JP3715402B2 - Seismic isolation load exchange method - Google Patents

Seismic isolation load exchange method Download PDF

Info

Publication number
JP3715402B2
JP3715402B2 JP05185497A JP5185497A JP3715402B2 JP 3715402 B2 JP3715402 B2 JP 3715402B2 JP 05185497 A JP05185497 A JP 05185497A JP 5185497 A JP5185497 A JP 5185497A JP 3715402 B2 JP3715402 B2 JP 3715402B2
Authority
JP
Japan
Prior art keywords
seismic isolation
building
support
jack
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05185497A
Other languages
Japanese (ja)
Other versions
JPH10246004A (en
Inventor
賢 越山
Original Assignee
間瀬建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12898457&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3715402(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 間瀬建設株式会社 filed Critical 間瀬建設株式会社
Priority to JP05185497A priority Critical patent/JP3715402B2/en
Publication of JPH10246004A publication Critical patent/JPH10246004A/en
Application granted granted Critical
Publication of JP3715402B2 publication Critical patent/JP3715402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高層建造物を地震等の被害から守るため、激しい地震動を建造物に伝えない免震装置を設置するための免震荷重受替え方法に関するものである。
【0002】
【従来の技術】
従来、高層建造物を構築するに当っては、通常、地中に多数の基礎杭を打ち込み、その先端が岩盤等の支持層に達して固定されると、これら各基礎杭を結んでその上面位置に耐圧盤となるコンクリートを打ち、この耐圧盤上に免震装置を取り付けて建造し、建造物の重量が免震装置を介して耐圧盤により受け止められた状態に構築されていた。
このような状態で地震動が発生したときに、耐圧盤は揺れても、耐圧盤上に設置された免震装置に地震動が吸収され、建造物の地震動による揺れを可及的に迅速かつその大部分を減衰させることがおこなわれている。
【0003】
【発明が解決しようとする課題】
上述した免震装置を用いた高層建造物は、これから新しく構造建造物を構築する場合には最上の方法ではあるが、既設の高層建造物には適用することが出来ないという問題点がある。
本発明は、上記事情に鑑みてなされたもので、既設の高層建造物の荷重のかかる基礎杭の周辺の所定位置に、それぞれの荷重に応じて免震装置を敷設することのできる免震荷重受替え方法を提案しようとするものである。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の免震荷重受替え方法は、概説建造物の基礎杭の周辺の所定位置に複数本の補助杭を打ち込み、該補助杭のそれぞれの上辺に第一のサポートジャッキを取り付けて建造物を支持させ、基礎杭と建造物とを切り離して建造物の下方に耐圧版を敷設し、所要数の第2のサポートジャッキおよびオイルジャッキを耐圧盤上に載置し、一方免震装置と建物の底面との間に形成する上部コンクリート支承部を介して第2のサポートジャッキおよびオイルジャッキにより免震装置を建造物に密接させ、次いでオイルジャッキを除去した後、第2のサポートジャッキを下部コンクリート支承部により耐圧盤に固着させることを特徴とするものである。
【0005】
【作用】
上記した免震荷重受替え方法によれば、既設建造物を何等損なうことなく基礎杭または基礎面の所定位置に免震装置を設置することが可能となり、既設建造物は免震装置上に構築された新建造物と同様に安全管理を保つことができる。
また、免震装置の取付後オイルジャッキの除去に際して、免震装置への荷重導入時の荷重、及び変位量の管理も容易となり格段に優れた建造物を得ることができる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は免震荷重受替え方法の主要部を示す一部断面図、図2は免震荷重受替え方法に用いられるサポートジャッキの外観斜傾図、図3は免震装置の一例を示す断面図である。
【0007】
図1の実施例において、既設の建造物1の下側には、建造物1を支える基礎杭2が連接して設けてあるが、図1に示したものは基礎杭2の一部を建造物1の床から既に切離したもが示してある。この基礎杭2の左右には地下岩盤に達する補助杭3L,3Rが設けてあって、これらの補助杭3Lと3Rとの上部には第1のサポートジャッキ4L,4Rが取り付けられ建造物1の底面部を支持するように設置してある。
前記基礎杭2の切り離された下方の部分と、基礎杭2の周辺に設けられた補助杭3L,3R等を結んで耐圧盤5が設けられ、該耐圧盤5と建造物1の底面部との間には、第2のサポートジャッキ7と各ジャッキ間に組み合されたオイルジャッキ8とが配され、第2のサポートジャッキ7の上には免震装置9が載置され、免震装置と建造物の底面との間隙には上部コンクリート支承部6を、例えばコンクリートを流し込んで形成し、上部コンクリート支承部6を介して建造物の荷重を支承するようにする。
なお、図中オイルジャッキ8は後述する作業行程において除去されるため点線を以って示してある。また、第2のサポートジャッキ7を囲む点線部分は下部コンクリート支承部10で最終行程においてサポートジャッキを固着することを示したものである。
【0008】
前記第1のサポートジャッキ4L,4Rは、図2に示した形状のもので、方形の上部台板11と下部台板12とを有し、下部台板12の4隅には直管13を立設し、上部台板11の4隅には螺合して螺杆14を前記直管13内に挿入したものである。
また、第2のサポートジャッキ7は高重量荷重を受けるものとして前記直管と螺杆との数を増したものであって、上記したサポートジャッキは本願出願人が特許第1781316号重構造物打上支持装置として権利を取得したものである。
【0009】
これらのサポートジャッキ4及び7はいずれも下部台板12を固定し、上部台板11側を例えばオイルジャッキ8にて押し上げ上構物に上部台板11を押し当てておき、螺杆14のナット15を回わし下げ、該ナット15が直管13に接して上部台板12を固定するものである。この上部台板12の固定後には前記オイルジャッキ8を除去しても上部台板12はナット15と直管13の上辺の接触により上構物を支えることができるものである。
【0010】
前記免震装置9は図3に示すような市販品で上部円板16と下部円板17との間で、中央に円柱状の鉛プラグ18を設け、周囲に内部鋼板19とゴム板20と積層し、その上下を連結鋼板21で挟んだ部材を円柱状に形成し、外周を被覆ゴム22で包んだものを用いている。そして、高荷重の場合には鉛プラグ18の大きさを調整するようになっている。
この免震装置9は上部円板16側を建造物1側に固定し、下部円板17側を建造物1の基礎側に固定することにより、建造物1は免震装置9を介して立設されることになり、例えば基礎側に地震動が伝達されても、前記鉛プラグ18と積層された内部鋼板19とゴム板20とによって消去され、建造物1側には震動が伝わらないように構成されたものである。
なお、免震装置9は図3に示した以外にも多くの種類があり、建造物の重量が形状等に応じて用意することができるものである。
【0011】
上記した第1のサポートジャッキ4、第2のサポートジャッキ7、オイルジャッキ8及び免震装置9を用いた免震荷重受替え方法は、下記作業手順によって行なわれる。
(1)建造物1の基礎杭2(基礎杭のない場合には、建造物の基礎面の所定の場所)における堀削作業
(2)基礎杭2の周辺に設ける補助杭3の打込作業(補助杭3は作業場所が狭少であることから鋼管の圧入が望ましい)
(3)補助杭3上への第1のサポートジャッキ4の取付調整作業
(4)基礎杭2の一部切離作業
(5)補助杭3と基礎杭2の下部を固定するための耐圧盤5の敷設作業
(6)耐圧盤5上への第2のサポートジャッキ7とオイルジャッキ8との取付け及び免震装置9の載置作業ならびに上部コンクリート支承部の形成作業
(7)オイルジャッキ8による免震装置9の上部コンクリート支承部6への密接調整及び第2のサポートジャッキ7の支持固定作業
(8)オイルジャッキ8の除去及び第2のサポートジャッキ7の下部コンクリート支承部10による固着作業を行なうことにより完成される。
【0012】
上記した作業工程により一箇所の免震荷重受替えは終了するので、以下、順次に他の基礎杭、また基礎杭のない場合は建造物の基礎面の所定位置についても同様の作業を繰返すことにより既設の建造物免震化は容易に行なうことができる。該作業においては各基礎杭および基礎面の所定の場所についての荷重量が実測可能であることから大きな建造物であっても、個々の場所に適合する免震装置を取り付けることが出来るので、地震動に対する免震効果を増大することができる。
【0013】
【発明の効果】
以上、詳細に説明したように、本発明に係る免震荷重受替え方法は、個々の基礎杭の位置に、また基礎杭のない場合は建造物の基礎面の所定の位置に、免震装置を荷重の大小に応じて選択して取り付けられ、安全性はより高くなると共に、作業に個々の位置より順次行なうことが可能となるので、既設の高層建造物であっても居住する人々を移動させることなく実施することができる特長がある。
【図面の簡単な説明】
【図1】本発明の免震荷重受替え方法の主要部を示す部分断面図である。
【図2】図1に使用されるサポートジャッキの外観斜視図である。
【図3】図1に使用される免震装置の一例を示す断面斜視図である。
【符号の説明】
1 建造物
2 基礎杭
3 補助杭
4 第1のサポートジャッキ
5 耐圧盤
6 上部コンクリート支承部
7 第2のサポートジャッキ
8 オイルジャッキ
9 免震装置
10 下部コンクリート支承部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation load exchange method for installing a seismic isolation device that does not transmit severe earthquake motion to a building in order to protect a high-rise building from damage such as an earthquake.
[0002]
[Prior art]
Conventionally, when constructing a high-rise building, usually, a large number of foundation piles are driven into the ground, and when their tips reach a support layer such as bedrock, they are connected to each other. It was constructed by placing concrete as a pressure plate at a position and installing a seismic isolation device on this pressure plate, and the weight of the building was received by the pressure plate via the seismic isolation device.
When seismic motion occurs in such a state, even if the pressure plate sways, the seismic motion is absorbed by the seismic isolation device installed on the pressure plate, and the shaking caused by the seismic motion of the building is as fast and large as possible. A part is attenuated.
[0003]
[Problems to be solved by the invention]
The above-described high-rise building using the seismic isolation device is the best method for constructing a new structural building from now on, but has a problem that it cannot be applied to an existing high-rise building.
The present invention has been made in view of the above circumstances, a predetermined position in the circumferential edge of the foundation pile consuming load of the existing high-rise buildings, capable of laying the seismic isolation device according to the respective load seismic isolation It intends to propose a load exchange method.
[0004]
[Means for Solving the Problems]
To achieve the above object, the seismic isolation load受替example method of the present invention, outlined buildings driving a plurality of auxiliary pile to a predetermined position in the circumferential edge of the foundation pile of each of the upper side to the first of the auxiliary pile A support jack is attached to support the building, the foundation pile and the building are separated , a pressure plate is laid under the building, and the required number of second support jacks and oil jacks are placed on the pressure plate. On the other hand, after the seismic isolation device is brought into close contact with the building by the second support jack and the oil jack through the upper concrete support part formed between the seismic isolation device and the bottom of the building, and then the oil jack is removed, The second support jack is fixed to the pressure platen by the lower concrete support portion .
[0005]
[Action]
According to the seismic isolation load exchange method described above, it is possible to install a seismic isolation device at a specified position on the foundation pile or foundation surface without any damage to the existing building, and the existing building is constructed on the seismic isolation device. Safety management can be maintained in the same way as the newly constructed buildings.
In addition, when the oil jack is removed after the seismic isolation device is attached, it is easy to manage the load and the amount of displacement when the load is applied to the seismic isolation device, and a significantly superior building can be obtained.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a partial cross-sectional view showing the main part of the seismic isolation load exchange method, FIG. 2 is an oblique view of the appearance of a support jack used in the seismic isolation load exchange method, and FIG. 3 is a cross section showing an example of the seismic isolation device FIG.
[0007]
In the embodiment of FIG. 1, a foundation pile 2 supporting the building 1 is connected to the lower side of the existing building 1, but the structure shown in FIG. The one already cut off from the floor of object 1 is shown. Auxiliary piles 3L, 3R reaching the underground rock mass are provided on the left and right sides of the foundation pile 2, and first support jacks 4L, 4R are attached to the upper portions of these auxiliary piles 3L, 3R. It is installed to support the bottom part.
A pressure platen 5 is provided by connecting the lower part of the foundation pile 2 separated from the auxiliary piles 3L and 3R provided around the foundation pile 2, and the pressure platen 5 and the bottom of the building 1 Between them, a second support jack 7 and an oil jack 8 assembled between the jacks are arranged, and a seismic isolation device 9 is placed on the second support jack 7. The upper concrete support 6 is formed by pouring concrete, for example, in the gap between the bottom of the building and the bottom of the building, and the load of the building is supported via the upper concrete support 6.
In the drawing, the oil jack 8 is shown with a dotted line because it is removed in a work process described later. Further, a dotted line portion surrounding the second support jack 7 indicates that the support jack is fixed at the lower concrete support portion 10 in the final stroke.
[0008]
The first support jacks 4L and 4R have the shape shown in FIG. 2 and have a rectangular upper base plate 11 and a lower base plate 12, and straight pipes 13 are provided at four corners of the lower base plate 12. It is erected, and is screwed into the four corners of the upper base plate 11 to insert a screw 14 into the straight pipe 13.
Further, the second support jack 7 is provided with an increased number of straight pipes and screw rods for receiving a heavy load, and the above-mentioned support jack is supported by the applicant of the present invention for launching a heavy structure No. 1781316. The right is acquired as a device.
[0009]
These support jacks 4 and 7 both have the lower base plate 12 fixed, the upper base plate 11 side is pushed up by, for example, an oil jack 8 and the upper base plate 11 is pressed against the upper structure, and the nut 15 of the screw 14 is provided. And the nut 15 is in contact with the straight pipe 13 to fix the upper base plate 12. Even after the oil jack 8 is removed after the upper base plate 12 is fixed, the upper base plate 12 can support the upper structure by contact between the nut 15 and the upper side of the straight pipe 13.
[0010]
The seismic isolation device 9 is a commercial product as shown in FIG. 3 and is provided with a cylindrical lead plug 18 at the center between the upper disk 16 and the lower disk 17, and an inner steel plate 19 and a rubber plate 20 around it. A member formed by laminating and sandwiching the upper and lower sides thereof with a connecting steel plate 21 is formed in a columnar shape and the outer periphery is wrapped with a covering rubber 22. When the load is high, the size of the lead plug 18 is adjusted.
In this seismic isolation device 9, the upper disk 16 side is fixed to the building 1 side, and the lower disk 17 side is fixed to the foundation side of the building 1, so that the building 1 stands up via the seismic isolation device 9. For example, even if the ground motion is transmitted to the foundation side, it is erased by the internal steel plate 19 and the rubber plate 20 laminated with the lead plug 18 so that the ground motion is not transmitted to the building 1 side. It is configured.
There are many types of seismic isolation devices 9 other than those shown in FIG. 3, and the weight of the building can be prepared according to the shape and the like.
[0011]
The above-described seismic isolation load exchange method using the first support jack 4, the second support jack 7, the oil jack 8 and the seismic isolation device 9 is performed according to the following work procedure.
(1) Excavation work at the foundation pile 2 of the building 1 (a predetermined place on the foundation surface of the building if there is no foundation pile) (2) Driving of the auxiliary pile 3 provided around the foundation pile 2 (Since the auxiliary pile 3 has a small work space, it is desirable to press fit a steel pipe.)
(3) Installation adjustment work of the first support jack 4 on the auxiliary pile 3 (4) Partial separation work of the foundation pile 2 (5) Pressure-resistant board for fixing the auxiliary pile 3 and the lower part of the foundation pile 2 (6) Installation of the second support jack 7 and the oil jack 8 on the pressure-resistant panel 5 and the installation work of the seismic isolation device 9 and the formation work of the upper concrete support (7) With the oil jack 8 Close adjustment of the seismic isolation device 9 to the upper concrete support portion 6 and support fixing work of the second support jack 7 (8) Removal of the oil jack 8 and fixing work of the second support jack 7 by the lower concrete support portion 10 It is completed by doing.
[0012]
Since the replacement of seismic isolation load at one location is completed by the above work process, repeat the same procedure for other foundation piles and the specified position on the foundation surface of the building if there is no foundation pile. Therefore, seismic isolation of existing buildings can be easily performed. In this work, since the load of each foundation pile and foundation surface can be measured, it is possible to install seismic isolation devices suitable for each location even in large buildings. The seismic isolation effect for can be increased.
[0013]
【The invention's effect】
As described above in detail, the seismic isolation load exchange method according to the present invention provides a seismic isolation device at the position of each foundation pile, or when there is no foundation pile, at a predetermined position on the foundation surface of the building. Can be selected and installed according to the size of the load, and safety can be improved and work can be performed sequentially from each position, so people living even in existing high-rise buildings can be moved There is a feature that can be implemented without having
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a main part of a seismic isolation load exchange method of the present invention.
2 is an external perspective view of a support jack used in FIG. 1. FIG.
FIG. 3 is a cross-sectional perspective view showing an example of the seismic isolation device used in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Building 2 Foundation pile 3 Auxiliary pile 4 1st support jack 5 Pressure-resistant board 6 Upper concrete bearing part 7 Second support jack 8 Oil jack 9 Seismic isolation device 10 Lower concrete bearing part

Claims (1)

概説建造物の基礎杭の周辺の所定位置に複数本の補助杭を打ち込み、該補助杭のそれぞれの上辺に第一のサポートジャッキを取り付けて建造物を支持させ、基礎杭と建造物とを切り離して建造物の下方に耐圧版を敷設し、所要数の第2のサポートジャッキおよびオイルジャッキを耐圧盤上に載置し、一方免震装置と建物の底面との間に形成する上部コンクリート支承部を介して第2のサポートジャッキおよびオイルジャッキにより免震装置を建造物に密接させ、次いでオイルジャッキを除去した後、第2のサポートジャッキを下部コンクリート支承部により耐圧盤に固着させることを特徴とする免震荷重受替え方法。Driving a plurality of auxiliary pile to a predetermined position in the circumferential edge of the foundation pile outlined buildings, each of the upper side of the auxiliary pile by attaching a first support jack is supported buildings, the underlying pile in a building structure Separately lay a pressure plate under the building and place the required number of second support jacks and oil jacks on the pressure plate, while the upper concrete bearing formed between the seismic isolation device and the bottom of the building The seismic isolation device is brought into close contact with the building by the second support jack and the oil jack through the part, and after removing the oil jack, the second support jack is fixed to the pressure platen by the lower concrete support part. Seismic isolation load exchange method.
JP05185497A 1997-03-06 1997-03-06 Seismic isolation load exchange method Expired - Lifetime JP3715402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05185497A JP3715402B2 (en) 1997-03-06 1997-03-06 Seismic isolation load exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05185497A JP3715402B2 (en) 1997-03-06 1997-03-06 Seismic isolation load exchange method

Publications (2)

Publication Number Publication Date
JPH10246004A JPH10246004A (en) 1998-09-14
JP3715402B2 true JP3715402B2 (en) 2005-11-09

Family

ID=12898457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05185497A Expired - Lifetime JP3715402B2 (en) 1997-03-06 1997-03-06 Seismic isolation load exchange method

Country Status (1)

Country Link
JP (1) JP3715402B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437113B2 (en) * 2010-03-02 2014-03-12 横河工事株式会社 Load receiving method and device for seismic isolation device
JP5852475B2 (en) * 2012-03-01 2016-02-03 大成建設株式会社 Pile foundation reconstruction method
JP5944732B2 (en) * 2012-04-25 2016-07-05 株式会社竹中工務店 Installation method of elastic bearing
JP6000414B2 (en) * 2015-07-08 2016-09-28 大成建設株式会社 Pile foundation reconstruction method and pile foundation structure
KR101897099B1 (en) * 2017-06-16 2018-09-11 포인텍이앤씨(주) Non-lifting bridge support construction method
CN107806252B (en) * 2017-10-23 2023-04-11 南京分震建筑科技有限公司 Upper pier structure for seismic isolation and reinforcement of existing building and construction method thereof
CN108571003A (en) * 2018-06-29 2018-09-25 北京瑞博远绿色建筑科技有限公司 A kind of stone structure Gu decorated archway base isolation system and its reinforcement means
CN111255092B (en) * 2020-02-11 2021-08-17 河北宝力工程装备股份有限公司 Stable support of building steel structure convenient to adjust and having buffering capacity
CN112900467B (en) * 2020-12-31 2022-03-01 浙江大学 Shock attenuation is from shallow basis of toughness building that restores to throne

Also Published As

Publication number Publication date
JPH10246004A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
US5444950A (en) Drainage sysatem for building foundations
RU120447U1 (en) SEISMIC RESISTANT BUILDING
JP3715402B2 (en) Seismic isolation load exchange method
JP5616925B2 (en) Steel double camber and seismic isolation load exchange method using the same
JP2007070859A (en) Base isolation construction method and base isolation structure of building
JP3780816B2 (en) Seismic isolation method for existing buildings
JP2014114655A (en) Seismic isolation device installation method
JP2989539B2 (en) Existing building seismic isolation method
JP3706997B2 (en) Base seismic isolation method for existing buildings
JPH09317208A (en) Base isolation construction method for existing wooden house
JP4187887B2 (en) Seismic isolation method for existing buildings and the seismic isolation mechanism used therefor
JP3438407B2 (en) Method of installing seismic isolation device between foundation and structure or removing seismic isolation device from between them
JPH11310928A (en) Vibration isolation reinforcing method for existing structure
CN210975915U (en) Synchronous lifting and shock insulation structure for existing sinking old building
JP3151609B2 (en) Vibration-isolating wooden building and its construction method
JP7095839B2 (en) Slab support structure and slab construction method
JP3682667B2 (en) Ground formation structure
JP3401363B2 (en) Basic members for superposition type construction
JP2007070860A (en) Base isolation structure of building, its construction method and maintenance method
JP2006342543A (en) Artificial ground structure and method of constructing the same
JPH1113290A (en) Base isolation implementating method for existing building
JP3893954B2 (en) Pile head connection structure, connecting structure
JP3829458B2 (en) Attaching the vibration control device to the building
JP3054167U (en) Seismic isolation foundation using old tires
JP3820498B2 (en) Seismic isolation method for existing buildings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term