JP3716653B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP3716653B2
JP3716653B2 JP01866199A JP1866199A JP3716653B2 JP 3716653 B2 JP3716653 B2 JP 3716653B2 JP 01866199 A JP01866199 A JP 01866199A JP 1866199 A JP1866199 A JP 1866199A JP 3716653 B2 JP3716653 B2 JP 3716653B2
Authority
JP
Japan
Prior art keywords
side member
peripheral surface
driven
outer peripheral
motor housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01866199A
Other languages
Japanese (ja)
Other versions
JP2000213616A (en
Inventor
幹雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP01866199A priority Critical patent/JP3716653B2/en
Publication of JP2000213616A publication Critical patent/JP2000213616A/en
Application granted granted Critical
Publication of JP3716653B2 publication Critical patent/JP3716653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明に係るリニアモータは、例えば介護用ベッド、昇降テーブル、CTスキャナ、トラックのキャビンチルト装置、リフター等、各種機械装置に組み込んだ状態で使用する。
【0002】
【従来の技術及び発明が解決しようとする課題】
電動式のリニアアクチュエータとして従来から、電磁ソレノイドや電動モータと送りねじ機構とを組み合わせたもの等が知られている。
このうちの電磁ソレノイドは、小型・軽量に構成できる代わりに、大きなストロークを得る事が難しく、又、得られる力も限られたものとなる。
又、電動モータと送りねじ機構とを組み合わせたものは、互いに独立した機構を組み合わせる為、大型で重量が嵩む。しかも、一般的な滑りねじ機構を使用するものは、滑り摩擦部での損失が大きく、効率が悪い。これに対して、ボールねじ機構を使用するものは、効率が良い代わりにコストが嵩む、しかも、より大型化する。
本発明は、この様な事情に鑑みて、小型・軽量で、大きなストロークを得る事ができ、しかも効率の良いリニアモータを実現すべく発明したものである。
【0003】
【課題を解決するための手段】
本発明のリニアモータは、モータハウジング内に回転のみ自在に支持された駆動側部材と、このモータハウジング内でこの駆動側部材の外周面に固定したロータと、その内周面をこのロータの外周面に対向させた状態で上記モータハウジング内に固定したステータと、上記駆動側部材の内径よりも小さな外径を有し、この駆動側部材に対し偏心した状態でこの駆動側部材の内径側に、回転及び軸方向に亙る変位自在に支持された被駆動側部材と、この被駆動側部材の外周面と上記駆動側部材の内周面とのうちの何れか一方の周面に形成された螺旋状のねじ溝と、上記被駆動側部材の外周面と上記駆動側部材の内周面とのうちの他方の周面に円周方向に亙って形成された、上記ねじ溝と同じピッチを有する係合溝と、上記被駆動側部材の一部にスラスト荷重を支承自在な転がり軸受により結合された出力部材とを備える。そして、上記ねじ溝の円周方向の一部と上記係合溝の円周方向の一部とを互いに噛合させている。
【0004】
尚、上述の様な本発明のリニアモータを構成する各構成要件中、上記駆動側部材と上記被駆動側部材との組み合わせ状態としては、例えば次の▲1▼〜▲3▼の様な態様が考えられる。
▲1▼ 上記駆動側部材を、その内周面に雌ねじを形成したナット部材とし、上記被駆動側部材を、その外周面に雄ねじを形成したねじ杆状のものとし、このねじ杆状の被駆動部材を上記ナット部材に対し平行に配置して、上記雌ねじの円周方向の一部と上記雄ねじの円周方向の一部とを互いに噛合させる。
▲2▼ 上記駆動側部材の内周面に、それぞれが円周方向に設けられた互いに平行な複数本の突条を、上記被駆動側部材の外周面に雄ねじを、それぞれ形成すると共に、上記駆動側部材と上記被駆動側部材とを互いに平行に配置して、上記突条の円周方向の一部と上記雄ねじの円周方向の一部とを互いに噛合させる。
▲3▼ 上記被駆動側部材の外周面に、それぞれが円周方向に設けられた互いに平行な複数本の突条を、上記駆動側部材の内周面に雌ねじを、それぞれ形成すると共に、上記被駆動側部材と上記駆動側部材とを互いに平行に配置して、上記突条の円周方向の一部と上記雌ねじの円周方向の一部とを互いに噛合させる。
【0005】
【作用】
上述の様に構成する本発明のリニアモータは、通電に基づいて駆動側部材を回転させる事により、被駆動側部材を回転させつつ軸方向に変位させ、出力部材により、この被駆動側部材の軸方向変位を取り出す。
即ち、通電に基づいて、その外周面にロータを固定した駆動側部材が回転し、この駆動側部材の回転に伴って上記被駆動側部材が、ねじ溝と係合溝との係合に基づき、回転する。この際、これらねじ溝の周速と係合溝の周速とは互いに等しくなる。又、互いに噛合するねじ溝のピッチと係合溝のピッチとは互いに等しい。これに対して、これらねじ溝のピッチ円直径と係合溝のピッチ円直径とは異なる為、上記駆動側部材が1回転する間に、上記被駆動側部材は1回転以上回転する。この結果、被駆動側部材が駆動側部材よりも余分に回転する分だけ、この被駆動側部材及びこの被駆動側部材に結合した出力部材が軸方向に変位する。
【0006】
【発明の実施の形態】
図1〜3は、前述の▲1▼に対応する、本発明の実施の形態の第1例を示している。本例のリニアモータ1は、モータハウジング2の内側に、駆動側部材である円筒状のナット部材3を、回転のみ自在に支持している。即ち、上記モータハウジング2は、有底円筒状のハウジング本体4の開口部を円板状の蓋体5で塞ぐ事により、中空に構成している。又、上記ナット部材3の軸方向中間部の内径は、この中間部以外の部分の内径よりも小さくし、この中間部に、ピッチ円直径がD0 である雌ねじ6を形成している。又、上記ナット部材3の中間部外周面には、ロータ7を外嵌固定している。一方、上記モータハウジング2の内周面にはステータ8を固定し、このステータ8の内周面と上記ロータ7の外周面とを近接対向させている。尚、本例の場合、駆動用のモータとして交流モータを使用している。但し、このモータの構造自体は、特に限定するものではないし、本発明の要点でもない為、詳しい説明は省略する。
【0007】
上記ナット部材3は、このナット部材3の両端部外周面と、上記ハウジング本体4を構成する底板部9の内面並びに上記蓋体5の内面との間に設けた、深溝型若しくはアンギュラ型の玉軸受10、10により、上記モータハウジング2の内側中心部に、回転のみ自在に(軸方向に亙る変位不能に)支持している。従って上記ナット部材3は、上記ステータ8への通電に基づき、上記モータハウジング2内で(軸方向に変位する事なく)回転する。
【0008】
又、上記モータハウジング2には、円杆状の被駆動側部材11を、回転及び軸方向に亙る変位自在に支持している。この被駆動側部材11の外径は、上記ナット部材3の中間部で上記雌ねじ6を形成した部分の内径よりも小さい。又、この被駆動側部材11の中間部外周面には、ピッチ円直径がd0 である雄ねじ12を形成している。この様な被駆動側部材11は、上記モータハウジング2の中心部から少しだけ(次述するδ分だけ)ずれた部分に、回転及び軸方向に亙る変位自在に支持している。即ち、上記モータハウジング2を構成する上記ハウジング本体4の底板部9及び蓋体5の中心部に形成した支持筒部14、14の内側に上記被駆動側部材11の中間部両端寄り部分を、滑り軸受、ニードル軸受等の、ラジアル荷重を支承するがスラスト荷重を支承しない軸受13、13により、支持している。この状態で上記被駆動側部材11の中心軸は、上記ナット部材3の中心軸に対して、ピッチ円直径の差の1/2であるδ{=(D0 −d0 )/2}だけ偏心している。従って、上記被駆動側部材11の外周面に形成された雄ねじ12は、上記ナット部材3の内周面に形成した雌ねじ6に対して、円周方向の一部のみ噛合している。本例の場合、これら雄ねじ12と雌ねじ6とのうちの一方が、請求項に記載したねじ溝に相当し、他方が同じく係合溝に相当する。
【0009】
又、上記被駆動側部材11の先端部(図1の右端部)には、出力部材15を、スラスト荷重を支承する軸受である、深溝型の玉軸受16により結合している。従って上記出力部材15は、上記被駆動側部材11に対して回転しつつ、この被駆動部材11と同期して、軸方向に亙り変位する。
更に、図示の例では、上記モータハウジング2を構成する蓋体5の外側面と上記出力部材15との間に、圧縮コイルばね17等の予圧手段を設けている。そして、この圧縮コイルばね17の弾力により、上記出力部材15を介して上記被駆動側部材11にスラスト荷重を負荷する事で、上記雄ねじ12と雌ねじ6との噛合部に予圧を付与している。これにより、上記出力部材15にスラスト荷重が負荷されていない状態でも、上記ナット部材3から上記被駆動側部材11に動力を伝達する際に、上記噛合部に滑りが生じない様にしている。但し、上述の様な予圧手段は、リニアモータ1が、上記出力部材15に常にスラスト荷重が負荷されている状態で使用されるのであれば、必ずしも必要ではない。
【0010】
上述の様に構成する本例のリニアモータ1は、前記ステータ8への通電に基づいて、前記ロータ7を固定したナット部材3を回転させる事により、上記被駆動側部材11を回転させつつ軸方向に変位させ、上記出力部材15により、この被駆動側部材11の軸方向変位を取り出す。即ち、この出力部材15を軸方向に亙り変位させる際には、上記ステータ8への通電に基づいて、上記ロータ7をその外周面に固定したナット部材3を所定方向に回転させる。
【0011】
このナット部材3の回転に伴って上記被駆動側部材11が、上記雌ねじ6と雄ねじ12との係合に基づき、回転する。この際、これら雌ねじ6の周速と雄ねじ12の周速とは互いに等しくなる。又、図3に示す様に、互いに噛合する、上記雌ねじ6のピッチPと雄ねじ12のピッチPとは互いに等しい。これに対して、これら雌ねじ6のピッチ円直径D0 と雄ねじ12のピッチ円直径d0 とは互いに異なる(D0 >d0 )。この為、上記ナット部材3が1回転する間に、上記被駆動側部材11は1回転以上(D0 /d0 回)回転する。
【0012】
この結果、この被駆動側部材11が上記ナット部材3よりも余分に回転する分{ナット部材3が1回転する毎に(D0 /d0 )−1回分}だけ、上記被駆動側部材11及びこの被駆動側部材11に結合した上記出力部材15が軸方向に[P・{(D0 /d0 )−1}分]変位する。この被駆動側部材11は、回転しつつ軸方向に変位するが、出力部材15はこの被駆動側部材11に対して回転自在である為、この出力部材15は、回転する事なく、軸方向に変位して、この出力部材15の先端部を結合した部材を押し引きする。
上記雌ねじ6と雄ねじ12との係合状態は転がり接触に近く、滑り接触状態は僅かである。この為、これら雌ねじ6と雄ねじ12との係合部での動力損失は僅かで、リニアモータ1全体として高い効率を得られる。
【0013】
次に、図4は、やはり前述の▲1▼に対応する、本発明の実施の形態の第2例を示している。本例のリニアモータ1aの場合には、被駆動側部材11aの先端部(図4の右端部)に、円筒状の出力部材15aを、深溝型の玉軸受16により、上記被駆動側部材11aに対する回転及びこの被駆動側部材11aと同期した軸方向移動自在に結合している。モータハウジング2を構成する蓋体5の外側面と上記出力部材15aの基端部(図4の左端部)との間には、伸縮自在なベローズ18を設けている。上述した第1例の様な予圧手段は、設けていない。又、上記モータハウジング2を構成するハウジング本体4の底板部9の外側面(図4の左側面)の中央部には、上記モータハウジング2を他の部分に結合する為の、結合筒19の一端部(図4の右端部)を結合している。本例の構造の使用時には、この結合筒19の他端部と上記出力部材15aの先端部(図4の右端部)とを、互いに間隔を拡縮すべき部分に結合枢支する。又、使用状態で上記結合筒19と出力部材15aとには、互いに近づく方向のスラスト荷重が加わる。
【0014】
更に、本例の場合には、ストロークを大きく(長く)すべく、上記被駆動部材11aとして長尺なものを使用し、この被駆動部材11aの外周面に、ほぼ全長に亙って雄ねじ12aを形成している。そして、この様な被駆動側部材11aを上記モータハウジング2の両端部に、それぞれ深溝型の玉軸受20、20により、回転及び軸方向に亙る変位自在に支持している。即ち、これら各玉軸受20、20を構成する外輪21、21を、上記モータハウジング2を構成するハウジング本体4の底板部及び蓋体5の中心部に、締り嵌め若しくは接着により固定すると共に、上記各玉軸受20、20を構成する内輪22、22を、上記被駆動側部材11aに、隙間嵌により外嵌している。尚、本例の構造の場合には、この被駆動側部材11aの外周面に形成する雄ねじ12aとしては、加工コストが安い、三角山ねじでも良いが、上記各内輪22、22の内周面との摩擦状態を考慮した場合には、台形ねじを含む角ねじとする事が好ましい。その他の構成及び作用は、前述した第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
【0015】
次に、図5は、本発明の実施の形態の第3例を示している。本例の場合には、駆動側部材であるナット部材3aを、互いに同心である大径部23と小径部24とを段部25により連続させる事により構成している。そして、このうちの小径部24をモータハウジング2の内側中心部に、それぞれが深溝型若しくはアンギュラ型である1対の玉軸受10、10により回転のみ自在に支持すると共に、上記大径部23を、上記モータハウジング2外に突出させている。そして、この大径部23の内周面に、雌ねじ6aを形成している。
【0016】
又、上記小径部24の中間部で、上記1対の玉軸受10、10の間部分には、ロータ7aと整流子26とを設けている。一方、上記モータハウジング2を構成するハウジング本体4の内周面で、上記ロータ7aの外周面と対向する部分には永久磁石であるステータ8aを、上記整流子26の外周面と対向する部分には1対のブラシホルダ27を、それぞれ設けている。そして、これら各ブラシホルダ27に保持したブラシ28、28の先端面を上記整流子26の外周面に、弾性的に押し付ける事により、上記ナット部材3aを回転駆動する為の直流モータを構成している。
【0017】
一方、軸状の出力部材15bを上記小径部24の内側に、滑り軸受、ニードル軸受等の、ラジアル荷重を支承するがスラスト荷重を支承しない軸受13、13により、回転及び軸方向に亙る変位自在に支持している。上記出力部材15bの基端部(図5の右端部)で上記大径部23の内側に位置する部分には被駆動側部材11bを、アンギュラ型の玉軸受29により支持している。上記出力部材15bの基端部は、上記ナット部材3aに対して、次述する雌ねじ6aのピッチ円直径D0 と雄ねじ12bのピッチ円直径d0 との差の1/2{δ=(D0 −d0 )/2}であるδ分、偏心させている。そして、この被駆動軸部材11bの外周面に形成した雄ねじ12bの円周方向一部と、上記大径部23の内周面に形成した雌ねじ6aの円周方向一部とを、互いに噛合させている。
【0018】
尚、本例のリニアモータ1bは、上記出力部材15bに、図5で左方向のスラスト荷重が加わる状態で使用する。上記玉軸受29の外輪及び内輪は、上記被駆動軸部材11bの内周面及び上記出力部材15bの基端部外周面に、上記スラスト荷重に拘らずずれ動かない状態で嵌合させている。従って上記出力部材15bは、上記被駆動軸部材11bに対して回転はするが、軸方向に亙っては、この被駆動軸部材11bと共に変位する。
【0019】
上述の様に構成する本例のリニアモータ1bの場合、前記ブラシ28、28を通じて前記ロータ7aに通電し、このロータ7aをその外周面に固定した上記ナット部材3aを回転駆動すると、上記雌ねじ6aと雄ねじ12bとの係合に基づき、上記被駆動軸部材11bが回転しつつ軸方向に変位する。そして、このうちの軸方向に亙る変位を、上記出力部材15bにより取り出し、この出力部材15bの端部と係合した部材を変位させる。
【0020】
次に、図6は、やはり前述した▲1▼に対応する、本発明の実施の形態の第4例を示している。本例は、本発明を扁平モータ(ディスク型モータ)に適用した場合に就いて示している。この為に本例のリニアモータ1cの場合には、扁平なモータハウジング2aの内側に、駆動側部材であるナット部材3bと被駆動側部材11cとを支持している。即ち、このモータハウジング2aの軸方向中間部に上記ナット部材3bを、それぞれが深溝型若しくはアンギュラ型の玉軸受10、10により、回転のみ自在に支持している。又、上記ナット部材3bの中間部外周面で上記両玉軸受10、10同士の間部分に、扁平で円板状のロータ7bを固定している。そして、このロータ7bと、上記モータハウジング2aを構成するハウジング本体4aの底板部9aの内面に設けたステータ8bとを、スラスト方向の隙間を介して近接対向させている。
【0021】
一方、上記モータハウジング2aの両端部には被駆動側部材11cの中間部両端寄り部分を、それぞれが滑り軸受、ニードル軸受等の、ラジアル荷重を支承するがスラスト荷重を支承しない軸受13、13により、支持している。従って、上記被駆動側部材11cは、上記モータハウジング2aの内側に、回転及び軸方向に亙る変位自在に支持されている。そして、上記被駆動側部材11cの外周面の中間部で上記1対の軸受13、13同士の間部分に形成した雄ねじ12cの円周方向の一部と、上記ナット部材3bの内周面に全長に亙って形成した雌ねじ6bの円周方向の一部とを、互いに噛合させている。
【0022】
更に、上記被駆動側部材11cの内径側には、出力部材15cを、スラスト荷重を支承する軸受である、深溝型若しくはアンギュラ型の玉軸受30、30により結合している。
上述の様に構成する本例のリニアモータ1cの場合、上記ナット部材3bを回転駆動すると、上記被駆動側部材11cが回転しつつ軸方向に変位するので、このうちの軸方向に亙る変位を、上記出力部材15cにより取り出し、この出力部材15cの端部に係合した部材を変位させる。
【0023】
次に、図7は、前述した▲2▼に対応する、本発明の実施の形態の第5例を示している。本例の場合には、軸状の被駆動側部材11dの外周面に、それぞれが円周方向に設けられた互いに平行な複数本の突条31、31を、互いに等間隔に(等ピッチで)形成し、これら各突条31、31を形成した部分を、請求項に記載した係合溝としている。尚、これら各突条31、31のピッチPは、ナット部材3の内周面に形成した雌ねじ6のピッチPと同じにしている。
【0024】
上述の様な本例の構造の場合も、上記ナット部材3を回転させると、上記被駆動側部材11dが、回転しつつ軸方向に変位する。特に、本例の場合には、被駆動側部材11、11a、11b、11cの外周面に雄ねじ12、12a、12b、12cを形成した第1〜4例の場合に比べて、上記ナット部材3が1回転する毎の、上記被駆動側部材11dの軸方向に亙る変位量が多くなる。即ち、本例の場合には、上記ナット部材3が1回転する毎に上記被駆動側部材11dが、軸方向にP・(D0 /d0 )分、変位する。その他の構成及び作用は、前述した第1〜4例の何れかと同様であるから、同等部分に関する図示並びに説明は省略する。
【0025】
尚、図示は省略するが、図7に示した第5例の場合とは逆に、被駆動側部材の外周面に、複数の突条に代えて雄ねじを形成すると共に、ナット部材に代えて、それぞれが円周方向に設けられた互いに平行な複数本の突条を、被駆動側部材の外周面に形成した雄ねじと等ピッチでその内周面に形成して係合溝とした駆動側部材を設ける事もできる。又、複数本の突条を形成して係合溝とする構造を採用する場合に、被駆動側部材を駆動側部材に対し、θ=tan-1(P/π・D0 )で表されるθ分だけ傾斜させて、突条とねじとの係合面の接触面積を広くする事もできる。
【0026】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、小型で効率が良く、しかも大きなストローク及び大きな力を得られて、各種機械装置の設計をし易いリニアモータを実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す断面図。
【図2】一部を省略して示す、図1のA−A断面図。
【図3】一部を省略して示す、図2のB−B断面図。
【図4】本発明の実施の形態の第2例を示す断面図。
【図5】同第3例を示す断面図。
【図6】同第4例を示す断面図。
【図7】同第5例を示す、図3と同様の図。
【符号の説明】
1、1a、1b、1c リニアモータ
2、2a、2b モータハウジング
3、3a、3b ナット部材
4、4a ハウジング本体
5 蓋体
6、6a、6b、6c 雌ねじ
7、7a、7b ロータ
8、8a、8b ステータ
9、9a 底板部
10 玉軸受
11、11a、11b、11c、11d 被駆動側部材
12、12a、12b、12c 雄ねじ
13 軸受
14 支持筒部
15、15a、15b、15c 出力部材
16 玉軸受
17 圧縮コイルばね
18 ベローズ
19 結合筒
20 玉軸受
21 外輪
22 内輪
23 大径部
24 小径部
25 段部
26 整流子
27 ブラシホルダ
28 ブラシ
29 玉軸受
30 玉軸受
31 突条
[0001]
BACKGROUND OF THE INVENTION
The linear motor according to the present invention is used in a state where it is incorporated in various mechanical devices such as a nursing bed, a lifting table, a CT scanner, a truck cabin tilt device, and a lifter.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, a combination of an electromagnetic solenoid, an electric motor, and a feed screw mechanism is known as an electric linear actuator.
Among these, the electromagnetic solenoid can be made small and light, but it is difficult to obtain a large stroke, and the force that can be obtained is limited.
Moreover, since the combination of the electric motor and the feed screw mechanism is combined with an independent mechanism, it is large and heavy. In addition, a device using a general sliding screw mechanism has a large loss at the sliding friction portion and is inefficient. On the other hand, the one using the ball screw mechanism is costly and has a larger size instead of being efficient.
In view of such circumstances, the present invention was invented to realize a linear motor that is small and light, can obtain a large stroke, and is efficient.
[0003]
[Means for Solving the Problems]
The linear motor of the present invention includes a drive side member that is rotatably supported in a motor housing, a rotor fixed to the outer peripheral surface of the drive side member in the motor housing, and an inner peripheral surface of the rotor on the outer periphery of the rotor. A stator fixed in the motor housing in a state of being opposed to the surface, and an outer diameter smaller than the inner diameter of the drive side member, and in an eccentric state with respect to the drive side member, on the inner diameter side of the drive side member The driven side member supported so as to be able to rotate and displace in the axial direction, and the outer peripheral surface of the driven side member and the inner peripheral surface of the driving side member are formed on one peripheral surface. The same pitch as the thread groove formed in the circumferential direction on the other circumferential surface of the spiral thread groove and the outer peripheral surface of the driven side member and the inner peripheral surface of the driving side member And an engagement groove having a part of the driven side member And an output member coupled with the last load bearing freely rolling. A part of the thread groove in the circumferential direction and a part of the engagement groove in the circumferential direction are engaged with each other.
[0004]
In addition, among the constituent elements constituting the linear motor of the present invention as described above, the combination state of the driving side member and the driven side member is, for example, the following modes (1) to (3) Can be considered.
(1) The drive side member is a nut member having an internal thread formed on the inner peripheral surface thereof, and the driven side member is a screw rod shape having an external thread formed on the outer peripheral surface thereof. A drive member is disposed in parallel to the nut member, and a part of the female screw in the circumferential direction and a part of the male screw in the circumferential direction are engaged with each other.
(2) On the inner peripheral surface of the driving side member, a plurality of mutually parallel protrusions provided in the circumferential direction are formed, and external threads are formed on the outer peripheral surface of the driven side member. The driving side member and the driven side member are arranged in parallel to each other, and a part of the protrusion in the circumferential direction and a part of the male screw in the circumferential direction are engaged with each other.
(3) On the outer peripheral surface of the driven side member, a plurality of parallel protrusions each provided in a circumferential direction are formed, and on the inner peripheral surface of the driving side member, a female screw is formed, respectively, The driven side member and the driving side member are arranged in parallel to each other, and a part of the protrusion in the circumferential direction and a part of the female screw in the circumferential direction are engaged with each other.
[0005]
[Action]
The linear motor of the present invention configured as described above rotates the drive-side member based on energization, thereby rotating the driven-side member while rotating the driven-side member, and by the output member, Take out axial displacement.
That is, on the basis of energization, the driving side member having the rotor fixed to its outer peripheral surface rotates, and the driven side member is rotated based on the engagement between the screw groove and the engaging groove as the driving side member rotates. ,Rotate. At this time, the circumferential speed of these screw grooves and the circumferential speed of the engaging grooves are equal to each other. Further, the pitch of the thread grooves that mesh with each other is equal to the pitch of the engagement grooves. On the other hand, since the pitch circle diameter of these thread grooves and the pitch circle diameter of the engagement grooves are different, the driven side member rotates one or more times while the driving side member rotates once. As a result, the driven member and the output member coupled to the driven member are displaced in the axial direction by the amount that the driven member rotates more than the driven member.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1-3 show a first example of an embodiment of the present invention corresponding to the above-mentioned (1). The linear motor 1 of this example supports a cylindrical nut member 3 that is a drive side member inside a motor housing 2 so as to be rotatable only. That is, the motor housing 2 is configured to be hollow by closing the opening of the bottomed cylindrical housing body 4 with the disc-shaped lid 5. Further, the inner diameter of the intermediate portion in the axial direction of the nut member 3 is made smaller than the inner diameter of the portion other than the intermediate portion, and a female screw 6 having a pitch circle diameter D 0 is formed in the intermediate portion. A rotor 7 is fitted and fixed to the outer peripheral surface of the intermediate portion of the nut member 3. On the other hand, a stator 8 is fixed to the inner peripheral surface of the motor housing 2, and the inner peripheral surface of the stator 8 and the outer peripheral surface of the rotor 7 are closely opposed to each other. In this example, an AC motor is used as the driving motor. However, the structure of the motor itself is not particularly limited, and is not the gist of the present invention, and thus detailed description is omitted.
[0007]
The nut member 3 is a deep groove type or angular type ball provided between the outer peripheral surfaces of both end portions of the nut member 3 and the inner surface of the bottom plate portion 9 constituting the housing body 4 and the inner surface of the lid body 5. The bearings 10 and 10 support the inner center portion of the motor housing 2 so as to be rotatable only (not displaceable in the axial direction). Accordingly, the nut member 3 rotates within the motor housing 2 (without being displaced in the axial direction) based on energization to the stator 8.
[0008]
The motor housing 2 supports a drive member 11 having a circular shape so as to be freely rotated and displaced in the axial direction. The outer diameter of the driven member 11 is smaller than the inner diameter of the portion where the female screw 6 is formed at the intermediate portion of the nut member 3. In addition, a male screw 12 having a pitch circle diameter of d 0 is formed on the outer peripheral surface of the intermediate portion of the driven side member 11. Such a driven side member 11 is supported at a portion slightly deviated from the central portion of the motor housing 2 (by δ described below) so as to be freely rotatable and displaceable in the axial direction. That is, the portions near the both ends of the intermediate portion of the driven side member 11 inside the support cylinder portions 14 and 14 formed at the center portion of the bottom plate portion 9 and the lid 5 of the housing body 4 constituting the motor housing 2, It is supported by bearings 13 and 13 that support a radial load but not a thrust load, such as a slide bearing and a needle bearing. In this state, the central axis of the driven member 11 is δ {= (D 0 −d 0 ) / 2} which is ½ of the difference in pitch circle diameter with respect to the central axis of the nut member 3. Eccentric. Therefore, the male screw 12 formed on the outer peripheral surface of the driven member 11 is meshed only with a part in the circumferential direction with the female screw 6 formed on the inner peripheral surface of the nut member 3. In the case of this example, one of the male screw 12 and the female screw 6 corresponds to the thread groove described in the claims, and the other corresponds to the engagement groove.
[0009]
The output member 15 is coupled to the distal end portion (right end portion in FIG. 1) of the driven side member 11 by a deep groove type ball bearing 16 that is a bearing for supporting a thrust load. Accordingly, the output member 15 is displaced in the axial direction in synchronization with the driven member 11 while rotating with respect to the driven side member 11.
Further, in the illustrated example, a preload means such as a compression coil spring 17 is provided between the outer surface of the lid 5 constituting the motor housing 2 and the output member 15. The thrust of the compression coil spring 17 applies a thrust load to the driven member 11 via the output member 15 to apply a preload to the meshing portion of the male screw 12 and the female screw 6. . Thus, even when a thrust load is not applied to the output member 15, when the power is transmitted from the nut member 3 to the driven member 11, the meshing portion does not slip. However, the preload means as described above is not always necessary if the linear motor 1 is used in a state where the output member 15 is always subjected to a thrust load.
[0010]
The linear motor 1 of the present example configured as described above is configured to rotate the driven member 11 while rotating the driven member 11 by rotating the nut member 3 to which the rotor 7 is fixed based on energization to the stator 8. The axial displacement of the driven member 11 is taken out by the output member 15. That is, when the output member 15 is displaced in the axial direction, the nut member 3 having the rotor 7 fixed to the outer peripheral surface thereof is rotated in a predetermined direction based on energization of the stator 8.
[0011]
As the nut member 3 rotates, the driven member 11 rotates based on the engagement between the female screw 6 and the male screw 12. At this time, the peripheral speed of the female screw 6 and the peripheral speed of the male screw 12 are equal to each other. Further, as shown in FIG. 3, the pitch P of the female screw 6 and the pitch P of the male screw 12 that mesh with each other are equal to each other. In contrast, the different pitch circle diameter d 0 of the pitch circle diameter D 0 and the external thread 12 of the internal thread 6 (D 0> d 0) . For this reason, while the nut member 3 rotates once, the driven side member 11 rotates one rotation or more (D 0 / d 0 times).
[0012]
As a result, the driven-side member 11 is rotated by an amount that the driven-side member 11 rotates more than the nut member 3 (for each rotation of the nut member 3 (D 0 / d 0 ) −1 times). The output member 15 coupled to the driven member 11 is displaced [P · {(D 0 / d 0 ) −1}] in the axial direction. The driven member 11 is displaced in the axial direction while rotating. However, since the output member 15 is rotatable with respect to the driven member 11, the output member 15 does not rotate and is axially moved. The member to which the distal end portion of the output member 15 is coupled is pushed and pulled.
The engagement state between the female screw 6 and the male screw 12 is close to rolling contact, and the sliding contact state is slight. For this reason, the power loss at the engaging portion between the female screw 6 and the male screw 12 is small, and the linear motor 1 as a whole can have high efficiency.
[0013]
Next, FIG. 4 shows a second example of the embodiment of the present invention, which also corresponds to the above item (1). In the case of the linear motor 1a of this example, a cylindrical output member 15a is connected to the distal end portion (right end portion in FIG. 4) of the driven side member 11a by a deep groove type ball bearing 16 and the driven side member 11a. It is coupled so as to freely rotate in the axial direction and in synchronization with the driven side member 11a. An expandable / contractible bellows 18 is provided between the outer surface of the lid 5 constituting the motor housing 2 and the base end portion (left end portion in FIG. 4) of the output member 15a. The preloading means as in the first example described above is not provided. Further, a coupling cylinder 19 for coupling the motor housing 2 to another portion is provided at the center of the outer side surface (left side surface in FIG. 4) of the bottom plate portion 9 of the housing body 4 constituting the motor housing 2. One end (the right end in FIG. 4) is joined. When the structure of this example is used, the other end portion of the coupling cylinder 19 and the tip end portion (the right end portion in FIG. 4) of the output member 15a are coupled and supported to a portion whose interval should be enlarged or reduced. Further, a thrust load in a direction approaching each other is applied to the coupling cylinder 19 and the output member 15a in use.
[0014]
Further, in the case of this example, in order to increase (longen) the stroke, a long member is used as the driven member 11a, and the external thread 12a is formed on the outer peripheral surface of the driven member 11a over almost the entire length. Is forming. Such a driven member 11a is supported at both ends of the motor housing 2 by deep groove ball bearings 20 and 20, respectively, so as to be rotatable and displaceable in the axial direction. That is, the outer rings 21 and 21 constituting the respective ball bearings 20 and 20 are fixed to the bottom plate portion 9 of the housing body 4 and the center portion of the lid body 5 constituting the motor housing 2 by an interference fit or adhesion, Inner rings 22 and 22 constituting the ball bearings 20 and 20 are externally fitted to the driven member 11a by gap fitting. In the case of the structure of this example, the male screw 12a formed on the outer peripheral surface of the driven side member 11a may be a triangular thread screw at a low processing cost, but the inner peripheral surfaces of the inner rings 22 and 22 described above. In consideration of the friction state, it is preferable to use a square screw including a trapezoidal screw. Since other configurations and operations are the same as those in the case of the first example described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.
[0015]
Next, FIG. 5 shows a third example of the embodiment of the present invention. In the case of this example, the nut member 3a, which is a drive side member, is configured by connecting a large diameter portion 23 and a small diameter portion 24 that are concentric with each other by a step portion 25. Of these, the small-diameter portion 24 is supported at the inner central portion of the motor housing 2 by a pair of ball bearings 10 and 10 each of which is a deep groove type or an angular type, and the large-diameter portion 23 is , And protrudes out of the motor housing 2. And the internal thread 6a is formed in the internal peripheral surface of this large diameter part 23. FIG.
[0016]
Further, a rotor 7a and a commutator 26 are provided in an intermediate portion of the small diameter portion 24 and between the pair of ball bearings 10 and 10. On the other hand, on the inner peripheral surface of the housing body 4 constituting the motor housing 2, a stator 8 a, which is a permanent magnet, is disposed on a portion facing the outer peripheral surface of the rotor 7 a, and a portion facing the outer peripheral surface of the commutator 26. Are provided with a pair of brush holders 27, respectively. Then, the front end surfaces of the brushes 28 and 28 held by these brush holders 27 are elastically pressed against the outer peripheral surface of the commutator 26 to constitute a DC motor for rotationally driving the nut member 3a. Yes.
[0017]
On the other hand, the shaft-like output member 15b can be rotated and displaced in the axial direction by bearings 13 and 13 that support a radial load but not a thrust load, such as a slide bearing and a needle bearing, inside the small diameter portion 24. I support it. A driven-side member 11b is supported by an angular ball bearing 29 at a portion located inside the large-diameter portion 23 at the base end portion (right end portion in FIG. 5) of the output member 15b. The base end portion of the output member 15b is ½ of the difference between the pitch circle diameter D 0 of the female screw 6a and the pitch circle diameter d 0 of the male screw 12b described below with respect to the nut member 3a {δ = (D 0− d 0 ) / 2} is decentered by δ. Then, a part in the circumferential direction of the male screw 12b formed on the outer peripheral surface of the driven shaft member 11b and a part in the circumferential direction of the female screw 6a formed on the inner peripheral surface of the large-diameter portion 23 are engaged with each other. ing.
[0018]
The linear motor 1b of this example is used in a state where a thrust load in the left direction in FIG. 5 is applied to the output member 15b. The outer ring and the inner ring of the ball bearing 29 are fitted to the inner peripheral surface of the driven shaft member 11b and the outer peripheral surface of the base end portion of the output member 15b in a state that they do not move regardless of the thrust load. Accordingly, the output member 15b rotates with respect to the driven shaft member 11b, but is displaced together with the driven shaft member 11b in the axial direction.
[0019]
In the case of the linear motor 1b of the present example configured as described above, when the rotor 7a is energized through the brushes 28, 28 and the nut member 3a having the rotor 7a fixed to the outer peripheral surface thereof is rotationally driven, the female screw 6a The driven shaft member 11b is displaced in the axial direction while rotating based on the engagement between the screw and the male screw 12b. Of these, the displacement in the axial direction is taken out by the output member 15b, and the member engaged with the end of the output member 15b is displaced.
[0020]
Next, FIG. 6 shows a fourth example of the embodiment of the present invention, which also corresponds to (1) described above. This example shows the case where the present invention is applied to a flat motor (disk type motor). For this reason, in the case of the linear motor 1c of this example, the nut member 3b which is a driving side member and the driven side member 11c are supported inside the flat motor housing 2a. That is, the nut member 3b is supported by the deep groove type or angular type ball bearings 10 and 10 at the intermediate portion in the axial direction of the motor housing 2a so as to be rotatable only. Further, a flat and disc-like rotor 7b is fixed to a portion between the ball bearings 10 and 10 on the outer peripheral surface of the intermediate portion of the nut member 3b. And this rotor 7b and the stator 8b provided in the inner surface of the baseplate part 9a of the housing main body 4a which comprises the said motor housing 2a are made to oppose each other through the clearance of a thrust direction.
[0021]
On the other hand, at both ends of the motor housing 2a, portions near the both ends of the driven side member 11c are respectively supported by bearings 13 and 13 that support radial loads, such as slide bearings and needle bearings, but not thrust loads. , Support. Therefore, the driven member 11c is supported on the inner side of the motor housing 2a so as to be rotatable and displaceable in the axial direction. And in the middle part of the outer peripheral surface of the driven side member 11c, a part in the circumferential direction of the male screw 12c formed between the pair of bearings 13 and 13 and the inner peripheral surface of the nut member 3b. Part of the circumferential direction of the female screw 6b formed over the entire length is meshed with each other.
[0022]
Further, the output member 15c is coupled to the inner diameter side of the driven side member 11c by deep groove type or angular type ball bearings 30 and 30 which are bearings for supporting a thrust load.
In the case of the linear motor 1c of the present example configured as described above, when the nut member 3b is rotationally driven, the driven side member 11c is displaced in the axial direction while rotating. The output member 15c is taken out and the member engaged with the end of the output member 15c is displaced.
[0023]
Next, FIG. 7 shows a fifth example of the embodiment of the present invention corresponding to the above-mentioned (2). In the case of this example, a plurality of parallel protrusions 31, 31 provided in the circumferential direction on the outer peripheral surface of the shaft-like driven side member 11 d are arranged at equal intervals (at equal pitches). ) And the portions where the protrusions 31 and 31 are formed are the engagement grooves described in the claims. The pitch P of each of the protrusions 31 and 31 is the same as the pitch P of the female screw 6 formed on the inner peripheral surface of the nut member 3.
[0024]
Also in the case of the structure of this example as described above, when the nut member 3 is rotated, the driven member 11d is displaced in the axial direction while rotating. In particular, in the case of this example, the nut member 3 is compared with the case of the first to fourth examples in which the external threads 12, 12a, 12b, and 12c are formed on the outer peripheral surfaces of the driven side members 11, 11a, 11b, and 11c. The amount of displacement of the driven side member 11d in the axial direction increases each time one rotation is made. That is, in this example, every time the nut member 3 makes one rotation, the driven member 11d is displaced in the axial direction by P · (D 0 / d 0 ). Other configurations and operations are the same as those in any of the first to fourth examples described above, and thus illustrations and descriptions regarding the equivalent parts are omitted.
[0025]
Although illustration is omitted, contrary to the case of the fifth example shown in FIG. 7, male threads are formed on the outer peripheral surface of the driven member in place of the plurality of protrusions, and in place of the nut member. The driving side is formed with a plurality of parallel protrusions, each provided in the circumferential direction, on the inner peripheral surface at the same pitch as the male screw formed on the outer peripheral surface of the driven side member to form an engaging groove. Members can also be provided. Further, when adopting a structure in which a plurality of protrusions are formed to form an engaging groove, the driven side member is expressed by θ = tan −1 (P / π · D 0 ) with respect to the driving side member. It is also possible to increase the contact area of the engaging surface between the ridge and the screw by inclining by the angle θ.
[0026]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to realize a linear motor that is small and efficient, can obtain a large stroke and a large force, and can easily design various mechanical devices.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
3 is a cross-sectional view taken along the line BB of FIG.
FIG. 4 is a sectional view showing a second example of the embodiment of the present invention.
FIG. 5 is a sectional view showing the third example.
FIG. 6 is a sectional view showing a fourth example.
FIG. 7 is a view similar to FIG. 3, showing the fifth example.
[Explanation of symbols]
1, 1a, 1b, 1c Linear motor 2, 2a, 2b Motor housing 3, 3a, 3b Nut member 4, 4a Housing body 5 Cover body 6, 6a, 6b, 6c Female thread 7, 7a, 7b Rotor 8, 8a, 8b Stator 9, 9a Bottom plate part 10 Ball bearing 11, 11a, 11b, 11c, 11d Driven side member 12, 12a, 12b, 12c Male thread 13 Bearing 14 Support cylinder part 15, 15a, 15b, 15c Output member 16 Ball bearing 17 Compression Coil spring 18 Bellows 19 Coupling cylinder 20 Ball bearing 21 Outer ring 22 Inner ring 23 Large diameter part 24 Small diameter part 25 Step part 26 Commutator 27 Brush holder 28 Brush 29 Ball bearing 30 Ball bearing 31 Projection

Claims (1)

モータハウジング内に回転のみ自在に支持された駆動側部材と、このモータハウジング内でこの駆動側部材の外周面に固定したロータと、その内周面をこのロータの外周面に対向させた状態で上記モータハウジング内に固定したステータと、上記駆動側部材の内径よりも小さな外径を有し、この駆動側部材に対し偏心した状態でこの駆動側部材の内径側に、回転及び軸方向に亙る変位自在に支持された被駆動側部材と、この被駆動側部材の外周面と上記駆動側部材の内周面とのうちの何れか一方の周面に形成された螺旋状のねじ溝と、上記被駆動側部材の外周面と上記駆動側部材の内周面とのうちの他方の周面に円周方向に亙って形成された、上記ねじ溝と同じピッチを有する係合溝と、上記被駆動側部材の一部にスラスト荷重を支承自在な転がり軸受により結合された出力部材とを備え、上記ねじ溝の円周方向の一部と上記係合溝の円周方向の一部とを互いに噛合させたリニアモータ。A drive-side member that is rotatably supported in the motor housing, a rotor fixed to the outer peripheral surface of the drive-side member in the motor housing, and a state in which the inner peripheral surface faces the outer peripheral surface of the rotor A stator fixed in the motor housing and an outer diameter smaller than the inner diameter of the drive side member, and in a state of being eccentric with respect to the drive side member, is rotated and axially moved toward the inner diameter side of the drive side member. A driven-side member supported so as to be displaceable, and a helical thread groove formed on one of the outer peripheral surface of the driven-side member and the inner peripheral surface of the driving-side member; An engaging groove having the same pitch as the thread groove, formed in the circumferential direction on the other peripheral surface of the outer peripheral surface of the driven side member and the inner peripheral surface of the driving side member; A thrust load can be supported on a part of the driven side member. And an output member coupled by gully bearings, linear motors is mutually engaged with a portion of the circumferential direction in the circumferential direction of the part and the engaging groove of the screw groove.
JP01866199A 1999-01-27 1999-01-27 Linear motor Expired - Fee Related JP3716653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01866199A JP3716653B2 (en) 1999-01-27 1999-01-27 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01866199A JP3716653B2 (en) 1999-01-27 1999-01-27 Linear motor

Publications (2)

Publication Number Publication Date
JP2000213616A JP2000213616A (en) 2000-08-02
JP3716653B2 true JP3716653B2 (en) 2005-11-16

Family

ID=11977806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01866199A Expired - Fee Related JP3716653B2 (en) 1999-01-27 1999-01-27 Linear motor

Country Status (1)

Country Link
JP (1) JP3716653B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085599A1 (en) 2001-04-19 2002-10-31 Demag Ergotech Gmbh Injection moulding machine comprising an electromotive spindle drive and a spring working memory for supporting the electric motor
JP3815415B2 (en) * 2002-09-24 2006-08-30 三菱電機株式会社 2-DOF actuator
EP1884684B1 (en) * 2006-08-03 2013-06-12 Schaeffler Technologies AG & Co. KG Transmission system for transforming a rotary movement into a linear movement
KR101438813B1 (en) * 2008-02-13 2014-09-12 엘지이노텍 주식회사 Linear actuator
JP6779673B2 (en) * 2016-06-22 2020-11-04 Ntn株式会社 Electric linear actuator

Also Published As

Publication number Publication date
JP2000213616A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
JP4898123B2 (en) Electric linear actuator and electric brake device
US7396307B2 (en) Motor-incorporated hypocycloid-type speed reducer
US20060283289A1 (en) Harmonic drive motor with flex-spline interlock
CN106321761A (en) Planetary roller spindle drive and actuator with the same
JP7269233B2 (en) linear actuator
TWI589099B (en) Electric bed with a linear actuator
JP5080993B2 (en) Electric actuator and electric bed
JP2004248492A (en) Seal construction for motor, motor, and motor for automatic transmission of automobile
JP3716653B2 (en) Linear motor
US10830284B2 (en) Reduction gearbox transmission separation mechanism
JP3824942B2 (en) motor
JPH11308805A (en) Linear actuator provided with worm speed reducer
WO2015020168A1 (en) Power transmission device
JP2005163922A (en) Actuator
JP3700441B2 (en) Linear actuator
JP3800719B2 (en) Electric linear actuator
US7258643B2 (en) Device for actuating a reciprocating recovery means for underground fluid
JP5687518B2 (en) Electric linear actuator and electric disc brake device
EP2875578A1 (en) Improved torque rotary motor
JP3941512B2 (en) Linear actuator with clutch mechanism
JP2000018361A (en) Motor-driven linear actuator
JP5069368B2 (en) Electric brake device
JP2002233176A (en) Motor-driven actuator
JP2010051159A (en) Variable field motor
JP5797929B2 (en) Electric linear actuator and electric disc brake device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees