JP3714452B2 - Method and apparatus for collecting ash collected from two-stage bag filter in series - Google Patents

Method and apparatus for collecting ash collected from two-stage bag filter in series Download PDF

Info

Publication number
JP3714452B2
JP3714452B2 JP00407699A JP407699A JP3714452B2 JP 3714452 B2 JP3714452 B2 JP 3714452B2 JP 00407699 A JP00407699 A JP 00407699A JP 407699 A JP407699 A JP 407699A JP 3714452 B2 JP3714452 B2 JP 3714452B2
Authority
JP
Japan
Prior art keywords
ash
bag filter
fly ash
exhaust gas
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00407699A
Other languages
Japanese (ja)
Other versions
JP2000202395A (en
Inventor
充良 金子
伸也 竹中
真也 安部
和之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP00407699A priority Critical patent/JP3714452B2/en
Publication of JP2000202395A publication Critical patent/JP2000202395A/en
Application granted granted Critical
Publication of JP3714452B2 publication Critical patent/JP3714452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、バグフィルタ捕集灰の処理に係り、特に、廃棄物の焼却施設及び溶融固化施設から排出される焼却飛灰及び溶融飛灰を直列2段のバグフィルタで捕集した捕集灰の処理方法と装置に関する。
【0002】
【従来の技術】
従来、廃棄物を焼却又は溶融固化させる施設においては、バグフィルタは1つであり、発生する焼却飛灰、溶融飛灰の捕集と、バグフィルタの上流側に消石灰の吹込みを行ったり、反応塔を設け消石灰スラリーを噴霧して、酸性ガスである塩化水素、硫黄酸化物の吸収除去とを同時に行ってきた。これはバグフィルタが1つで良く、設備費及びスペースの点から利点があり、広く用いられる手法である。バグフィルタの場合、ろ布表面に飛灰と消石灰の積層が形成され、積層による高効率集塵と、燃焼排ガスが積層を通過する時の密接な固気接触から酸性ガスである塩化水素、硫黄酸化物の吸収除去とが、同時に行える利点を利用したものである。
【0003】
しかしながら、高効率で塩化水素、硫黄酸化物を除去しようとすると、添加する消石灰は当量〔バグフィルタに流入する塩化水素、硫黄酸化物のモル数に対する添加消石灰のモル数で、塩化水素の場合、モル比はHCl/Ca(OH)2=1/2、硫黄酸化物はSOx/Ca(OH)2=1を当量とする〕以上の添加量となり、例えば90%以上の除去を考えた場合、酸性ガスの塩化水素、硫黄酸化物に対して、添加消石灰は2当量程度以上必要であった。従って、バグフィルタ捕集灰は、未反応消石灰分が多量に含まれ、pH12以上のアルカリを呈していることがほとんどであった。このアルカリ飛灰は、飛灰に含まれる鉛化合物が溶出しやすく、このままでは埋め立て基準値をほとんどのケースでオーバーした。これは、鉛化合物はpH値が12以上になると、亜・鉛酸イオン(HPbO2)として溶解するためである。
【0004】
このアルカリ性飛灰の中間処理としてセメント固化を行っても、鉛が埋め立て基準値をオーバーすることが多々あり、液体キレートを添加しても、特に溶融飛灰のように低沸点重金属である鉛が濃縮され、鉛含有量が多い場合は、高価な液体キレート剤の添加量が多くなり、ランニングコストがかさむ欠点があった。また、鉄塩(硫酸第一鉄、硫酸第二鉄、塩化第二鉄、ポリ硫酸第二鉄等の一種又はこれらの混合物)をこのアルカリ性飛灰に添加した場合、本来の添加目的である鉄塩による共沈作用による溶出防止効果の前に、最適pH域のpH8〜11に調整するために多量に消費されてしまい、ランニングコスト及び埋め立て処分量の増加を招いた。これは、アルカリ性飛灰に多量に含まれる未反応消石灰分に起因している。また、硫酸等の酸でこのアルカリ性飛灰をpH調整する場合は、添加量が多い他に、未反応消石灰が固体であるため、湿潤状態ではどうしても未反応消石灰の中心部は反応しない所があり、一旦所定のpH域に調整しても、再びアルカリサイドに戻ることが多々あり、pH調整が困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、焼却及び溶融飛灰中に含まれる有害な重金属、特に鉛の溶出防止を、簡便で且つ添加薬品を最小限に押さえてでき、ランニングコストの低減と埋め立て処分量を低減することができるバグフィルタ捕集灰の処理方法と装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では、焼却飛灰及び/又は溶融飛灰を含有する排ガスを、まず前段のバグフィルタに通して飛灰を捕集し、次いで飛灰を捕集後の排ガスに消石灰を噴霧して後段のバグフィルタを通し、該排ガス中の酸性ガスを吸収除去する排ガスの処理方法において、前記前段のバグフィルタで捕集した飛灰に、該飛灰当りFe換算で0.8wt%以上の鉄塩と、アルカリ剤としての前記後段のバグフィルタによる捕集灰と、前記飛灰当り20〜30wt%水とを添加して、pH値が6〜12になるように混練することを特徴とするバグフィルタ捕集灰の処理方法としたものである。
また、本発明では、焼却飛灰及び/又は溶融飛灰を含有する排ガスを、まず前段のバグフィルタに通して飛灰を捕集し、次いで飛灰を捕集後の排ガスに消石灰を噴霧して後段のバグフィルタを通し、該排ガス中の酸性ガスを吸収除去する排ガスの処理方法において、前記前段のバグフィルタで捕集した飛灰に、水を加えて10wt%のスラリー液を作成し、撹拌しながらFe換算で0.8wt%以上の鉄塩を添加し、続いてアルカリ剤としての前記後段のバグフィルタによる捕集灰を、前記スラリー液のpH値が6〜12になるように添加して混練することを特徴とするバグフィルタ捕集灰の処理方法としたものである。
前記処理方法において、鉄塩としては、硫酸第一鉄、硫酸第二鉄、塩化第二鉄
又はポリ硫酸第二鉄の一種又はこれらの混合物を用いるのが好ましい。
【0007】
前記処理方法において、後段のバグフィルタによる捕集灰のアルカリ剤として用いた残部は、キレート剤と水を添加して混練することにより処理してもよい。
また、本発明では、焼却飛灰及び/又は溶融飛灰を含有する排ガスを排出する排ガス流路と、該流路に設けた飛灰を捕集する前段のバグフィルタと、飛灰を捕集後の排ガス流路に設けた排ガス中の酸性ガスを吸収除去する消石灰を噴霧する噴霧装置と、該噴霧後の排ガスを通す後段のバグフィルタとを有する排ガス処理装置において、前記前段のバグフィルタで捕集した飛灰と、鉄塩と、アルカリ剤としての後段のバグフィルタによる捕集灰と、水とを導入して混練する混練装置を配備したことを特徴とするバグフィルタ捕集灰の処理装置としたものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明では、廃棄物を焼却又は溶融固化させる施設において、まず、発生する焼却飛灰又は溶融飛灰の捕集方法として、直列に2つのバグフィルタを連結させた施設(特公平7−103980号公報参照)で行う。
すなわち、前段のバグフィルタの主機能は、被焼却物又は被溶融固化物から発生する低沸点重金属類を含んだ飛灰の捕集とし、後段のバグフィルタでは、前段のバグフィルタ後流側と後段のバグフィルタの間に消石灰を粉体又はスラリー状で噴霧させ、後段のバグフィルタのろ布表面に形成される消石灰のアルカリ剤の積層による酸性ガスである塩化水素、硫黄酸化物の吸収除去を、主機能とする。こうすることにより、当然のことながら、前段のバグフィルタによる集塵灰は、重金属を含有するが、未反応消石灰分はまったくなく(バグフィルタの保護を主目的に少量の消石灰を添加した場合は、若干含まれることもあるが)、後段のバグフィルタの集塵灰は、重金属はほとんど含まないが、未反応消石灰を多く含んだ集塵灰に分離される。
【0009】
こうすることで、前段の集塵灰は、鉄塩の添加の最適pH域6〜12(例えば特開昭8−39038号参照)に、酸性サイドから出発でき、アルカリの添加により容易に調整可能となる。本発明は、このアルカリ剤として2段目のバグフィルタ捕集灰である“反応アルカリ灰”を用いることを特徴とする。この“反応アルカリ灰”を前段の飛灰の中間処理に用いることにより、新たなアルカリを灰処理に添加することが必要なくなるため、ランニングコスト低減と埋め立て処分量の低減化が可能になる。また、この“反応アルカリ灰”は、排ガス中のCO2を若干吸収して、消石灰のpH13より低いpH12台を示し、pH調整に“反応アルカリ灰”添加量に対して緩衝作用があるため、最適pH値に調整することが容易であることを見出した。
【0010】
一方“反応アルカリ灰”は、未反応アルカリ分が多く、高アルカリ性でも効果がある液体キレート添加を行ったところ、重金属含有濃度が非常に少ないため、被処理灰当たり0.01%〜0.1%の微量の添加による湿潤状態の混練により、溶出防止が可能であった。
本発明によって、廃棄物中の重金属が不溶性になる原理の詳細は不明であるが、鉄塩と“反応アルカリ灰”のアルカリ分が作用し、水酸化鉄の沈殿を形成し、これに灰中の重金属類が取り込まれるものと考えられる。取り込まれる機構は、灰中の重金属類の水酸化鉄の吸着、水酸化鉄結晶格子Feイオンとの置換等が考えられる。
【0011】
次に、図面を用いて本発明を説明する。
図1は、本発明のバグフィルタ捕集灰の処理方法を組み込んだガス化溶融プラントのフロー工程図である。
図1において、廃棄物は、まずガス化炉に投入され、部分燃焼してガス化され、ガス化生成物が旋回溶融炉2に導入されて高温で燃焼し、灰分が溶融して炉底から排出される。一方、溶融飛灰を含む燃焼排ガスは、ボイラ3、空気予熱器4及びエコノマイザーを順次通り熱回収された後、前段の集塵用バグフィルタ6に導入され、溶融飛灰を捕集し、溶融飛灰が除去された排ガスは、消石灰粉7が添加されて、後段の脱HCl、SO4用バグフィルタ8に導入され、反応アルカリ灰を捕集後、煙突9から排出される。
【0012】
前段のバグフィルタ6で捕集された溶融飛灰は、貯留槽11に貯留され、後段のバグフィルタ8で捕集された反応アルカリ灰は貯留槽12に貯留される。貯留された溶融飛灰は、処理槽13において、鉄塩15、反応アルカリ灰及び水を添加して混練処理する本発明の処理方法によって処理し、中間処理灰18を得る。一方、残りの反応アルカリ灰は、処理槽14において、キレート剤17と水を添加して混練処理してに中間処理灰19を得る。
【0013】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1
シュレッダーダスト(を裁断したときに発生する可燃屑)を、図1に示すガス化溶融炉プラントで高温燃焼させ、ガス化溶融した際に発生した1段目バグフィルタ捕集灰と2段目バグフィルタ捕集灰の“反応アルカリ灰”を用いて、各種テストを行った。原灰の化学組成を表1に、環境庁告示第13号による原灰の溶出試験結果を表2に示す。
【0014】
【表1】

Figure 0003714452
【0015】
【表2】
Figure 0003714452
【0016】
1段目バグフィルタ捕集灰は、消石灰が添加されていないため弱酸性を呈し、Cd,Pb,Cu,Zn,が高濃度濃縮されていた。“反応アルカリ灰”は未反応消石灰が多量に含まれ、pH12のアルカリ性を呈し、1段目バグフィルタで重金属類はほとんど除去されるため、重金属濃度は微量であった。
この原灰の溶出試験結果から、1段目バグフィルタ捕集灰は、Hg,Pb,Cd,が埋め立て基準値を越えており、Zn,Cuも高濃度溶出していた。また、“反応アルカリ灰”の溶出は、Pbが若干溶出したが、埋め立て基準値内であった。
1段目バグフィルタ捕集灰の10%スラリー液を攪拌しながら、ポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕を灰当たり7.25%(Fe換算で0.8%),14.5%(Fe換算で1.6%),29%(Fe換算で3.2%)を添加し、続いて“反応アルカリ灰”を添加し、安定した所のpH値を“設定pH値”とした。“反応アルカリ灰”添加量と、この“設定pH値”の関係を図2に示す。
【0017】
設定pH値がpH6〜12の範囲のポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕及び“反応アルカリ灰”の添加量に対して、図3の方法で灰処理テストを行った。
表3に溶出が埋め立て基準値をクリヤーした添加量を、表4に試験結果を示す。設定pH値がpH6〜12の全てのケースで、重金属溶出値は検出限界値か埋め立て基準値を充分クリヤーする結果が得られた。表3から、各ポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕量に対して、“反応アルカリ灰”は±50%の添加量で良く、“反応アルカリ灰”の添加量の幅があるため、pH調整が容易に行えることが判明した。
【0018】
【表3】
Figure 0003714452
【0019】
【表4】
Figure 0003714452
【0020】
実施例2
上記灰に対して、鉄塩として硫酸第一鉄7水塩を添加し、実施例1と同様の操作でテストを行った。1段目バグフィルタ捕集灰の10%スラリー液を攪拌しながら、硫酸第一鉄7水塩(FeSO4・7H2O)を灰当たり4%(Fe換算で0.8%),8%(Fe換算で1.6%),16%(Fe換算で3.2%)を添加し、続いて“反応アルカリ灰”を添加し、安定した所のpH値を設定pH値とした。“反応アルカリ灰”とこの設定pH値の関係を図4に示す。
設定pH値がpH6〜12の範囲の硫酸第一鉄7水塩(FeSO4・7H2O)及び“反応アルカリ灰”の添加量に対して、図3と同様の方法で灰処理テストを行った。硫酸第一鉄7水塩(FeSO4・7H2O)添加は、この1重量部に水2重量部を加えて溶解した水溶液を、さらに水を加えて湿潤状態で充分混練できるように添加した。表5に溶出が埋め立て基準値をクリヤーした添加量を、表6に試験結果を示す。
【0021】
設定pH値がpH6〜12の全てのケースで、重金属溶出値は検出限界値か、埋め立て基準値を充分クリヤーする結果が得られた。表5から各硫酸第一鉄7水塩(FeSO4・7H2O)量に対して“反応アルカリ灰”は±50%の添加量で良く、“反応アルカリ灰”の添加量の幅があるため、pH調整が容易に行えることが判明した。
【表5】
Figure 0003714452
【0022】
【表6】
Figure 0003714452
【0023】
実施例3
一般廃棄物(都市ごみ)を、ストーカ式焼却プラントで焼却した際に発生した1段目バグフィルタ捕集灰と、2段目バグフィルタ捕集灰の“反応アルカリ灰”を用いて、各種テストを行った。原灰の化学組成を表7に、環境庁告示第13号による原灰の溶出試験結果を表8に示す。
【0024】
【表7】
Figure 0003714452
【0025】
【表8】
Figure 0003714452
【0026】
1段目バグフィルタ捕集灰は、消石灰が添加されていないため中性を呈し、Cd,Pb,Cu,Zn,が高濃度濃縮されていた。“反応アルカリ灰”は、未反応消石灰が多量に含まれpH12のアルカリ性を呈し、1段目バグフィルタで重金属類はほとんど除去されるため、重金属濃度は微量であった。
この原灰の溶出試験結果から、1段目バグフィルタ捕集灰はPb,Cd,が埋め立て基準値を越えており、Zn,Cuも高濃度溶出していた。“反応アルカリ灰”の溶出は、Pbが若干溶出したが埋め立て基準値内であった。
1段目バグフィルタ捕集灰の10%スラリー液を攪拌しながら、ポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕を灰当り7.25%(Fe換算で0.8%),14.5%(Fe換算で1.6%),29%(Fe換算で3.2%),を添加し、続いて“反応アルカリ灰”を添加し、安定した所のpH値を設定pH値とした。“反応アルカリ灰”とこの設定pH値の関係を図5に示す。
【0027】
設定pH値がpH6〜12の範囲のポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕及び“反応アルカリ灰”の添加量に対して、図3の方法で灰処理テストを行った。
表9に溶出が埋め立て基準値をクリヤーした添加量を、表10に試験結果を示す。設定pH値がpH6〜12の全てのケースで、重金属溶出値は検出限界値か埋め立て基準値を充分クリヤーする結果が得られた。表10から、各ポリ硫酸第二鉄〔{Fe2(OH)n(SO43-n/2n〕量に対して“反応アルカリ灰”は±50%の添加量で良く、“反応アルカリ灰”の添加量の幅があるため、pH調整が容易に行えることが判明した。
【0028】
【表9】
Figure 0003714452
【0029】
【表10】
Figure 0003714452
【0030】
実施例4
表1,2に示す“反応アルカリ灰”は埋め立て基準値をクリヤーしていたが、ジエチルジチオカルバミン酸(C252NCS2−を官能基としてもつ液体キレート剤による処理試験を行った。“反応アルカリ灰”に液体キレート剤を0.01〜0.1%/灰添加して混練した。なお、液体キレート剤は、加湿水に希釈して添加した。翌日環境庁告示第13号法で溶出試験を行った。表11に詰果を示すが、液体キレート剤を0.03%/灰以上の添加で溶出抑制効果が認められた。
【0031】
【表11】
Figure 0003714452
【0032】
【発明の効果】
上記の様に、従来の方法では、集塵灰には多量の重金属類と多量の未反応消石灰分が混在された状態であり、この処理には余分なpH調整剤、多量の薬剤が必要であり、これに伴う埋め立て処分量も増加した。本発明によれば、直列2段バグフィルタの前段の集塵灰の処理に、排ガス処理に使用した後段バグフィルタの“反応アルカリ灰”を用いることにより、新たにpH調整剤としてのアルカリ剤を添加することなく、かつ未反応消石灰にpH調整に対する“反応アルカリ灰”の緩衝作用のため、pH調整が容易であり、最適なpH域で処理することにより鉄塩の添加量も少なく、ランニングコスト低減と埋め立て処分量の低減を提供できた。
【図面の簡単な説明】
【図1】本発明の方法を組み込んだガス化溶融プラントのフロー工程図。
【図2】実施例の反応アルカリ灰添加量と設定pH値の関係を示すグラフ。
【図3】灰処理テストの手順を示す経路図。
【図4】実施例2の反応アルカリ灰添加量と設定pH値の関係を示すグラフ。
【図5】実施例3の反応アルカリ灰添加量と設定pH値の関係を示すグラフ。
【符号の説明】
1:ガス化炉、2:旋回溶融炉、3:ボイラ、4:空気予熱器、5:エコノマイザー、6:集塵用バグフィルタ、7:消石灰粉、8:脱HCl、SO4用バグフィルタ、9:煙突、11、12:灰貯留槽、13、14:処理槽、15:鉄塩、16:水、17:キレート剤、18、19:中間処理灰[0001]
BACKGROUND OF THE INVENTION
The present invention relates to processing of bag filter collecting ash, in particular, the collection was collected the incineration fly ash and molten fly ash is discharged from the incinerator and vitrified facility waste in series two-stage bag filter The present invention relates to an ash treatment method and apparatus .
[0002]
[Prior art]
Conventionally, in a facility for incineration or melting and solidifying waste, there is only one bug filter, collecting generated incineration fly ash, molten fly ash, and blowing slaked lime upstream of the bag filter, A reaction tower has been provided and sprayed with slaked lime slurry to simultaneously absorb and remove acidic gases such as hydrogen chloride and sulfur oxides. This requires only one bug filter, is advantageous in terms of equipment cost and space, and is a widely used technique. In the case of a bag filter, a stack of fly ash and slaked lime is formed on the filter cloth surface, and high-efficiency dust collection by the stack, and close contact with solid gas when combustion exhaust gas passes through the stack, hydrogen chloride and sulfur that are acid gases This utilizes the advantage that absorption and removal of oxide can be performed simultaneously.
[0003]
However, when trying to remove hydrogen chloride and sulfur oxide with high efficiency, the slaked lime to be added is equivalent to the number of moles of added slaked lime with respect to the number of moles of hydrogen chloride and sulfur oxide flowing into the bag filter. The molar ratio is HCl / Ca (OH) 2 = 1/2, and the sulfur oxide is equivalent to SOx / Ca (OH) 2 = 1). For example, when considering removal of 90% or more, About 2 equivalents or more of added slaked lime is necessary for the hydrogen chloride and sulfur oxides of the acid gas. Therefore, the bag filter collected ash mostly contains an unreacted slaked lime content and exhibits an alkali having a pH of 12 or more. This alkaline fly ash easily leach out lead compounds contained in the fly ash, and in this case exceeded the landfill reference value in most cases. This is because the lead compound dissolves as hypo-lead acid ions (HPbO 2 ) when the pH value becomes 12 or more.
[0004]
Even if cement is solidified as an intermediate treatment of this alkaline fly ash, lead often exceeds the landfill reference value. Even when liquid chelate is added, lead, which is a low-boiling heavy metal such as molten fly ash, is often found. In the case of being concentrated and having a high lead content, the amount of expensive liquid chelating agent added is increased, and there is a disadvantage that running costs are increased. In addition, when iron salt (one kind of ferrous sulfate, ferric sulfate, ferric chloride, polyferric sulfate, or a mixture thereof) is added to this alkaline fly ash, the original purpose of iron is added. Before the elution prevention effect due to the coprecipitation action by the salt, it was consumed in a large amount to adjust to pH 8 to 11 in the optimum pH range, resulting in an increase in running cost and landfill disposal amount. This is due to unreacted slaked lime contained in a large amount in alkaline fly ash. In addition, when adjusting the pH of this alkaline fly ash with an acid such as sulfuric acid, in addition to the addition amount, unreacted slaked lime is a solid, so there are places where the central part of unreacted slaked lime does not react in a wet state. Once adjusted to a predetermined pH range, it often returned to the alkali side again, making pH adjustment difficult.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, can easily prevent elution of harmful heavy metals contained in incineration and molten fly ash, especially lead, and minimizes the amount of added chemicals. It is an object of the present invention to provide a method and apparatus for processing bag filter ash that can reduce the amount of landfill disposal.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, exhaust gas containing incinerated fly ash and / or molten fly ash is first passed through a bag filter in the previous stage to collect fly ash, and then the fly ash is collected. In the exhaust gas treatment method in which slaked lime is sprayed on the exhaust gas and passed through the subsequent bag filter to absorb and remove the acidic gas in the exhaust gas, the fly ash collected by the preceding bag filter is converted to Fe per fly ash. Add an iron salt of 0.8 wt % or more, collected ash by the latter-stage bag filter as an alkaline agent, and 20-30 wt% water per the fly ash so that the pH value becomes 6-12. The bag filter collecting ash processing method is characterized in that it is kneaded into a mixture.
In the present invention, exhaust gas containing incinerated fly ash and / or molten fly ash is first passed through a bag filter in the previous stage to collect fly ash, and then sprayed with slaked lime on the exhaust gas after collecting fly ash. In the exhaust gas treatment method of absorbing and removing acidic gas in the exhaust gas through a subsequent bag filter, water is added to the fly ash collected by the preceding bag filter to create a 10 wt % slurry liquid, While stirring, an iron salt of 0.8 wt % or more in terms of Fe is added, and then the collected ash by the latter-stage bag filter as an alkaline agent is adjusted so that the pH value of the slurry liquid becomes 6-12. The bag filter collected ash is treated by adding and kneading.
In the treatment method, as the iron salt, it is preferable to use one kind of ferrous sulfate, ferric sulfate, ferric chloride, polyferric sulfate or a mixture thereof.
[0007]
In the processing method, the remainder was used as an alkali agent for collecting ash by a bag filter of the rear stage may be treated by kneading by adding a chelating agent and water.
Further, in the present invention, an exhaust gas flow path for discharging exhaust gas containing incinerated fly ash and / or molten fly ash, a pre-stage bag filter for collecting fly ash provided in the flow path, and collecting fly ash An exhaust gas treatment apparatus having a spray device for spraying slaked lime that absorbs and removes acid gas in exhaust gas provided in a later exhaust gas flow path, and a subsequent bag filter that passes the sprayed exhaust gas, Processing of bag filter collected ash characterized by the provision of a kneading device for introducing and kneading the collected fly ash, iron salt, collected ash by a subsequent bag filter as an alkaline agent, and water It is a device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, in a facility for incineration or melting and solidifying waste, first, as a method for collecting incinerated fly ash or molten fly ash generated, a facility in which two bag filters are connected in series (Japanese Patent Publication No. 7-103980). (See Gazette).
That is, the main function of the front-stage bag filter is to collect fly ash containing low-boiling heavy metals generated from the incinerated material or the molten solidified material. Absorption and removal of hydrogen chloride and sulfur oxides, which are acid gases, by spraying slaked lime in powder or slurry form between the latter bag filters and laminating the alkaline agent of slaked lime formed on the filter cloth surface of the latter bag filter Is the main function. As a matter of course, the dust collection ash by the bag filter in the previous stage contains heavy metals, but there is no unreacted slaked lime content (if a small amount of slaked lime is added mainly for the purpose of protecting the bag filter) However, the dust collection ash of the subsequent bag filter is separated into dust collection ash containing almost no heavy metals but containing a lot of unreacted slaked lime.
[0009]
In this way, the dust ash in the previous stage can be started from the acidic side in the optimum pH range of 6 to 12 (for example, see JP-A-8-39038) for addition of iron salt, and can be easily adjusted by addition of alkali. It becomes. The present invention is characterized in that “reactive alkali ash” which is the second stage bag filter collecting ash is used as the alkali agent. By using this “reactive alkali ash” for the intermediate treatment of the fly ash in the previous stage, it becomes unnecessary to add a new alkali to the ash treatment, so it becomes possible to reduce the running cost and the amount of landfill disposal. In addition, this “reactive alkali ash” slightly absorbs CO 2 in the exhaust gas, shows pH 12 units lower than the pH 13 of slaked lime, and has a buffering effect on the added amount of “reactive alkali ash” in pH adjustment, It has been found that it is easy to adjust to the optimum pH value.
[0010]
On the other hand, “reactive alkali ash” has a large amount of unreacted alkali, and when liquid chelate addition is effective even with high alkalinity, the concentration of heavy metals is very low, so 0.01% to 0.1% per ash to be treated It was possible to prevent elution by kneading in a wet state by adding a small amount of%.
Although the details of the principle that the heavy metals in the waste become insoluble by the present invention are unclear, the alkali content of the iron salt and the “reactive alkali ash” acts to form a precipitate of iron hydroxide, which in the ash It is thought that heavy metals are taken in. As the mechanism to be taken in, it is conceivable to adsorb iron hydroxides of heavy metals in the ash, or to replace them with iron hydroxide crystal lattice Fe ions.
[0011]
Next, the present invention will be described with reference to the drawings.
FIG. 1 is a flow process diagram of a gasification and melting plant incorporating the bag filter collecting ash processing method of the present invention.
In FIG. 1, waste is first put into a gasification furnace and partially combusted to be gasified. The gasification product is introduced into the swirl melting furnace 2 and burned at a high temperature, and the ash is melted from the bottom of the furnace. Discharged. On the other hand, the flue gas containing molten fly ash is heat-recovered sequentially through the boiler 3, the air preheater 4 and the economizer, and then introduced into the dust collecting bag filter 6 in the previous stage to collect the molten fly ash. The exhaust gas from which the molten fly ash has been removed is added with slaked lime powder 7 and introduced into a post-deHCl / SO 4 bag filter 8, which collects the reactive alkali ash and is then discharged from the chimney 9.
[0012]
The molten fly ash collected by the front stage bag filter 6 is stored in the storage tank 11, and the reaction alkali ash collected by the rear stage bag filter 8 is stored in the storage tank 12. The stored molten fly ash is treated in the treatment tank 13 by the treatment method of the present invention in which the iron salt 15, the reaction alkali ash and water are added and kneaded to obtain an intermediate treated ash 18. On the other hand, the remaining reaction alkaline ash is kneaded with the chelating agent 17 and water in the treatment tank 14 to obtain an intermediate treated ash 19.
[0013]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
Example 1
Shredder dust (combustible waste generated when a car is cut) is burned at high temperature in the gasification melting furnace plant shown in FIG. Various tests were conducted using “reactive alkali ash” collected from bag filter ash. Table 1 shows the chemical composition of raw ash, and Table 2 shows the results of the raw ash dissolution test according to Notification No. 13 of the Environment Agency.
[0014]
[Table 1]
Figure 0003714452
[0015]
[Table 2]
Figure 0003714452
[0016]
The first-stage bag filter collected ash was weakly acidic because slaked lime was not added, and Cd, Pb, Cu, Zn, and high concentration were concentrated. The “reacted alkali ash” contains a large amount of unreacted slaked lime, exhibits an alkalinity of pH 12, and heavy metals are hardly removed by the first-stage bag filter, so that the heavy metal concentration is very small.
From the result of this raw ash elution test, Hg, Pb, and Cd of the first-stage bag filter collected ash exceeded the landfill reference value, and Zn and Cu were also eluted at high concentrations. The elution of “reacted alkali ash” was within the reference value for landfill, although Pb was slightly dissolved.
While stirring a 10% slurry solution of the first stage bag filter collection ash, polyferric sulfate [{Fe 2 (OH) n (SO 4 ) 3-n / 2 } n ] is 7.25% per ash. (0.8% in terms of Fe), 14.5% (1.6% in terms of Fe) and 29% (3.2% in terms of Fe) are added, followed by “reactive alkali ash”, The pH value at the stable place was defined as “set pH value”. The relationship between the amount of “reactive alkali ash” added and this “set pH value” is shown in FIG.
[0017]
With respect to the addition amount of polyferric sulfate [{Fe 2 (OH) n (SO 4 ) 3 −n / 2 } n ] and “reactive alkali ash” having a set pH value in the range of pH 6 to 12, FIG. The ash treatment test was conducted by the method described above.
Table 3 shows the amount of addition in which elution cleared the landfill reference value, and Table 4 shows the test results . In all cases where the set pH value was pH 6 to 12, the elution value of the heavy metal sufficiently cleared the detection limit value or the landfill reference value. From Table 3, with respect to the amount of each polyferric sulfate [{Fe 2 (OH) n (SO 4 ) 3-n / 2 } n ], “reactive alkali ash” may be added in an amount of ± 50%. It was found that the pH can be adjusted easily because of the range of the amount of “reactive alkali ash” added.
[0018]
[Table 3]
Figure 0003714452
[0019]
[Table 4]
Figure 0003714452
[0020]
Example 2
The ferrous sulfate heptahydrate was added as an iron salt to the ash, and the test was performed in the same manner as in Example 1. Ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) 4% per ash (0.8% in terms of Fe), 8% (1.6% in terms of Fe) and 16% (3.2% in terms of Fe) were added, followed by “reactive alkali ash”, and the pH value at a stable location was taken as the set pH value. FIG. 4 shows the relationship between “reacted alkali ash” and the set pH value.
An ash treatment test was conducted in the same manner as in FIG. 3 with respect to the addition amount of ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) and “reactive alkali ash” having a set pH value in the range of pH 6-12. It was. Ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) was added so that an aqueous solution obtained by adding 2 parts by weight of water to 1 part by weight of the solution was further added so that it could be sufficiently kneaded in a wet state. . Table 5 shows the amount of addition in which elution cleared the landfill reference value, and Table 6 shows the test results .
[0021]
In all cases where the set pH value was pH 6 to 12, the elution value of the heavy metal was the detection limit value or the result of sufficiently clearing the landfill reference value was obtained. From Table 5, the amount of “reactive alkali ash” may be ± 50% with respect to the amount of each ferrous sulfate heptahydrate (FeSO 4 .7H 2 O). Therefore, it was found that pH adjustment can be easily performed.
[Table 5]
Figure 0003714452
[0022]
[Table 6]
Figure 0003714452
[0023]
Example 3
Various tests using general waste (city waste) incinerated in a stoker-type incineration plant using the first-stage bag filter collected ash and the "reactive alkali ash" from the second-stage bag filter collected ash Went. Table 7 shows the chemical composition of the raw ash, and Table 8 shows the results of the ash elution test according to Notification No. 13 of the Environment Agency.
[0024]
[Table 7]
Figure 0003714452
[0025]
[Table 8]
Figure 0003714452
[0026]
The first-stage bag filter collected ash was neutral because slaked lime was not added, and Cd, Pb, Cu, Zn were concentrated at a high concentration. The “reacted alkali ash” contained a large amount of unreacted slaked lime and exhibited an alkalinity of pH 12. The heavy metal concentration was very small because heavy metals were almost removed by the first-stage bag filter.
From the result of this raw ash elution test, Pb and Cd of the first-stage bag filter collected ash exceeded the landfill reference value, and Zn and Cu were also eluted at high concentrations. The elution of “reacted alkali ash” was within the reference value for landfill although some Pb was eluted.
While stirring the 10% slurry of the first stage bag filter ash, polyferric sulfate [{Fe 2 (OH) n (SO 4 ) 3−n / 2 } n ] is 7.25% per ash. (0.8% in terms of Fe), 14.5% (1.6% in terms of Fe) and 29% (3.2% in terms of Fe) are added, followed by “reactive alkali ash”. The pH value at a stable location was taken as the set pH value. FIG. 5 shows the relationship between “reacted alkali ash” and this set pH value.
[0027]
With respect to the addition amount of polyferric sulfate [{Fe 2 (OH) n (SO 4 ) 3 −n / 2 } n ] and “reactive alkali ash” having a set pH value in the range of pH 6 to 12, FIG. The ash treatment test was conducted by the method described above.
Table 9 shows the amount of addition in which elution cleared the landfill reference value, and Table 10 shows the test results . In all cases where the set pH value was pH 6 to 12, the elution value of the heavy metal sufficiently cleared the detection limit value or the landfill reference value. From Table 10, “reactive alkali ash” may be added in an amount of ± 50% with respect to the amount of each ferric sulfate [{Fe 2 (OH) n (SO 4 ) 3-n / 2 } n ]. It has been found that the pH can be easily adjusted due to the range of the amount of “reactive alkali ash” added.
[0028]
[Table 9]
Figure 0003714452
[0029]
[Table 10]
Figure 0003714452
[0030]
Example 4
The “reactive alkali ash” shown in Tables 1 and 2 cleared the landfill reference value, but a treatment test using a liquid chelating agent having diethyldithiocarbamic acid (C 2 H 5 ) 2 NCS 2 — as a functional group was performed. The “reactive alkali ash” was kneaded by adding 0.01 to 0.1% / ash of a liquid chelating agent. The liquid chelating agent was added after being diluted in humidified water. On the next day, the dissolution test was conducted by the Environmental Agency Notification No.13. Table 11 shows the filling fruit, and an elution inhibitory effect was observed when the liquid chelating agent was added at 0.03% / ash or more.
[0031]
[Table 11]
Figure 0003714452
[0032]
【The invention's effect】
As described above, in the conventional method, a large amount of heavy metals and a large amount of unreacted slaked lime are mixed in the dust collection ash. This treatment requires an extra pH adjuster and a large amount of chemicals. There was also an increase in landfill disposal. According to the present invention, an alkali agent as a pH adjuster is newly added by using “reactive alkali ash” of a post-stage bag filter used for exhaust gas treatment for the treatment of the dust collection ash before the series two-stage bag filter. The pH of the unreacted slaked lime can be adjusted easily by adjusting the pH of the unreacted slaked lime, making it easy to adjust the pH. We were able to provide a reduction and a reduction in landfill disposal.
[Brief description of the drawings]
FIG. 1 is a flow process diagram of a gasification and melting plant incorporating the method of the present invention.
FIG. 2 is a graph showing the relationship between the reaction alkali ash addition amount and the set pH value in the examples.
FIG. 3 is a route diagram showing a procedure of an ash treatment test.
4 is a graph showing the relationship between the amount of reaction alkali ash added in Example 2 and the set pH value. FIG.
FIG. 5 is a graph showing the relationship between the amount of reaction alkali ash added in Example 3 and the set pH value.
[Explanation of symbols]
1: Gasification furnace, 2: Swivel melting furnace, 3: Boiler, 4: Air preheater, 5: Economizer, 6: Bag filter for dust collection, 7: Slaked lime powder, 8: Bag filter for de-HCl, SO 4 , 9: Chimney, 11, 12: Ash storage tank, 13, 14: Treatment tank, 15: Iron salt, 16: Water, 17: Chelating agent, 18, 19: Intermediate treatment ash

Claims (4)

焼却飛灰及び/又は溶融飛灰を含有する排ガスを、まず前段のバグフィルタに通して飛灰を捕集し、次いで飛灰を捕集後の排ガスに消石灰を噴霧して後段のバグフィルタを通し、該排ガス中の酸性ガスを吸収除去する排ガスの処理方法において、前記前段のバグフィルタで捕集した飛灰に、該飛灰当りFe換算で0.8wt%以上の鉄塩と、アルカリ剤としての前記後段のバグフィルタによる捕集灰と、前記飛灰当り20〜30wt%の水とを添加して、pH値が6〜12になるように混練することを特徴とするバグフィルタ捕集灰の処理方法。First, exhaust ash containing incinerated fly ash and / or molten fly ash is passed through the front bag filter to collect fly ash. In the exhaust gas treatment method for absorbing and removing acidic gas in the exhaust gas, the fly ash collected by the bag filter in the previous stage is mixed with an iron salt of 0.8 wt % or more in terms of Fe per fly ash and an alkali Addition of collected ash by the latter-stage bag filter as an agent and 20-30 wt% of water per fly ash, and knead so that the pH value is 6-12. Processing method of ash collection. 焼却飛灰及び/又は溶融飛灰を含有する排ガスを、まず前段のバグフィルタに通して飛灰を捕集し、次いで飛灰を捕集後の排ガスに消石灰を噴霧して後段のバグフィルタを通し、該排ガス中の酸性ガスを吸収除去する排ガスの処理方法において、前記前段のバグフィルタで捕集した飛灰に、水を加えて10wt%のスラリー液を作成し、撹拌しながらFe換算で0.8wt%以上の鉄塩を添加し、続いてアルカリ剤としての前記後段のバグフィルタによる捕集灰を、前記スラリー液のpH値が6〜12になるように添加して混練することを特徴とするバグフィルタ捕集灰の処理方法。First, exhaust ash containing incinerated fly ash and / or molten fly ash is passed through the front bag filter to collect fly ash. In the exhaust gas treatment method for absorbing and removing acid gas in the exhaust gas, 10 wt % slurry liquid is prepared by adding water to the fly ash collected by the preceding bag filter, and in terms of Fe while stirring. Add 0.8 wt % or more of iron salt, and then add and knead the collected ash from the latter bag filter as an alkaline agent so that the pH value of the slurry is 6-12. A method for processing the collected ash of a bug filter. 請求項1又は2記載のバグフィルタ捕集灰の処理方法において、前記後段のバグフィルタによる捕集灰のアルカリ剤として用いた残部は、キレート剤と水を添加して混練することを特徴とするバグフィルタ捕集灰の処理方法。  The bag filter collection ash treatment method according to claim 1 or 2, wherein the remainder used as an alkali agent of the collection ash by the latter bag filter is kneaded by adding a chelating agent and water. Processing method of bug filter collected ash. 焼却飛灰及び/又は溶融飛灰を含有する排ガスを排出する排ガス流路と、該流路に設けた飛灰を捕集する前段のバグフィルタと、飛灰を捕集後の排ガス流路に設けた排ガス中の酸性ガスを吸収除去する消石灰を噴霧する噴霧装置と、該噴霧後の排ガスを通す後段のバグフィルタとを有する排ガス処理装置において、前記前段のバグフィルタで捕集した飛灰と、鉄塩と、アルカリ剤としての後段のバグフィルタによる捕集灰と、水とを導入して混練する混練装置を配備したことを特徴とするバグフィルタ捕集灰の処理装置。  An exhaust gas flow path for exhausting exhaust gas containing incinerated fly ash and / or molten fly ash, a pre-stage bag filter for collecting fly ash provided in the flow path, and an exhaust gas flow path after collecting fly ash In the exhaust gas treatment apparatus having a spray device for spraying slaked lime that absorbs and removes acid gas in the provided exhaust gas, and a subsequent bag filter through which the exhaust gas after spraying passes, fly ash collected by the previous bag filter; A bag filter collecting ash processing apparatus, comprising: a kneading apparatus for introducing and kneading iron salt, an ascending ash collected by a subsequent bag filter as an alkali agent, and water.
JP00407699A 1999-01-11 1999-01-11 Method and apparatus for collecting ash collected from two-stage bag filter in series Expired - Lifetime JP3714452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00407699A JP3714452B2 (en) 1999-01-11 1999-01-11 Method and apparatus for collecting ash collected from two-stage bag filter in series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00407699A JP3714452B2 (en) 1999-01-11 1999-01-11 Method and apparatus for collecting ash collected from two-stage bag filter in series

Publications (2)

Publication Number Publication Date
JP2000202395A JP2000202395A (en) 2000-07-25
JP3714452B2 true JP3714452B2 (en) 2005-11-09

Family

ID=11574724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00407699A Expired - Lifetime JP3714452B2 (en) 1999-01-11 1999-01-11 Method and apparatus for collecting ash collected from two-stage bag filter in series

Country Status (1)

Country Link
JP (1) JP3714452B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753959B2 (en) * 2000-07-11 2006-03-08 株式会社荏原製作所 Combustion exhaust gas treatment equipment
JP4959977B2 (en) * 2005-12-15 2012-06-27 株式会社新菱 Cadmium recovery facility and recovery method
JP5107830B2 (en) * 2008-08-26 2012-12-26 株式会社ジコー Smoke treatment method
CN117109011A (en) * 2023-09-25 2023-11-24 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Addition amount optimization method for incinerator auxiliary agent

Also Published As

Publication number Publication date
JP2000202395A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
KR101425289B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
EP1134195A2 (en) Flue gas desulphurisation
TW200924836A (en) Method of removing mercury from flue gas after combustion
CN102302896B (en) Pottery flue gas multiple pollutant synergistic purification composite absorber and preparation method and application
CN101695621A (en) Air pollution control
DE3324133A1 (en) Process for the purification of flue gas
CN109647849A (en) The coprocessing system of waste gas generated by burning garbage and flying dust
JP2001347131A (en) Method and device for removing hazardous material in waste combustion gas
JP3714452B2 (en) Method and apparatus for collecting ash collected from two-stage bag filter in series
JP2002316119A (en) Method for treating fly ash
JP5107830B2 (en) Smoke treatment method
WO1997012662A1 (en) Waste gas and dust treatment method
JP3574928B2 (en) Method for treating fly ash from incinerators and melting furnaces
JPH0416235A (en) Purification agent for harmful substance from gas and exhaust gas and method for purification thereof and for production of said agent
JP3402535B2 (en) Treatment of alkaline fly ash
JPS6140885B2 (en)
JP2007038164A (en) Exhaust gas treating system
JP4067660B2 (en) Method for refining fumes and producing aqueous sodium chloride solution
JP3850205B2 (en) Method for preventing heavy metal elution from molten fly ash and / or burned fly ash
JP2001205047A (en) Method for treating waste gas and soot dust
JP3901986B2 (en) Dust processing method and dust processing apparatus
JP4497385B2 (en) Metal collection method
JP2695589B2 (en) Exhaust gas and dust collection method
JP3565359B2 (en) Treatment method of fly ash of city garbage incinerator
JP4597283B2 (en) By-product salt processing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term