JP3716681B2 - Hole processing equipment - Google Patents

Hole processing equipment Download PDF

Info

Publication number
JP3716681B2
JP3716681B2 JP24281899A JP24281899A JP3716681B2 JP 3716681 B2 JP3716681 B2 JP 3716681B2 JP 24281899 A JP24281899 A JP 24281899A JP 24281899 A JP24281899 A JP 24281899A JP 3716681 B2 JP3716681 B2 JP 3716681B2
Authority
JP
Japan
Prior art keywords
boring
shaft
machining
hole
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24281899A
Other languages
Japanese (ja)
Other versions
JP2001062620A (en
Inventor
康博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP24281899A priority Critical patent/JP3716681B2/en
Publication of JP2001062620A publication Critical patent/JP2001062620A/en
Application granted granted Critical
Publication of JP3716681B2 publication Critical patent/JP3716681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Boring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワークの穴の内壁を切削する中ぐり加工用の穴加工装置、特に、複数の直列状に配備された複数の加工穴を同時に切削可能な穴加工装置に関する。
【0002】
【従来の技術】
従来、複数の加工穴を同時に中ぐり加工する中ぐり加工機としては各ワークの形状に応じた専用機が使用されている。
たとえば、シリンダヘッドのようにカム軸の長手方向に沿って軸受穴を複数備えたような場合、図5に示すシリンダヘッド用の中ぐり専用機が用いられる。この専用機100は、ベッド101上に切削加工機本体102とテーブル103と先端軸受104とを備え、加工軸線Lに沿って配備したワークとしてのシリンダヘッド109の複数の軸受穴hを中ぐり加工する。切削加工機本体102はベッド101に対して図面左右方向である送り方向Xおよび上下方向Zに移動可能な主軸105を備え、同主軸にボーリング軸106の一端を固定する。テーブル103はテーブル駆動装置107を介してベッド101に支持され、テーブル駆動装置107により少なくとも上下方向Zに移動可能に保持される。テーブル103上には取付け具108が設けられ、これによってシリンダヘッド109をテーブル上に固定できる。先端軸受104にはボーリング軸106の先端を加工軸線Lに沿って差し込むことが可能な軸受穴h1が形成されている。
【0003】
ボーリング軸106はシリンダヘッド109の軸受穴hより小径の軸部を備え、図6(a)、(b)に示すように、同軸部の中間部にはシリンダヘッド109の各軸受穴hと対向する位置に切刃110がそれぞれ突設される。切刃110は、ボーリング軸106の中心線と加工軸線Lとが一致した状態(図6(b)の状態)で、ボーリング軸106と共に回転駆動した際に、各軸受穴hに所定の形状の加工穴を中ぐり加工できるようにその突設量eが予め調整される。
【0004】
このようなシリンダヘッド用の中ぐり専用機100は、予め、テーブル103上にシリンダヘッド109を載置し、この際、図6(a)に示すように、シリンダヘッド109の加工穴hの共通中心線(中心線位置をOaで示す)が加工軸線L(中心線位置をObで示す)よりオフセット量αだけ上方に保持されるような位置に保持される。この後、ボーリング軸106を加工軸線L上であって後退位置(先端部位置を符号D1で示す)に保持し、しかも、主軸105が切刃110を下に向けた状態で送り方向Xである加工軸線Lの方向に移動され、ボーリング軸106の先端が先端軸受104の軸受穴h1に差し込まれ,加工位置D2に保持される。この後、テーブル駆動装置107が駆動して、ベッド101に支持されたシリンダヘッド109をオフセット量αだけ降下させて各軸受穴hを図6(b)に示す状態に保持し、加工軸線Lと各軸受穴hの共通中心線を一致させる。その後で、ボーリング軸106が両持ち状態で回転および送り駆動して各軸受穴hを同時に中ぐり加工し、加工終了後は再度シリンダヘッド109をオフセット量αだけ上昇させ、主軸105が切刃110を下に向けた状態(図6(b)に示す状態)で送り方向Xに移動操作されて各軸受穴hよりボーリング軸106を抜き取ることで、シリンダヘッド109のボーリング加工が終了する。
【0005】
【発明が解決しようとする課題】
このように、シリンダヘッドの複数の軸受部の中ぐり加工で用いる専用機100はシリンダヘッドの複数の加工穴hを同時に加工精度を確保して加工できるが、テーブル駆動装置107を駆動制御する必要があり、加工制御が比較的複雑化している。しかも、装置が専用機として作成されるため、この点で比較的複雑で高価なものとなっていた。なお、マシニングセンタを用いて片持ちのリーマ加工を行う穴加工装置があるが、構造上先端軸受を使用できず、片持ちのリーマで加工穴を開けると、順次その加工済みの穴を軸受として利用して次の加工穴の加工に入り、各加工穴の入り口側と出口側とで穴中心位置にずれが生じ易く、加工精度が低下し易いという問題がある。
本発明は上述の課題を考察し、加工精度を確保した上で比較的簡素化された加工制御を行える穴加工装置を提供すること、さらに、設備費の低減をも図れることを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明では、共通中心線に沿って複数の加工穴が設けられたワークを支持したベッドと、上記ワークの共通中心線が上記ベッド上に設定される加工軸線に一致するようにワークをベッド上に解除可能に固定する取り付け具と、上記ベッドに装着され上記ワークに対して接離する方向である送り方向及び送り方向と直交する上下方向に移動可能な主軸を備えた切削機本体と、上記主軸に一端部が取付けられ、上記各加工穴を貫通する軸部に各加工穴を中ぐり加工する各切刃をそれぞれ突設したボーリング軸と、上記ベッド上に上記加工軸線に沿って移動可能に支持され、上記ボーリング軸の先端部を枢支する前進位置とボーリング軸より離脱する後退位置とに移動自在な先端軸受と、上記加工軸線に共通中心線を一致させた各加工穴を上記ボーリング軸で中ぐり加工するに先立ち、同ボーリング軸を上記加工軸線に対して各加工穴と上記切刃の干渉を防止できる量だけオフセットした状態で送り方向に移動し、次いで、上記ボーリング軸が上記オフセット量だけ移動することで加工軸線とボーリング軸の芯合わせをし、その上で、上記先端軸受を上記後退位置より前進位置に移動させてボーリング軸の先端を枢支するよう制御する制御手段と、を具備するようにしている。
【0007】
ここでは、加工軸線に共通中心線を一致させた各加工穴をボーリング軸で中ぐり切削加工するに先立ち、まず、ボーリング軸を加工軸線に対して加工穴と切刃の干渉を防止できる量だけオフセットした状態で送り移動して加工前の各加工穴に軸部を差し込み、次いで、ボーリング軸を送り方向と直交する方向に移動させて加工軸線とボーリング軸の芯合わせをし、その上で、先端軸受が後退位置より前進位置に移動してボーリング軸を枢支し、その後、両持ち状態のボーリング軸で複数の加工穴を中ぐり作動している。このため、全加工穴を同時に中ぐり切削加工するに当たり、ボーリング軸及び先端軸受だけの位置制御をし、ワーク側の位置を切り換え制御する必要がなく、加工制御が比較的簡素化される。しかも、ボーリング軸のみを送り方向及び同送り方向と直交する方向に移動させた上で前進後退式の先端軸受にボーリング軸を差し込み両持ち状態とし、その上で中ぐり駆動でき、加工穴の加工精度が向上し、専用機並の加工精度を確保できる。
【0008】
請求項2の発明は、請求項1記載の穴加工装置において、上記切削機本体はマシニングセンタであることを特徴とする。この場合、マシニングセンタを用いてワークに対するボーリング軸の位置をそれに対応する数値情報で精度よく位置制御でき、精度のよい中ぐり加工を行え、しかも、既存のマシニングセンタを有効利用でき、設備費の低減を図れる。
【0009】
【発明の実施の形態】
図1、図2には本発明の一実施形態例としての穴加工装置を示した。この穴加工装置Mは略矩形の載置台であるベッド1と、その載置面2の一側に配設される切削加工機本体としてのマシニングセンタ3と、載置面2の他側に配設される先端軸受4と、中央に配備され載置部501を有するテーブル5と、ベッド1の側壁の一部に装着される制御盤6とを備える。ここで、マシニングセンタ3は後述するベース9と一体のカバー301に制御部17を装備し、同制御部17と制御盤6とは信号回線rで接続され、相互に信号の授受が可能な状態で連結される。
【0010】
ベッド1の載置面2の一側にはマシニングセンタ3を送り方向Xに案内する送りレール7が形成される。この送りレール7に摺動可能にマシニングセンタ3が載置される。ベース9は送り用アクチュエータ901を装着し、同アクチュエータ901は制御部17の送り駆動出力に応じて駆動し、ベース9側を送り方向Xに移動操作する。送りレール7に摺動可能に載置されるベース9には横方向(紙面垂直方向)に延びる横レール10が形成され、同レール10に摺動可能に載置されたコラムベース8は横送り用アクチュエータ801を装着し、同アクチュエータ801は制御部17の横送り駆動出力に応じて駆動し、コラムベース8側を横方向(紙面垂直方向)に移動操作する。コラムベース8の上面からはコラム11が立設され、コラムの縦レール12に摺動可能に主軸頭13が装着される。主軸頭13は縦送り用アクチュエータ130を装着し、同アクチュエータ130は制御部17の縦送り駆動出力に応じて駆動し、主軸頭13を上下方向Zに移動操作する。
【0011】
主軸頭13は主軸131及び同主軸を回転駆動する主軸駆動部15,主軸131内に装着される自動チャック機構16を備える。マシニングセンタ3の制御部を成す制御部17は主軸頭13の送り方向X、横方向(紙面垂直方向)及び上下方向Zにおける位置を切り換え制御する位置制御手段A1の機能を備える。位置制御手段A1は主軸頭13の送り方向X、横方向(紙面垂直方向)及び上下方向Zにおける位置に対応する数値情報を処理し、主軸頭13を数値化された位置指令信号によって、位置切り換え制御する。しかも、制御部17は主軸駆動部15及び自動チャック機構16の各駆動を制御する主軸制御手段A2の機能を備える。主軸制御手段A2はボーリング軸14及びその他の図示しない切刃の装着指令に応じて各切刃及びその位置に対応する数値情報を処理し、主軸131に装備中の他の切刃を指定の場所に戻し、新たに指定されたボーリング軸14を受取る操作と、それに伴う自動チャック機構16の解除、締め付けの切り換え制御を順次行う。
【0012】
ボーリング軸14は後述のシリンダヘッドHの複数の軸受穴hを同時に中ぐり切削加工する専用工具で、その軸部141の中間部にはシリンダヘッドHの複数の軸受穴hと同時に対向する位置に切刃cが夫々配備される。尚、各切刃cは軸部141の軸中心線と軸直角な放射方向に突出し、その突出し量は前以て調整される。即ち、図3に示すように、シリンダヘッドHの軸受bの軸受穴hにボーリング軸14が嵌挿された際に、その軸部141の中心線(その中心点をO2として示した)が軸受穴hの中心線(ここでは加工軸線Lと一致する)と一致した、即ち、芯合わせされた状態で回転駆動した際に、軸受穴hの内壁を所定の内径に切削できるような突出し量に調整されている。なお、ボーリング軸14の軸部141は軸受穴hの内径より十分に小さく、軸部141をオフセット量uだけずらし、その中心点をO1に移動した場合でも、切刃cを上に向けた状態の軸部141と軸受穴hの内壁との干渉を避けられるように形成されている。
【0013】
テーブル5はワークであるシリンダヘッドHを載置する凹形状の載置部501が形成され、その端部に取付け具18を装着する。尚、ここでのシリンダヘッドHはその上面側に図示しないカム軸を枢支する複数の軸受bを突設し、各軸受bは中央に軸受穴hを形成される。この軸受穴hは中ぐり切削に先立ち周知の前加工が施されている。しかも、ここでの複数の軸受bの軸受穴hは図示しない共通中心線に沿って互いに所定間隔を保って直状に順次配設されるように形成される。
【0014】
シリンダヘッドHは図示しない搬送手段で載置部501近傍に搬送され、手動で載置部501に載置される。この載置部501はここにシリンダヘッドHが載置された際に、複数の軸受穴hの共通中心線が予め設定されている加工軸線Lと一致するように載置できる。なお、取付け具18はエアアクチュエータ式のクランプ機構を有し、制御盤6の有するワーク固定操作手段A3により適時に切り換え制御され、これにより、加工時のシリンダヘッドが載置部501よりずれないように締め付け固定できる。
【0015】
載置面2の他側に配設される先端軸受4は、ベッド1に支持台19を介して固定されるガイドレール20と、同レール上に摺動可能に載置される軸受本体21と、支持台19の端部に装着され軸受本体21をガイドレール20に沿って摺動させるエア式アクチュエータからなる切り換え駆動部22とを備える。軸受本体21はボーリング軸14の先端部を捕まえて枢支する枢支穴h1を形成される。軸受本体21はガイドレール20に沿って移動幅dだけ移動可能に形成され、その際、枢支穴h1が常に予め設定される加工軸線Lと一致した状態で摺動できる。切り換え駆動部22は制御盤6の有する軸受操作手段A4により適時に切り換え制御される。軸受操作手段A4は非作動時に軸受本体21をボーリング軸14の先端部より離脱する後退位置Q1に保持し、作動時に軸受本体21をボーリング軸14の先端部を捕まえて枢支する前進位置Q2に切り換え移動し、これにより、作動時にボーリング軸14を両持ち状態で回転駆動できるようにしている。
【0016】
次に、図1の穴加工装置MによるシリンダヘッドHの軸受穴hの中ぐり加工を図2及び図4の穴加工説明図と共に説明する。
穴加工装置Mの制御手段を成す制御部17及び制御盤6にシリンダヘッドHの加工モードが入力される。これにより、制御盤6のワーク固定操作手段A3はワーク取付け処理に入る。ここでは取付け具18を駆動し、初期状態である解除状態に保持し、シリンダヘッドHがテーブル5に載置され図示しない載置検出センサの信号を受けると、その時点で取付け具18をクランプ作動させる。しかも、軸受操作手段A4が軸受本体21を後退位置Q1に切り換え保持する。
【0017】
一方、制御部17の主軸制御手段A2はボーリング軸14のセット処理に入り、主軸131に装備中の他の切刃を指定の場所に戻し、ボーリング軸14を受取り、それに伴う自動チャック機構16の解除、締め付けの切り換えを順次行い、ボーリング軸14を加工軸線L上で先端が加工待機位置である基準位置S1に達するように保持する。
【0018】
次ぎに、穴加工装置Mは、制御部17及び制御盤6が一切削工程と、軸受セット工程を連続して実行する。
まず、位置制御手段A1は加工軸線L上の基準位置S1のボーリング軸14の切刃cを上に向け,その状態のボーリング軸14をオフセット量uだけ下方に切り換え保持する状態にセットする(▲1▼工程)。
次いで、ボーリング軸14を加工開始位置S2に向けて前進移動させ(図2参照)、各軸受穴hを通過した軸部141の先端を加工開始位置S2に保持する(▲2▼工程)。
【0019】
次いで、ボーリング軸14をオフセット量uだけ上昇させ、図3に示すように、軸部141の中心線(その中心点をO2として示した)が軸受穴hの中心線と一致した状態、即ち、ボーリング軸14を加工軸線Lと芯合わせした状態に保持する(▲3▼工程)。
この状態を検出した制御盤6の軸受操作手段A4は先端軸受4を後退位置Q1より前進位置Q2に前進させ,ボーリング軸14の先端を捕まえ枢支する(▲4▼工程)。
【0020】
この状態を検出した制御部17の位置制御手段A1は両持ちされたボーリング軸14を加工開始位置S2より加工終了位置S3まで回転しつつ前進させ、幅Bの軸受穴hの内壁を連続して中ぐり加工し、軸受穴hを所定内径に加工する(▲5▼工程)。
次いで、加工終了位置S3より加工開始位置S2までボーリング軸14を引き戻す(▲6▼工程)。
この状態を検出した制御盤6の軸受操作手段A4は先端軸受4を前進位置Q2より後退位置Q1に後進させ,ボーリング軸14の先端より離脱する(▲7▼工程)。
【0021】
この状態を検出した制御部17の位置制御手段A1は先端が開放されたボーリング軸14の切刃cを上に向け,その状態のボーリング軸14をオフセット量uだけ下方に切り換え保持した状態にセットする(▲8▼工程)。
次いで、切刃cを上に向けたボーリング軸14を加工開始位置S2より基準位置S1に向けて後進移動させ、各軸受穴hを通過した軸部141の先端を基準位置S1に保持し(▲9▼工程)、一切削工程を完了する。
この後、制御盤6のワーク固定操作手段A3はワーク解除処理に入り、取付け具18を駆動し、取付け具18をクランプ作動させ、加工済みのシリンダヘッドHをテーブル5から取り出し、次の工程に進む。
【0022】
図1の穴加工装置Mでは、ワークとしてのシリンダヘッドHの全軸受穴hを同時に中ぐり加工する際、切刃cと各軸受穴hとの干渉を防止するためシリンダヘッドH側を上下に切り換えるという制御を行わず、ボーリング軸14側の位置制御と先端軸受4の前後進移動制御のみで済ませており、加工制御が比較的簡素化される。しかも、ボーリング軸14のみを送り方向X及び上下方向Zに移動させた上で前後進式の先端軸受4にボーリング軸14を差し込み両持ち状態とし、その上で中ぐり駆動でき、全軸受穴hの加工精度が向上し、専用機並の加工精度を確保できる。ここでは、特にマシニングセンタ3を用いてボーリング軸14の位置切り換え制御を精度よく数値制御でき、精度のよい中ぐり加工を行え、しかも、既存のマシニングセンタを有効利用でき、設備費の低減を図れる。しかも、ボーリング軸14を用い複数の軸受穴を同時加工するので、リーマ加工により一つずつ軸受穴を加工する場合より、工具全体の寿命が長くなり、工具費の低減を図れる。
【0023】
上述の穴加工装置Mは切削機本体としてマシニングセンタを用いたが、場合により、ボーリング軸14を送り方向Xと上下方向Zとに切り換え制御できるその他のNC加工機として切削機本体を形成してもよく、この場合も図1の穴加工装置Mと同様の作用効果を得られる。上述の穴加工装置MはワークであるシリンダヘッドHを中ぐり切削加工していたが、その他の複数加工穴を有したワークの中ぐり加工用の穴加工装置を構成でき、この場合も図1の穴加工装置Mと同様の作用効果を得られる。
【0024】
【発明の効果】
以上のように、請求項1の発明では、ここでは、全加工穴を同時に中ぐり加工するに当たり、ワークの位置を切り換え制御する必要がなく、加工制御が比較的簡素化される。しかも、ボーリング軸のみを送り方向及び同送り方向と直交する方向に移動させた上で前進後退式の先端軸受を加工軸線上で後退位置より前進位置に移動することでボーリング軸を差し込み両持ち状態とし、その上で中ぐり切削加工でき、加工穴の加工精度が向上し、専用機並の加工精度を確保できる。
【0025】
請求項2の発明は、マシニングセンタを用いてワークに対するボーリング軸の位置をそれに対応する数値情報で精度よく位置制御でき、精度のよい中ぐり加工を行え、しかも、既存のマシニングセンタを有効利用でき、設備費の低減を図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態例としての穴加工装置の概略側面図である。
【図2】図1の穴加工装置の中ぐり加工工程におけるボーリング軸と先端軸受の切り換え移動説明図である。
【図3】図1の穴加工装置で中ぐり加工される軸受穴の加工時断面図である。
【図4】図1の穴加工装置が行う中ぐり加工工程のブロック説明図である。
【図5】従来の穴加工装置の概略切欠側断面図である。
【図6】従来の穴加工装置による軸受穴の加工時断面図で、(a)はボーリング軸オフセット時を、(b)はボーリング軸加工時を示す。
【符号の説明】
1 ベッド
3 マシニングセンタ
501 載置部
6 制御盤
131 主軸
14 ボーリング軸
141 軸部
17 制御部
18 取付け具
c 切刃
h 軸受穴
H シリンダヘッド
L 加工軸線
M 穴加工装置
O2 加工穴中心線
Q1 後退位置
Q2 前進位置
X 送り方向
Z 上下方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boring device for boring, which cuts an inner wall of a hole of a workpiece, and more particularly to a boring device capable of simultaneously cutting a plurality of machining holes arranged in series.
[0002]
[Prior art]
Conventionally, a dedicated machine corresponding to the shape of each workpiece has been used as a boring machine for boring a plurality of machined holes simultaneously.
For example, when a plurality of bearing holes are provided along the longitudinal direction of the camshaft as in the cylinder head, the cylinder head dedicated boring machine shown in FIG. 5 is used. The dedicated machine 100 includes a cutting machine main body 102, a table 103, and a tip bearing 104 on a bed 101, and boring a plurality of bearing holes h of a cylinder head 109 as a work arranged along a machining axis L. To do. The cutting machine main body 102 includes a main shaft 105 that can move in a feed direction X and a vertical direction Z that are horizontal directions in the drawing with respect to the bed 101, and fixes one end of a boring shaft 106 to the main shaft. The table 103 is supported on the bed 101 via a table driving device 107 and is held by the table driving device 107 so as to be movable at least in the vertical direction Z. A fixture 108 is provided on the table 103, whereby the cylinder head 109 can be fixed on the table. The tip bearing 104 is formed with a bearing hole h1 into which the tip of the boring shaft 106 can be inserted along the machining axis L.
[0003]
The boring shaft 106 has a shaft portion having a diameter smaller than that of the bearing hole h of the cylinder head 109. As shown in FIGS. 6 (a) and 6 (b), the intermediate portion of the coaxial portion faces each bearing hole h of the cylinder head 109. Cutting blades 110 project from the positions to be projected. When the cutting blade 110 is rotationally driven together with the boring shaft 106 in a state where the center line of the boring shaft 106 and the machining axis L are aligned (the state shown in FIG. 6B), each of the bearing holes h has a predetermined shape. The protruding amount e is adjusted in advance so that the machined hole can be bored.
[0004]
In such a boring machine 100 for cylinder head, the cylinder head 109 is previously placed on the table 103. At this time, as shown in FIG. The center line (center line position is indicated by Oa) is held at a position where it is held above the machining axis L (center line position is indicated by Ob) by an offset amount α. Thereafter, the boring shaft 106 is held on the machining axis L in the retracted position (the tip end position is indicated by a symbol D1), and the main shaft 105 is in the feed direction X with the cutting edge 110 facing downward. Moved in the direction of the machining axis L, the tip of the boring shaft 106 is inserted into the bearing hole h1 of the tip bearing 104 and held at the machining position D2. Thereafter, the table driving device 107 is driven, the cylinder head 109 supported by the bed 101 is lowered by the offset amount α, and the bearing holes h are held in the state shown in FIG. The common center line of each bearing hole h is matched. Thereafter, the boring shaft 106 is rotated and fed in a state where both ends are supported, and each bearing hole h is simultaneously bored. After the machining is finished, the cylinder head 109 is again raised by the offset amount α, and the main shaft 105 is turned into the cutting edge 110. The boring process of the cylinder head 109 is completed when the boring shaft 106 is removed from each bearing hole h by being moved and operated in the feed direction X in a state in which is directed downward (the state shown in FIG. 6B).
[0005]
[Problems to be solved by the invention]
As described above, the dedicated machine 100 used for boring of the plurality of bearing portions of the cylinder head can process the plurality of processing holes h of the cylinder head at the same time with high processing accuracy. However, it is necessary to drive and control the table driving device 107. Therefore, machining control is relatively complicated. In addition, since the apparatus is created as a dedicated machine, it is relatively complicated and expensive in this respect. Although there is a hole drilling device that performs cantilever processing using a machining center, the tip end bearing cannot be used due to its structure, and when the drilled hole is drilled with a cantilever reamer, the processed holes are used sequentially as bearings. Then, the machining of the next machining hole is started, and there is a problem that the hole center position is likely to be shifted between the entrance side and the exit side of each machining hole, and the machining accuracy tends to be lowered.
An object of the present invention is to provide a hole drilling apparatus capable of performing a relatively simplified machining control while ensuring machining accuracy, and to reduce equipment costs.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of claim 1, a bed supporting a work provided with a plurality of machining holes along a common center line, and a common center line of the work are set on the bed. A fixture that releasably fixes the workpiece on the bed so as to coincide with the machining axis to be moved, and a feed direction that is mounted on the bed and is in contact with and away from the workpiece, and a vertical direction perpendicular to the feed direction. A cutting machine body having a possible main shaft, and a boring shaft having one end attached to the main shaft and projecting cutting blades for boring each processing hole in the shaft portion penetrating each processing hole; A tip bearing that is supported on the bed so as to be movable along the machining axis and is movable between a forward position pivotally supporting the tip of the boring shaft and a retracted position separating from the boring shaft, and common to the machining axis Prior to boring with each boring shaft, the boring shaft is fed with the boring shaft offset by an amount that can prevent interference between each boring hole and the cutting edge. Then, the boring shaft is moved by the offset amount to align the machining axis with the boring shaft, and then the tip bearing is moved from the retracted position to the advanced position to move the boring axis. And control means for controlling to pivotally support the tip of the.
[0007]
Here, prior to boring with each boring axis, each boring axis whose common center line matches the machining axis is first cut in an amount that can prevent the boring axis from interfering with the boring axis against the machining axis. Feeding in an offset state and inserting the shaft part into each machining hole before machining, then moving the boring axis in the direction perpendicular to the feeding direction to align the machining axis and boring axis, The tip bearing is moved from the retracted position to the advanced position to pivotally support the boring shaft, and thereafter, the boring shaft in a double-supported state is operated to boring a plurality of machining holes. For this reason, when boring and cutting all the machining holes at the same time, it is not necessary to control the position of only the boring shaft and the tip bearing, and to switch and control the position on the workpiece side, so that the machining control is relatively simplified. Moreover, after moving only the boring shaft in the feed direction and in the direction perpendicular to the feed direction, the boring shaft is inserted into the forward and backward type tip bearing so that it can be both supported, and the boring drive can be performed on it, and the drilling of the hole is performed. The accuracy is improved and the processing accuracy equivalent to that of a dedicated machine can be secured.
[0008]
According to a second aspect of the present invention, in the drilling apparatus according to the first aspect, the cutting machine body is a machining center. In this case, the position of the boring axis with respect to the workpiece can be accurately controlled using numerical information corresponding to the machining center, the boring can be performed with high accuracy, and the existing machining center can be used effectively, reducing the equipment cost. I can plan.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a hole drilling apparatus as an embodiment of the present invention. This hole processing apparatus M is provided on a bed 1 which is a substantially rectangular mounting table, a machining center 3 as a main body of a cutting machine disposed on one side of the mounting surface 2, and disposed on the other side of the mounting surface 2. A tip bearing 4, a table 5 provided in the center and having a placement portion 501, and a control panel 6 mounted on a part of the side wall of the bed 1. Here, the machining center 3 is equipped with a control unit 17 on a cover 301 integrated with a base 9 to be described later, and the control unit 17 and the control panel 6 are connected by a signal line r so that signals can be exchanged between them. Connected.
[0010]
A feed rail 7 for guiding the machining center 3 in the feed direction X is formed on one side of the placement surface 2 of the bed 1. The machining center 3 is slidably mounted on the feed rail 7. The base 9 is equipped with a feed actuator 901, which is driven according to the feed drive output of the control unit 17, and moves the base 9 side in the feed direction X. The base 9 slidably mounted on the feed rail 7 is formed with a horizontal rail 10 extending in the lateral direction (perpendicular to the paper surface), and the column base 8 slidably mounted on the rail 10 is laterally fed. The actuator 801 is mounted, and the actuator 801 is driven according to the lateral feed drive output of the control unit 17 to move the column base 8 side in the lateral direction (perpendicular to the paper surface). A column 11 is erected from the upper surface of the column base 8, and a spindle head 13 is slidably mounted on a vertical rail 12 of the column. Spindle head 13 a longitudinal feeding actuator 130 is mounted, the actuator 130 is driven according to the longitudinal feeding drive output of the control unit 17 moves the operation of the spindle head 13 in the vertical direction Z.
[0011]
The spindle head 13 includes a spindle 131, a spindle drive unit 15 that rotationally drives the spindle 131, and an automatic chuck mechanism 16 that is mounted in the spindle 131. The control unit 17 constituting the control unit of the machining center 3 has a function of position control means A1 for switching and controlling the position of the spindle head 13 in the feed direction X, the horizontal direction (perpendicular to the paper surface), and the vertical direction Z. The position control means A1 processes numerical information corresponding to the position of the spindle head 13 in the feed direction X, the lateral direction (perpendicular to the paper surface), and the vertical direction Z, and switches the position of the spindle head 13 in accordance with the digitized position command signal. Control. In addition, the control unit 17 has a function of a spindle control means A2 that controls the driving of the spindle driving unit 15 and the automatic chuck mechanism 16. The spindle control means A2 processes numerical information corresponding to each cutting edge and its position in accordance with the boring shaft 14 and other mounting instructions (not shown) of the cutting blade, and designates the other cutting edge currently installed on the spindle 131 at a designated location. Then, the operation of receiving the newly designated boring shaft 14, the accompanying release of the automatic chuck mechanism 16, and the switching control of tightening are sequentially performed.
[0012]
The boring shaft 14 is a dedicated tool for boring a plurality of bearing holes h of a cylinder head H, which will be described later, at the same time, and the intermediate portion of the shaft portion 141 is at a position facing the bearing holes h of the cylinder head H at the same time. Cutting blades c are respectively provided. Each cutting edge c protrudes in a radial direction perpendicular to the axial center line of the shaft portion 141, and the protruding amount is adjusted in advance. That is, as shown in FIG. 3, when the boring shaft 14 is inserted into the bearing hole h of the bearing b of the cylinder head H, the center line of the shaft portion 141 (the center point is indicated as O2) is the bearing. The amount of protrusion matches the center line of the hole h (here, coincides with the machining axis L), that is, the inner wall of the bearing hole h can be cut to a predetermined inner diameter when driven to rotate in a centered state. It has been adjusted. The shaft portion 141 of the boring shaft 14 is sufficiently smaller than the inner diameter of the bearing hole h. Even when the shaft portion 141 is shifted by the offset amount u and the center point is moved to O1, the cutting edge c is directed upward. Are formed so as to avoid interference between the shaft portion 141 and the inner wall of the bearing hole h.
[0013]
The table 5 is formed with a concave placement portion 501 on which a cylinder head H as a work is placed, and a fixture 18 is attached to the end portion thereof. The cylinder head H here has a plurality of bearings b that pivotally support a camshaft (not shown) on the upper surface thereof, and each bearing b is formed with a bearing hole h in the center. The bearing hole h is subjected to a known pre-processing prior to boring. Moreover, the bearing holes h of the plurality of bearings b are formed so as to be sequentially arranged in a straight line at a predetermined interval along a common center line (not shown).
[0014]
The cylinder head H is transported to the vicinity of the mounting unit 501 by a transport unit (not shown), and is manually mounted on the mounting unit 501. When the cylinder head H is placed here, the placement portion 501 can be placed so that the common center line of the plurality of bearing holes h coincides with a preset machining axis L. The fixture 18 has an air actuator type clamp mechanism, and is controlled to be switched by the work fixing operation means A3 of the control panel 6 in a timely manner, so that the cylinder head at the time of processing is not displaced from the mounting portion 501. Can be fastened and fixed.
[0015]
The tip bearing 4 disposed on the other side of the mounting surface 2 includes a guide rail 20 fixed to the bed 1 via a support 19 and a bearing body 21 slidably mounted on the rail. And a switching drive unit 22 formed of an air actuator that is mounted on the end of the support base 19 and slides the bearing body 21 along the guide rail 20. The bearing main body 21 is formed with a pivot hole h1 that catches and supports the tip of the boring shaft 14. The bearing body 21 is formed to be movable along the guide rail 20 by a moving width d. At this time, the pivot support hole h1 can always slide in a state in which it coincides with the preset machining axis L. The switching drive unit 22 is switched and controlled in a timely manner by the bearing operating means A4 of the control panel 6. The bearing operating means A4 holds the bearing main body 21 in the retracted position Q1 where it is detached from the tip of the boring shaft 14 when not operating, and moves the bearing main body 21 to the advanced position Q2 where the tip of the boring shaft 14 is captured and pivoted when operating. Thus, the boring shaft 14 can be rotationally driven in a both-end supported state during operation.
[0016]
Next, boring processing of the bearing hole h of the cylinder head H by the hole processing apparatus M of FIG. 1 will be described with reference to the hole processing explanatory diagrams of FIGS.
The machining mode of the cylinder head H is input to the control unit 17 and the control panel 6 constituting the control means of the hole machining apparatus M. As a result, the workpiece fixing operation means A3 of the control panel 6 enters the workpiece attachment process. Here, the fixture 18 is driven and held in the released state which is the initial state, and when the cylinder head H is placed on the table 5 and receives a signal from a placement detection sensor (not shown), the fixture 18 is clamped at that time. Let Moreover, the bearing operating means A4 switches and holds the bearing body 21 to the retracted position Q1.
[0017]
On the other hand, the spindle control means A2 of the control unit 17 enters the setting process of the boring shaft 14, returns the other cutting blade mounted on the spindle 131 to the designated location, receives the boring shaft 14, and the automatic chuck mechanism 16 associated therewith. Release and tightening are sequentially switched, and the boring shaft 14 is held on the machining axis L so that the tip reaches the reference position S1, which is the machining standby position.
[0018]
Next, in the hole processing apparatus M, the control unit 17 and the control panel 6 continuously perform one cutting process and a bearing setting process.
First, the position control means A1 is set so that the cutting edge c of the boring shaft 14 at the reference position S1 on the machining axis L faces upward, and the boring shaft 14 in that state is switched and held downward by an offset amount u (▲ 1 ▼ process).
Next, the boring shaft 14 is moved forward toward the machining start position S2 (see FIG. 2), and the tip of the shaft portion 141 that has passed through each bearing hole h is held at the machining start position S2 (step (2)).
[0019]
Next, the boring shaft 14 is lifted by the offset amount u, and as shown in FIG. 3, the center line of the shaft portion 141 (the center point is indicated as O2) coincides with the center line of the bearing hole h, that is, The boring shaft 14 is held in alignment with the machining axis L (step (3)).
The bearing operation means A4 of the control panel 6 that has detected this state advances the tip bearing 4 from the retreat position Q1 to the advance position Q2, and catches and supports the tip of the boring shaft 14 (step (4)).
[0020]
The position control means A1 of the control unit 17 that has detected this state advances the both-bored boring shaft 14 while rotating from the machining start position S2 to the machining end position S3, and continuously moves the inner wall of the bearing hole h having the width B. Boring is performed to process the bearing hole h to a predetermined inner diameter (step (5)).
Next, the boring shaft 14 is pulled back from the machining end position S3 to the machining start position S2 (step (6)).
The bearing operation means A4 of the control panel 6 that has detected this state moves the tip bearing 4 backward from the forward movement position Q2 to the backward movement position Q1, and then disengages from the tip of the boring shaft 14 (step 7).
[0021]
The position control means A1 of the control unit 17 that has detected this state is set in a state in which the cutting edge c of the boring shaft 14 with the open end is turned upward and the boring shaft 14 in that state is switched and held downward by the offset amount u. (Step 8).
Next, the boring shaft 14 with the cutting edge c facing upward is moved backward from the machining start position S2 toward the reference position S1, and the tip of the shaft portion 141 that has passed through each bearing hole h is held at the reference position S1 (▲ 9 ▼ process), one cutting process is completed.
Thereafter, the workpiece fixing operation means A3 of the control panel 6 enters a workpiece release process, drives the fixture 18, operates the clamp 18, and removes the processed cylinder head H from the table 5 for the next step. move on.
[0022]
In the hole drilling apparatus M in FIG. 1, when all the bearing holes h of the cylinder head H as a workpiece are simultaneously bored, the cylinder head H side is moved up and down to prevent interference between the cutting edge c and each bearing hole h. The control of switching is not performed, and only the position control on the boring shaft 14 side and the forward / backward movement control of the tip bearing 4 are required, and the machining control is relatively simplified. In addition, after moving only the boring shaft 14 in the feed direction X and the vertical direction Z, the boring shaft 14 is inserted into the forward and backward advance type tip bearing 4 to be held in both ends, and can be driven in a boring manner. Machining accuracy is improved, and machining accuracy equivalent to that of a dedicated machine can be secured. Here, in particular, the position switching control of the boring shaft 14 can be accurately numerically controlled by using the machining center 3, accurate boring can be performed, and the existing machining center can be used effectively, and the equipment cost can be reduced. Moreover, since a plurality of bearing holes are simultaneously machined using the boring shaft 14, the life of the entire tool becomes longer and the tool cost can be reduced than when bearing holes are machined one by one by reamer machining.
[0023]
Although the above-described hole drilling apparatus M uses a machining center as a cutting machine body, in some cases, the cutting machine body may be formed as another NC processing machine capable of switching the boring shaft 14 between the feed direction X and the vertical direction Z. In this case as well, the same effect as the hole drilling apparatus M in FIG. 1 can be obtained. Although the above-described hole drilling apparatus M bores the cylinder head H, which is a workpiece, it can constitute another hole drilling apparatus for boring a workpiece having a plurality of drilled holes. The same effect as the hole drilling apparatus M can be obtained.
[0024]
【The invention's effect】
As described above, according to the first aspect of the present invention, here, there is no need to control switching of the position of the workpiece when boring all the machining holes at the same time, and the machining control is relatively simplified. In addition, only the boring shaft is moved in the feed direction and the direction perpendicular to the feed direction, and the forward and backward type tip bearing is moved from the retracted position to the advanced position on the machining axis, so that the boring shaft is inserted and supported. Then, boring cutting can be performed, the processing accuracy of the processing hole is improved, and processing accuracy equivalent to that of a dedicated machine can be secured.
[0025]
The invention according to claim 2 can accurately control the position of the boring axis with respect to the workpiece using numerical information corresponding to the machining center, can perform boring with high accuracy, and can effectively use the existing machining center. Costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a hole drilling apparatus as an embodiment of the present invention.
FIG. 2 is an explanatory diagram for switching movement of a boring shaft and a tip bearing in the boring process of the hole machining apparatus of FIG. 1;
3 is a cross-sectional view of a bearing hole that is bored by the hole machining apparatus of FIG.
FIG. 4 is a block explanatory diagram of a boring process performed by the hole drilling apparatus of FIG. 1;
FIG. 5 is a schematic cutaway side sectional view of a conventional hole drilling apparatus.
FIGS. 6A and 6B are cross-sectional views when a bearing hole is machined by a conventional bore machining apparatus, where FIG. 6A shows the time when the boring shaft is offset, and FIG. 6B shows the time when the boring shaft is machined.
[Explanation of symbols]
1 Bed 3 Machining center 501 Mounting part 6 Control panel 131 Main shaft 14 Boring shaft 141 Shaft part 17 Control part 18 Mounting tool c Cutting edge h Bearing hole H Cylinder head L Processing axis M Hole processing device O2 Processing hole center line Q1 Retraction position Q2 Forward position X Feed direction Z Vertical direction

Claims (2)

共通中心線に沿って複数の加工穴が設けられたワークを支持したベッドと、
上記ワークの共通中心線が上記ベッド上に設定される加工軸線に一致するようにワークをベッド上に解除可能に固定する取り付け具と、
上記ベッドに装着され上記ワークに対して接離する方向である送り方向及び送り方向と直交する上下方向に移動可能な主軸を備えた切削機本体と、
上記主軸に一端部が取付けられ、上記各加工穴を貫通する軸部に各加工穴を中ぐり加工する各切刃をそれぞれ突設したボーリング軸と、
上記ベッド上に上記加工軸線に沿って移動可能に支持され、上記ボーリング軸の先端部を枢支する前進位置とボーリング軸より離脱する後退位置とに移動自在な先端軸受と、
上記加工軸線に共通中心線を一致させた各加工穴を上記ボーリング軸で中ぐり加工するに先立ち、同ボーリング軸を上記加工軸線に対して各加工穴と上記切刃の干渉を防止できる量だけオフセットした状態で送り方向に移動し、次いで、上記ボーリング軸が上記オフセット量だけ移動することで加工軸線とボーリング軸の芯合わせをし、その上で、上記先端軸受を上記後退位置より前進位置に移動させてボーリング軸の先端を枢支するよう制御する制御手段と、
を具備したことを特徴とする穴加工装置。
A bed supporting a workpiece provided with a plurality of processing holes along a common center line;
A fixture for releasably fixing the workpiece on the bed so that a common center line of the workpiece matches a machining axis set on the bed;
A cutting machine body provided with a main shaft that is mounted on the bed and is movable in the vertical direction perpendicular to the feeding direction and the feeding direction, which is a direction in contact with and away from the workpiece;
A boring shaft having one end attached to the main shaft and projecting cutting blades for boring each processing hole in a shaft portion penetrating each processing hole;
Is movably supported along the processing axis on said bed, and movable tip bearing a retracted position disengaged from the forward position and boring shaft pivotally supporting the front end portion of the boring axis,
Prior to boring a boring shaft with each boring shaft whose common center line coincides with the bobbing axis, the boring shaft can be prevented from interfering with the boring shaft with the boring shaft with each machining hole. Move in the feed direction in an offset state, then move the boring shaft by the offset amount to align the machining axis with the boring shaft, and then move the tip bearing from the retracted position to the advanced position. Control means for moving and controlling to pivotally support the tip of the boring shaft ;
A hole drilling apparatus comprising:
上記切削機本体はマシニングセンタであることを特徴とする請求項1記載の穴加工装置。  2. The hole drilling apparatus according to claim 1, wherein the cutting machine body is a machining center.
JP24281899A 1999-08-30 1999-08-30 Hole processing equipment Expired - Fee Related JP3716681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24281899A JP3716681B2 (en) 1999-08-30 1999-08-30 Hole processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24281899A JP3716681B2 (en) 1999-08-30 1999-08-30 Hole processing equipment

Publications (2)

Publication Number Publication Date
JP2001062620A JP2001062620A (en) 2001-03-13
JP3716681B2 true JP3716681B2 (en) 2005-11-16

Family

ID=17094758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24281899A Expired - Fee Related JP3716681B2 (en) 1999-08-30 1999-08-30 Hole processing equipment

Country Status (1)

Country Link
JP (1) JP3716681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248195A (en) * 2011-06-09 2011-11-23 广州新成机械技术有限公司 Portable hole boring machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626746B1 (en) 2005-05-04 2006-09-25 김종섭 Apparatus for removing burr on edges of holes bored into curved surfaces
CN100381237C (en) * 2005-06-03 2008-04-16 沪东重机有限公司 Method for manufacturing coaxial bore for workpiece with coaxial bore series in ultra long size
CN105642948B (en) * 2014-11-14 2018-07-24 陕西飞机工业(集团)有限公司 Aircraft flight-line service finished bore equipment
CN105642937B (en) * 2016-03-08 2017-12-12 三峡大学 A kind of automatic boring equipment of bushing and processing method
CN113118492B (en) * 2021-04-11 2024-02-09 陕西柴油机重工有限公司 Machining method for non-radial holes of wind power bearing seat
CN113618113B (en) * 2021-08-27 2024-09-10 青岛华焜耐磨钢有限公司 On-site machining device and method for excavator bucket shaft hole
CN113857918B (en) * 2021-10-14 2023-03-10 上海外高桥造船有限公司 Digital boring device for ship subsection stern shaft tube
CN113798536B (en) * 2021-10-19 2024-03-15 山东永生机械有限公司 Triaxial numerical control opposite boring and processing technology
CN113953763B (en) * 2021-10-22 2023-11-14 哈尔滨电机厂有限责任公司 Technological method for machining spindle connecting hole of repair spindle of hydropower station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248195A (en) * 2011-06-09 2011-11-23 广州新成机械技术有限公司 Portable hole boring machine

Also Published As

Publication number Publication date
JP2001062620A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3716681B2 (en) Hole processing equipment
JP2006272473A (en) Tool replacement device, control method and program
EP0286684B1 (en) Wire cut electric discharge machine
JP2005230945A (en) Device for simultaneously machining deep hole and outer periphery for long workpiece
JP2000033490A (en) Laser beam machining device
JP3636895B2 (en) Bar-shaped workpiece supply device for spindle-moving vertical machine tool and rod-shaped workpiece supply method in spindle-moving vertical machine tool
US6176282B1 (en) Apparatus and method for centering and feeding log
JPS5964211A (en) Deep hole drilling machine
JPH09201702A (en) Numerically controlled machine tool with bar cutting function
JPH10235495A (en) Method for clamping pipe of pipe working equipment and device therefor
JPH0957560A (en) Centering machine and its work-supporting device
JPH0890302A (en) Metal cutting machine tool
JPS6219328A (en) Initial holing device for wire-cut electric discharge machine
JP3261269B2 (en) Machine tool with tool changer
JP3748508B2 (en) Automatic lathe
JP2505029B2 (en) Hole diameter measuring device
JP2004261935A (en) Lathe provided with steady rest device for work
JPH071231A (en) Chamfering/shaving device
JPH0740114A (en) Gun drill machine
JPH04146012A (en) Deep hole processing device
JP2666643B2 (en) Cutting equipment
JPS6331333B2 (en)
JPH10315005A (en) Nc automatic lathe
KR20220099252A (en) Electric discharge processing unit for piercing
JPH06134609A (en) Drilling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees