thermoreversible material having such characteristics can be used for various functional materials by utilizing the temperature reversibility of the substance phase. For example, the material can be used for a light-shielding material having a feature of shielding light when the temperature is high and transmitting light when the temperature is low. It can also be used in a wide range of temperature-dependent water-soluble adhesives and coating materials.
[0025]
The reason why the mixture of the polyallylamine derivative of the present invention and water can be a hydrophilic / hydrophobic thermoreversible material is that coil / globule conversion of polymer molecules occurs depending on the presence or absence of hydration water in the polymer. This is probably because of this. That is, this polyallylamine derivative is considered to convert from a coil-type structure to a globule (yarn) structure at the phase transition temperature as the system temperature is increased.
[0026]
The reason why such conversion occurs is that hydration water forms a hydrogen bond to the OH group or amino group in the polymer in the low temperature range, whereas the hydration water is desorbed in the high temperature range and is accompanied by the desorption. This is thought to be because the increase in the entropy of the system can be compensated by the shrinkage of the polymer chain. Also, in the region higher than the phase transition temperature, the entangled polymer chains are further associated by hydrophobic interaction, and the globules are aggregated. Conceivable. In the present invention, the transition state such as the phase transition temperature is different under various conditions.
[0027]
【Example】
Example 1
Polyallylamine derivatives (R 2 in formula I Of CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4) A polyallylamine aqueous solution (manufactured by Nitto Boseki Co., Ltd., PAA-10C) is converted into a 14.82% polyallylamine aqueous solution. 192.65 g (0.5 mol in terms of polyallylamine monomer units) was taken out from the flask, placed in a 300 ml separable flask, stirred and maintained at about 40 ° C., while maintaining it at about 40 ° C. with ethyl glycidyl ether (Tokyo Kasei Co., Ltd.) 0.70 mol (140 mol% with respect to the monomer unit of polyallylamine) was added little by little. Thereafter, the reaction mixture is stirred at the same temperature for 5.5 hours to obtain a polyallylamine derivative (in formula I, R 2 Obtained a mixture of CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4) and water.
[0028]
Next, 120 mol% hydrochloric acid was added to the mixture with respect to the monomer unit of the polyallylamine derivative, and then reprecipitated in acetone. The precipitated white precipitate is filtered off and the precipitate is vacuum dried using diphosphorus pentoxide as a desiccant to give a polyallylamine derivative (wherein R 2 is CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4). The results of elemental analysis of the hydrochloride were C: 50.08%, H: 9.52%, and N: 6.11%. These values are the theoretical values for the hydrochloride of a polyallylamine derivative (formula I, R 2 is CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4) C: 50.36 %, H: 9.35%, N: 6.23%.
FIG. 1 shows the IR spectrum of this hydrochloride. Absorption based on C—O—C reverse symmetric stretching vibration of aliphatic ether was confirmed at 1120 cm −1 .
[0029]
Examples 2 to 21 Production of hydrophilic / hydrophobic thermoreversible material and confirmation of phase transition Polyallylamine aqueous solution (manufactured by Nitto Boseki Co., Ltd., PAA-10C) was changed to 14.82% polyallylamine aqueous solution. 192.65 g (0.5 mol in terms of allylamine monomer unit) was taken out from the flask, put into a 300 ml separable flask, stirred and maintained at about 40 ° C., while adding the epoxy compounds listed in Table 1 little by little. . Thereafter, the reaction mixture was stirred at the same temperature for 5.5 hours to obtain a mixture of a polyallylamine derivative and water. The mixture was used as it was as a hydrophilic / hydrophobic thermoreversible material, and phase transition was confirmed as follows.
[0030]
When the mixture was cloudy at about 40 ° C., the mixture was slowly cooled with ice water or the like, and the temperature at which the mixture changed from a cloudy state to a solution state was determined as the clearing temperature. When the mixture was transparent at about 40 ° C., the mixture was heated slowly, and the temperature at which the mixture changed from a solution state to a cloudy state was determined as the clearing temperature. These results are shown in Table 1. All confirmed the phase transition for these materials.
[0031]
[Table 1]
[0032]
Examples 22-29 Production of hydrophilic / hydrophobic thermoreversible material containing 5% or 10% aqueous solution of polyallylamine derivative From the hydrophilic / hydrophobic thermoreversible material produced in Examples 2-21, A material containing the polyallylamine derivative shown in Table 2 was selected and diluted with water to produce a hydrophilic / hydrophobic thermoreversible material containing 5% or 10% of the polyallylamine derivative.
[0033]
(Measurement of phase transition temperature of thermoreversible material)
The hydrophilic / hydrophobic thermoreversible materials produced in Examples 22 to 29 were placed in a spectrophotometer cell, the cell temperature was changed with circulating water, and the transmittance at 500 nm was measured. The temperature increase or decrease was changed by 1 ° C. per minute. The results are shown in FIGS. 2 to 6 as temperature-transmittance curves. As a result, it was found that this hydrophilic / hydrophobic thermoreversible material undergoes a change in transmittance in a narrow temperature range.
Furthermore, the phase transition temperature of the hydrophilic / hydrophobic thermoreversible material was determined by reading from the temperature-transmittance curve the temperature at which the transmittance was half that of the aqueous solution. The results are shown in Table 2. In Table 2, PAA means polyallylamine.
[0034]
[Table 2]
[0035]
【The invention's effect】
The polyallylamine derivative of the present invention is a novel polyallylamine derivative having different properties compared to polyallylamine. When the polyallylamine derivative of the present invention is used as a hydrophilic / hydrophobic thermoreversible material, the material has a phase transition depending on the type of polyallylamine derivative used, the ratio of substituents, the concentration of polyallylamine derivative, and pH. Expression can be regulated. In the material, since the phase transition is likely to occur in a narrow temperature range, the material reacts sensitively to the temperature near the phase transition temperature. Further, the material has a characteristic of being basic in water. In addition, when using the polyallylamine derivative of the present invention as a hydrophilic / hydrophobic thermoreversible material, simply adding a specific epoxy compound to polyallylamine to 20 to 60 ° C., without any by-products, The material can be produced.
[Brief description of the drawings]
FIG. 1 shows the IR spectrum of the hydrochloride of the polyallylamine derivative prepared in Example 1 (formula I, R 2 is CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4). Show. The vertical axis represents the transmittance (%), and the horizontal axis represents the wave number (cm −1 ).
FIG. 2 shows hydrophilicity / hydrophobicity containing 10% of the polyallylamine derivative prepared in Example 22 (Formula I, R 2 is CH 2 CH 3 , x = 0.2, y = 0.8, z = 0). The temperature-transmittance curve of a thermoreversible material is shown. The vertical axis represents transmittance (%), and the horizontal axis represents temperature (° C.).
FIG. 3 shows hydrophilicity including 10% of a polyallylamine derivative prepared in Example 23 (formula I, R 2 is (CH 2 ) 3 CH 3 , x = 0.7, y = 0.3, z = 0). A temperature-transmittance curve of a hydrophobic thermoreversible material is shown. The vertical axis represents transmittance (%), and the horizontal axis represents temperature (° C.).
FIG. 4 shows hydrophilicity of 10% of polyallylamine derivative prepared in Example 24 (formula I, R 2 is CH 2 OCH 2 CH 3 , x = 0, y = 0.6, z = 0.4). Hydrophilic / hydrophobic material containing 10% of a hydrophobic thermoreversible material and the polyallylamine derivative prepared in Example 25 (Formula I, R 2 is CH 2 OCH 2 CH 3 , x = 0, y = 0, z = 1) 2 shows a temperature-transmittance curve of a thermally reversible material. The vertical axis represents transmittance (%), and the horizontal axis represents temperature (° C.).
FIG. 5 shows a hydrophilicity containing 10% of the polyallylamine derivative prepared in Example 26 (Formula I, R 2 is CH 2 OCH (CH 3 ) 2 , x = 0.3, y = 0.7, z = 0). And hydrophobic thermoreversible material and polyallylamine derivative prepared in Example 27 (Formula I, R 2 is CH 2 OCH (CH 3 ) 2 , x = 0, y = 0.9, z = 0.1) Shows a temperature-transmittance curve of a hydrophilic / hydrophobic thermoreversible material containing 10%. The vertical axis represents transmittance (%), and the horizontal axis represents temperature (° C.).
FIG. 6 shows 5% of the polyallylamine derivative prepared in Example 28 (formula I where R 2 is CH 2 O (CH 2 ) 3 CH 3 , x = 0.7, y = 0.3, z = 0). Hydrophilic / hydrophobic thermoreversible material and polyallylamine derivative prepared in Example 29 (formula I, R 2 is CH 2 O (CH 2 ) 3 CH 3 , x = 0.6, y = 0.4, 2 shows a temperature-transmittance curve of a hydrophilic / hydrophobic thermoreversible material containing 5% of z = 0). The vertical axis represents transmittance (%), and the horizontal axis represents temperature (° C.).
Claims (3)
一般式
General formula
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18723697A JP3717021B2 (en) | 1997-06-30 | 1997-06-30 | POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18723697A JP3717021B2 (en) | 1997-06-30 | 1997-06-30 | POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1121321A JPH1121321A (en) | 1999-01-26 |
JP3717021B2 true JP3717021B2 (en) | 2005-11-16 |
Family
ID=16202445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18723697A Expired - Lifetime JP3717021B2 (en) | 1997-06-30 | 1997-06-30 | POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3717021B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004029647D1 (en) | 2003-04-01 | 2010-12-02 | Nitto Boseki Co Ltd | MODIFIED POLYALLYLAMINE AND METHOD OF MANUFACTURING THEREOF |
JP4576815B2 (en) * | 2003-09-12 | 2010-11-10 | 日東紡績株式会社 | Modified polyallylamine and method for producing the same |
JP4644664B2 (en) | 2003-09-29 | 2011-03-02 | 富士フイルム株式会社 | Inkjet recording material, inkjet recording material manufacturing method, and inkjet recording method |
DE602005001724T2 (en) | 2004-06-22 | 2007-12-06 | Fujifilm Corp. | Process for the preparation of image recording materials. |
EP2044132A1 (en) * | 2006-07-12 | 2009-04-08 | The Robert Gordon University | Composition |
-
1997
- 1997-06-30 JP JP18723697A patent/JP3717021B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1121321A (en) | 1999-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4388451A (en) | Polymers derived from allylphenol or substituted allylphenol and maleic anhydride | |
US20120248389A1 (en) | Stable, water-soluble near infrared dyes | |
US4559391A (en) | Process for producing poly(allylamine) derivatives | |
CN109161017B (en) | Multi-component polymerization method based on alkyne and sulfonyl azide, sulfonyl-containing polymer and application | |
US4680360A (en) | Process for producing poly(allylamine) derivatives | |
JP3717021B2 (en) | POLYALLYLAMINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND HYDROPHILIC AND HYDROPHOBIC THERMAL RETURABLE MATERIAL USING THE SAME | |
US3856714A (en) | Polyviologens | |
EP0411304B1 (en) | Acetylene bis-phthalic compounds and polyimides made therefrom | |
JP4003141B2 (en) | Method for producing thermoreversible material | |
US4701497A (en) | Process for producing novel photosensitive resins | |
Mottet et al. | Analogous reaction for maximum sulfonation of polysulfones | |
JPS5940825B2 (en) | Manufacturing method of diimonium compound | |
JP3778387B2 (en) | Hydrophilic-hydrophobic thermoreversible material | |
CN113105631A (en) | Sulfonamide polymer and preparation method thereof | |
JPS5973560A (en) | Polymerizable sulfobetaine compound and its preparation | |
JP7544371B2 (en) | Film, anti-fogging film, hard coat film and method for producing film | |
JPS6163643A (en) | Novel azoamide compound and its preparation | |
KR100549993B1 (en) | Disubstituted cucurbit[6]urils and preparing method thereof | |
KR100215093B1 (en) | Polyamide having n,n'-diimido functional group and method of its preparation | |
JPH0436290A (en) | Silane compound | |
JPH03277632A (en) | New polymeric quaternary salt | |
JP2000063435A (en) | Preparation of allylamine polymer | |
JPS62288629A (en) | Polyamide containing diacetylene group and non-aromatic group | |
KR100486183B1 (en) | High compatible photosensitive polymer and process for preparing the same | |
JPS6043382B2 (en) | 4'-azidobenzal-2-methoxyacetophenone and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050825 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130909 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |