JP3713564B2 - Metal purification equipment - Google Patents

Metal purification equipment Download PDF

Info

Publication number
JP3713564B2
JP3713564B2 JP19987795A JP19987795A JP3713564B2 JP 3713564 B2 JP3713564 B2 JP 3713564B2 JP 19987795 A JP19987795 A JP 19987795A JP 19987795 A JP19987795 A JP 19987795A JP 3713564 B2 JP3713564 B2 JP 3713564B2
Authority
JP
Japan
Prior art keywords
cooling fluid
cooling
hollow
metal
hollow rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19987795A
Other languages
Japanese (ja)
Other versions
JPH0948607A (en
Inventor
良達 大塚
進 張
孝司 富田
徹 布居
智弘 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Sharp Corp
Original Assignee
Showa Denko KK
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Sharp Corp filed Critical Showa Denko KK
Priority to JP19987795A priority Critical patent/JP3713564B2/en
Priority to DE69616686T priority patent/DE69616686T2/en
Priority to EP96112391A priority patent/EP0757013B1/en
Priority to NO19963234A priority patent/NO315268B1/en
Priority to US08/691,320 priority patent/US5736096A/en
Priority to KR1019960032492A priority patent/KR100419489B1/en
Publication of JPH0948607A publication Critical patent/JPH0948607A/en
Application granted granted Critical
Publication of JP3713564B2 publication Critical patent/JP3713564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、偏析凝固を利用し、共晶不純物を含むアルミニウム、ケイ素等の金属を精製してより高純度の金属を製造する精製装置に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
たとえばアルミニウムの精製装置として、るつぼと、垂直状中空回転軸と、中空回転軸の下端に固定状に設けられた中空回転冷却体と、中空回転軸内に配された冷却流体供給管と、回転冷却体内に配置されかつ冷却流体供給管に連通させられた中空筒状冷却流体吹出し部材とを備えており、冷却流体吹出し部材の周壁に多数の冷却流体吹出し口が形成されたものが知られている(特公平3−65415号公報参照)。上記公報には記載されていないが、このような精製装置は、上方に開口しかつ加熱手段を備えているとともにるつぼを収容する溶解炉、および中空回転軸を回転駆動する回転駆動手段を備えており、中空回転軸の上端部および冷却流体供給管の上端部がロータリジョイントに接続され、冷却流体供給管の上端部がロータリジョイントのボディに形成された冷却流体導入口に連通させられている。このロータリジョイントは、ボディに冷却流体導入口のみを有する、いわば単穴式である。中空回転軸の長さの中間部には隔壁が設けられ、冷却流体供給管は隔壁を気密状に貫通している。また、隔壁よりも下方において、中空回転軸の周壁に冷却流体送出口が形成されている。さらに、隔壁よりも下方において、中空回転軸の内周面と冷却流体供給管の外周面との間の部分が冷却流体通路となされている。そして、るつぼ内に入れられた溶融金属中に中空回転冷却体を浸漬し、回転駆動手段により中空回転軸を回転させることによって中空回転冷却体を回転させるとともに、冷却流体供給管により冷却流体吹出し部材内に冷却流体を供給し、冷却流体吹出し部材の冷却流体吹出し口から中空回転冷却体内に冷却流体を吹出しながら、中空回転冷却体の外周面により純度の高い金属を晶出させるようになっている。吹出し部材から吹出された冷却流体は、冷却流体通路を通って冷却流体送出口から大気中に放出される。
【0003】
しかしながら、このような精製装置では、溶解炉が上方に開口しているので、大気中のほこり等によりるつぼ内の溶融金属の汚染が発生し、高純度、たとえば99.9999wt%以上の純度の金属を得ることができないという問題があった。
【0004】
また、たとえばケイ素の精製装置として、加熱手段を備えた密閉状溶解炉、溶解炉内に配置された溶融ケイ素保持るつぼ、溶解炉の頂壁を貫通して配された垂直状中空回転軸、中空回転軸の下端に一体に設けられた中空回転冷却体、および中空回転軸内に配された冷却流体供給管を備えており、冷却流体供給管における中空回転冷却体内に存在する部分の周壁に多数の冷却流体吹出し口が形成されたものが知られている(特開昭63−45112号公報参照)。上記公報には記載されていないが、このような精製装置は、中空回転軸を回転駆動する回転駆動手段を備えており、中空回転軸の上端部および冷却流体供給管の上端部がロータリジョイントに接続され、冷却流体供給管の上端部がロータリジョイントのボディに形成された冷却流体導入口に連通させられている。このロータリジョイントは、ボディに冷却流体導入口のみを有する、いわば単穴式である。中空回転軸の長さの中間部には隔壁が設けられ、冷却流体供給管は隔壁を気密状に貫通している。また、隔壁よりも下方において、中空回転軸の周壁に冷却流体送出口が形成されている。さらに、隔壁よりも下方において、中空回転軸の内周面と冷却流体供給管の外周面との間の部分が冷却流体通路となされている。そして、溶解炉内をケイ素の酸化を防止するために不活性ガス雰囲気または真空雰囲気とし、るつぼ内に入れられた溶融ケイ素中に中空回転冷却体を浸漬し、回転駆動手段により中空回転軸を回転させることによって中空回転冷却体を回転させるとともに、冷却流体供給管の冷却流体吹出し口から中空回転冷却体内に冷却流体を吹出しながら、その外周面により純度の高いケイ素を晶出させるようになっている。冷却流体供給管の冷却流体吹出し口から中空回転冷却体内に吹出された冷却流体は、冷却流体通路を通って上方に流れ、冷却流体送出口から大気中に送出される。
【0005】
ところで、特開昭63−45112号公報には、溶解炉の頂壁と中空回転軸の外周面との間のシール装置について何ら開示されていないが、このような部分には、コストの面からもオイルシールとして公知のパッキンを用いることが一般的であると考えられる。しかしながら、この場合次のような問題がある。すなわち、冷却流体供給管の吹出し口から中空回転冷却体内に吹出された冷却流体は、るつぼ内の溶融ケイ素の有する熱により、200℃を越える温度まで加熱され、このように高温に加熱された冷却流体が、冷却流体通路を上方に流れる。したがって、溶解炉の頂壁と中空回転軸の外周面との間に設けられたパッキンが、高温の冷却流体の有する熱により加熱されて損傷し、シール機能を失うという問題がある。
【0006】
この発明の目的は、上記問題を一挙に解決した金属の精製装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明による金属の精製装置は、溶融金属が入れられるるつぼが溶解炉内に配置され、前記溶解炉の頂壁に垂直状中空回転軸が貫通させられ、前記中空回転軸の下端に、前記溶融金属中に浸漬される下方に向かって狭くなったテーパ筒状の中空回転冷却体が設けられており、前記中空回転冷却体を回転させるとともに、その内部に冷却流体を供給しながら、前記中空回転冷却体の外周面に金属を晶出させる金属の精製装置であって、前記冷却流体が、前記中空回転軸内における外側の部分を通って前記中空回転冷却体内に供給され、同じく内側の部分を通って排出されるようになされているものである。
【0008】
請求項2の発明による金属の精製装置は、請求項1の発明において、前記中空回転軸内に冷却流体排出管が配置され、前記中空回転軸の内周面と前記冷却流体排出管との間の部分が冷却流体通路となされ、前記冷却流体が、前記冷却流体通路を通って前記中空回転冷却体内に供給され、前記冷却流体排出管内を通って排出されるようになされているものである。
請求項3の発明による金属の精製装置は、請求項1または2の発明において、前記中空回転冷却体が、前記冷却流体通路に送り込まれた冷却流体を、前記中空回転冷却体の周壁に向かって吹出す冷却流体吹出し部材を備えているものである。
請求項4の発明による金属の精製装置は、溶融金属保持るつぼを内部に配置した溶解炉、前記溶解炉の頂壁を貫通して配された垂直状中空回転軸、前記中空回転軸を回転駆動する回転駆動手段、前記中空回転軸の外周面と前記溶解炉の頂壁における回転軸貫通部の周囲の部分との間を密封するパッキン、前記中空回転軸の下端部に、内部空間が前記中空回転軸の内部空間と連通するように設けられた下方に向かって狭くなったテーパ筒状の中空回転冷却体、および前記中空回転冷却体内に冷却流体を供給する手段を備えており、前記るつぼ内に入れられた溶融金属中に前記中空回転冷却体を浸漬し、前記中空回転冷却体を回転させるとともに、前記冷却流体供給手段により前記中空回転冷却体の内部に冷却流体を供給しながら、その外周面に金属を晶出させる金属の精製装置であって、前記中空回転軸内に下端が前記中空回転冷却体内に位置する冷却流体排出管が配置され、前記中空回転軸の下端と前記冷却流体排出管の下端との間に、周壁に多数の冷却流体吹出し口が形成された冷却流体吹出し部材が、前記中空回転冷却体内に位置するように配置され、前記中空回転軸および前記冷却流体吹出し部材の内周面と前記冷却流体排出管の外周面との間の部分が冷却流体通路となされ、前記冷却流体吹出し部材の前記冷却流体吹出し口から前記中空回転冷却体の周壁に向かって冷却流体を吹出すようになされているものである。
請求項5の発明による金属の精製装置は、請求項4の発明において、前記冷却流体通路の上端部および前記冷却流体排出管の管路が、それぞれロータリジョイントのボディに形成された冷却流体導入口および同送出口に連通させられているものである。
上記金属の精製装置によれば、ロータリジョイントの冷却流体導入口から冷却流体通路内に送り込まれた冷却流体は、中空回転軸内部における冷却流体通路を通って下方に流れ、冷却流体吹出部材の吹出し口から回転冷却体の周壁に向かって吹出され、中空回転冷却体の外周面を冷却する。ついで、るつぼ内に保持されているるつぼ内の溶融金属の有する熱により加熱された冷却流体は、冷却流体排出管の下端開口からその内部に入り、冷却流体排出管内を上方に流れ、ロータリジョイントの冷却流体送出口を通って外部に送出される。したがって、中空回転軸の外周面と頂壁における回転軸貫通部の周囲の部分との間に設けられたパッキンは、高温に加熱された冷却流体の有する熱の影響を受けない。
【0009】
請求項6の発明による金属の精製装置は、請求項4または5の発明において、前記冷却流体吹出し部材が黒鉛またはセラミックスで形成されており、前記冷却流体排出管の下端部が前記冷却流体吹出し部材の底壁に形成された貫通穴内に嵌め入れられているものである。この場合、冷却流体排出管の下端部の外周面と冷却流体吹出し部材の底壁に形成された貫通穴の内周面との間にシールを介在させることなく、冷却流体排出管を隔壁の貫通穴内に回転自在にかつ気密状に嵌め入れることができる。したがって、部品点数が少なくなる。
【0010】
請求項7の発明による金属の精製装置は、溶融金属保持るつぼを内部に配置した溶解炉、前記溶解炉の頂壁を貫通して配された垂直状中空回転軸、前記中空回転軸を回転駆動する回転駆動手段、前記中空回転軸の外周面と前記溶解炉の頂壁における回転軸貫通部の周囲の部分との間を密封するパッキン、前記中空回転軸の下端部に、内部空間が前記中空回転軸の内部空間と連通するように設けられた中空回転冷却体、および前記中空回転冷却体内に冷却流体を供給する手段を備えており、前記るつぼ内に入れられた溶融金属中に前記中空回転冷却体を浸漬し、前記中空回転冷却体を回転させるとともに、前記冷却流体供給手段により前記中空回転冷却体の内部に冷却流体を供給しながら、その外周面に金属を晶出させる金属の精製装置であって、
前記中空回転軸の長さの中間部に隔壁が設けられ、前記中空回転軸内における前記隔壁よりも上方の部分に、下端部が前記隔壁に形成された貫通穴内に回転自在に嵌め入れられた冷却流体排出管が配置され、前記中空回転軸における隔壁よりも上方の部分の内周面と前記冷却流体排出管の外周面との間の部分が上部冷却流体通路となされ、前記上部冷却通路が前記冷却流体供給手段に連通させられ、
前記中空回転軸内における前記隔壁よりも下方の部分に、下部が前記中空回転冷却体内に位置する冷却流体吹出し部材が配置され、前記冷却流体吹出し部材が内外2重管よりなり、かつ内外両管の間の部分が下部冷却流体通路となされ、前記下部冷却流体通路の下端が、前記内管の下端と前記外管の下端とを連結する閉鎖壁により閉鎖され、前記冷却流体吹出し部材の前記外管に冷却流体吹出し口が形成され、
前記上部冷却流体通路と前記下部冷却流体通路とが、前記隔壁に形成された貫通穴を介して連通させられ、前記冷却流体吹出し部材の前記内管が前記冷却流体排出管に連通させられているものである。
【0011】
請求項8の発明による金属の精製装置は、請求項7の発明において、前記冷却流体吹出し部材の外管における前記中空回転冷却体内に位置する部分に拡開部が設けられているものである。この場合、吹出し口と回転冷却体の周壁との距離が小さくなり、回転冷却体の外周面の冷却効率が向上する。
請求項9の発明による金属の精製装置は、請求項7または8の発明において、前記上部冷却流体通路の上端部および前記冷却流体排出管の管路が、それぞれロ ータリジョイントのボディに形成された冷却流体導入口および同送出口に連通させられているものである。
記金属の精製装置によれば、ロータリジョイントの冷却流体導入口から上部冷却流体通路内に送り込まれた冷却流体は、上部冷却流体通路を通って下方に流れ、さらに隔壁に形成された貫通穴を通って下部冷却流体通路内に入り、さらにこの下部冷却流体通路内を下方に流れ、冷却流体吹出し部材の外管の吹出し口から回転冷却体の周壁に向かって吹出され、中空回転冷却体の外周面を冷却する。ついで、るつぼ内に保持されているるつぼ内の溶融金属の有する熱により加熱された冷却流体は、冷却流体吹出し部材の内管内に入り、この中を上方に流れ、さらに冷却流体排出管に流入してこの管内を上方に流れ、ロータリジョイントの冷却流体送出口を通って外部に送出される。したがって、中空回転軸の外周面と頂壁における回転軸貫通部の周囲の部分との間に設けられたパッキンは、高温に加熱された冷却流体の有する熱の影響を受けない。
【0012】
請求項10の発明による金属の精製装置は、請求項7〜9のうちのいずれかの発明において、前記冷却流体排出管の下端部が黒鉛またはセラミックス製リングを介して前記中空回転軸の隔壁に形成された貫通穴内に嵌め入れられているものである。この場合、黒鉛またはセラミックス製リングが、冷却流体排出管の下端部の外周面と中空回転軸の隔壁に形成された貫通穴の内周面との間のシールの働きをし、冷却流体排出管を隔壁の貫通穴内に回転自在にかつ気密状に嵌め入れることができる。したがって、別個にシールを必要とせず、部品点数が少なくなる。
【0013】
請求項11の発明による金属の精製装置は、請求項5または9の発明において、前記ロータリジョイントが、上端が閉鎖されるとともに下端が開口した筒状ボディと、前記ボディ内に回転自在に支持された回転管とを備えており、前記回転管の上端が前記ボディの上端閉鎖壁の下面よりも下方に位置するとともに、同下端が前記ボディよりも下方に突出しており、前記ボディの周壁における前記回転管よりも上方の部分に前記冷却流体導入口が形成され、前記ボディの上端閉鎖壁に冷却流体送出口が形成され、前記中空回転軸の上端部が前記回転管の下端部に接続されるとともに、前記冷却流体排出管の上端部が前記冷却流体送出口に接続されているものである
【0014】
請求項12の発明による金属の精製方法は、請求項4〜6のうちのいずれかに記載された装置を用いた金属の精製方法であって、
るつぼ内に入れられた溶融粗製金属内に中空回転冷却体を浸漬し、冷却流体を冷却流体通路に送り込んで冷却流体吹出し部材の吹出し口から中空回転冷却体の周壁に向かって冷却流体を吹出しながら、回転駆動手段により中空回転軸を介して中空回転冷却体を回転させ、これにより中空回転冷却体の外周面に高純度の精製金属を晶出させ、中空回転冷却体の周壁に向かって吹出されてその外周面を冷却した冷却流体を、冷却流体排出管を通して排出することを特徴とするものである。
請求項13の発明による金属の精製方法は、請求項7〜11のうちのいずれかに記載された装置を用いた金属の精製方法であって、
るつぼ内に入れられた溶融粗製金属内に中空回転冷却体を浸漬し、冷却流体を、上部冷却流体通路および下部冷却流体通路に送り込んで冷却流体吹出し部材の外管の吹出し口から中空回転冷却体の周壁に向かって冷却流体を吹出しながら、回転駆動手段により中空回転軸を介して中空回転冷却体を回転させ、これにより中空回転冷却体の外周面に高純度の精製金属を晶出させ、中空回転冷却体の周壁に向かって吹出されてその外周面を冷却した冷却流体を、冷却流体吹出し部材の内管および冷却流体排出管を通して排出することを特徴とするものである。
請求項14の発明による金属は、請求項12または13記載の方法により精製されたものである。
【0015】
【発明の実施形態】
以下、この発明の実施形態を、図面を参照して説明する。なお、この実施形態は、この発明による精製装置を、粗製ケイ素を精製して純度が99.9wt%以上の高純度ケイ素を製造する方法に適用したものである。
【0016】
実施形態1
この実施形態は図1〜図3に示すものである。図1はこの発明による金属の精製装置の全体構成を示し、図2および図3はその要部の構成を示す。
【0017】
図1〜図3において、金属の精製装置は、密閉状溶解炉(1)と、溶解炉(1)内に配置された溶融ケイ素保持るつぼ(2)と、溶解炉(1)の頂壁(1a)を貫通して配された垂直状中空回転軸(3)と、中空回転軸(3)の下端に、固定状にかつ内部空間が中空回転軸(3)の内部空間と連通するように設けられた中空回転冷却体(4)とを備えている。
【0018】
溶解炉(1)は耐火物により形成されている。溶解炉(1)の周壁(1b)内周面に沿ってヒータ(5)(加熱手段)が配置されている。溶解炉(1)の頂壁(1a)の中央部には貫通穴(6)が形成されている。また、溶解炉(1)の頂壁(1a)には、窒素ガス、アルゴンガス等の不活性ガスを溶解炉(1)内に供給する不活性ガス供給管(7)、および溶解炉(1)内を真空引きする真空排気管(50)が、それぞれ貫通状に取付けられている。
【0019】
溶融ケイ素保持るつぼ(2)は、黒鉛またはアルミナのようなケイ素との反応が少なく、溶融ケイ素の汚染が少ない物質により形成されている。るつぼ(2)は、溶解炉(1)の底壁(1c)上に置かれた耐火物からなる載置台(8)上に載せられている。
【0020】
中空回転軸(3)は、たとえば黒鉛により形成されている。中空回転軸(3)は、頂壁(1a)に形成された貫通穴(6)に通されている。中空回転軸(3)の外周面と、貫通穴(6)の内周面との間は、たとえばオイルシールとして用いられる合成ゴムを用いたパッキン(9)により密封されている。中空回転軸(3)の下端部に下拡がり状のテーパ部(3a)が形成され、テーパ部(3a)よりも下方の部分におねじ部(3b)が形成されている。また、中空回転軸(3)の下端部の内周面にめねじ部(3c)が形成されている。このような中空回転軸(3)は、溶解炉(1)の上方において、固定部(10)に対して上下動自在に設けられた保持部材(11)に、図示しない軸受を介して回転自在に支持されている。そして、中空回転軸(3)は回転駆動手段(12)により回転させられるようになっている。回転駆動手段(12)は、保持部材(11)に上向きに取付けられた電動機(13)と、電動機(13)の軸(13a)の周囲に固定されたベルト車(14)と、中空回転軸(3)の周囲に固定されたベルト車(15)と、両ベルト車(14)(15)に掛け渡されたベルト(16)とよりなる。
【0021】
中空回転冷却体(4)は、有底でかつ下方に向かって狭くなったテーパ筒状である。中空回転冷却体(4)は、熱伝導性が良く、しかも溶融ケイ素と反応しないでこれを汚染することのないような材料、たとえばチッ化ケイ素や黒鉛等により形成されている。中空回転冷却体(4)の内周面の上部に段部を介して大径部が形成されており、この大径部にめねじ部(4a)が形成されている。そして、中空回転軸(3)のおねじ部(3b)が、中空回転冷却体(4)のめねじ部(4a)にねじ嵌められることにより、中空回転冷却体(4)が中空回転軸(3)に固定されている。なお、中空回転冷却体(4)の上端部の外径は、中空回転軸(3)のテーパ部(3a)の大端径と等しくなっており、中空回転軸(3)の下端面が中空回転冷却体(4)の段部上面に接しているとともに、中空回転冷却体(4)の上端面が中空回転軸(3)のテーパ部(3a)の下端面に接している。
【0022】
中空回転軸(3)の下端に、有底筒状でかつ下方に向かって狭くなったテーパ状である冷却流体吹出し部材(17)が、中空回転冷却体(4)内に位置するように取付けられている。冷却流体吹出し部材(17)の周壁外周面の上端部にはおねじ部(17a)が形成されており、このおねじ部(17a)を中空回転軸(3)のめねじ部(3c)にねじ嵌めることにより、吹出し部材(17)が中空回転軸(3)に取付けられている。冷却流体吹出し部材(17)は黒鉛で形成されており、その周壁(17b)に多数の冷却流体吹出し口(18)が形成されているとともに、底壁(17c)の中央部に貫通穴(19)が形成されている。
【0023】
中空回転軸(3)内に、下端が冷却流体吹出し部材(17)内に位置するとともに、上端が中空回転軸(3)の上端よりも上方に突出した冷却流体排出管(21)が配置されている。中空回転軸(3)の内周面と冷却流体排出管(21)の外周面との間の部分、および冷却流体吹出し部材(17)の内周面と冷却流体排出管(21)の外周面との間の部分がそれぞれ冷却流体通路(22)となされている。
【0024】
中空回転軸(3)の上端部および冷却流体排出管(21)の上端部はロータリジョイント(23)に接続されており、冷却流体通路(22)の上端部および冷却流体排出管(21)の管路は、それぞれロータリジョイント(23)のボディ(24)に形成された冷却流体導入口(25)および同送出口(26)に連通させられている。ロータリジョイント(23)は、上端が閉鎖されるとともに下端が開口した筒状ボディ(24)と、ボディ(24)内に軸受(27)により回転自在に支持された、たとえばステンレス鋼よりなる垂直状回転管(28)とを備えている。なお、図示は省略したが、ボディ(24)の内周面と回転管(28)の外周面との間は、たとえばベローズを用いたメカニカルシールのような運動面密封シール装置により密封されている。回転管(28)の上端はボディ(24)の上端閉鎖壁(24a)の下面よりも下方に位置するとともに、同下端がボディ(24)よりも下方に突出しており、回転管(28)のボディ(24)よりも下方に突出した部分の外周面におねじ部が形成され、このおねじ部が中空回転軸(3)の上端部内周面に形成されためねじ部にねじ嵌められることにより、中空回転軸(3)の上端部が回転管(28)の下端部に接続されている。ボディ(24)の周壁(24b)における回転管(28)よりも上方の部分に冷却流体導入口(25)が形成され、ボディ(24)の上端閉鎖壁(24a)に冷却流体送出口(26)が形成されている。このロータリジョイント(23)は、ボディ(24)に冷却流体導入口(25)と冷却流体送出口(26)とを有する、いわば複穴式である。冷却流体排出管(21)の上端部は冷却流体送出口(26)に差し込まれて固定されている。ロータリジョイント(23)のボディ(24)の上端には、冷却流体送出口(26)に連通するエルボ(29)が取付けられている。図示は省略したが、ロータリジョイント(23)のボディ(24)の冷却流体導入口(25)に冷却流体供給管が接続され、エルボ(29)に冷却流体排出管(21)が接続されている。
【0025】
このような精製装置を用いてのケイ素の精製は、次のようにして行われる。
【0026】
予めるつぼ(2)内に、精製すべき粗製ケイ素を入れておき、真空排気管(50)により溶解炉(1)内を真空引きした後、不活性ガス供給管(7)から溶解炉(1)内に不活性ガスを供給して溶解炉(1)内を不活性ガス雰囲気とする。こうすると、溶解炉(1)内を完璧な不活性ガス雰囲気とすることができる。そして、ヒータ(5)により粗製ケイ素を加熱し溶解させて溶融粗製ケイ素(S)とし、これを凝固温度を越えた温度に加熱保持しておく。溶融粗製ケイ素(S)は不活性ガス雰囲気下におかれる。溶融粗製ケイ素(S)は、別途溶解してからるつぼ(2)内に入れてもよい。
【0027】
ついで、冷却流体供給管からロータリジョイント(23)のボディ(24)に形成された冷却流体導入口(25)、およびボディ(24)内を経て中空回転軸(3)内の冷却流体通路(22)に冷却流体を送り込み、冷却流体吹出し部材(17)の吹出し口(18)から中空回転冷却体(4)の周壁に向かって冷却流体を吹出しながら、回転駆動手段(12)により中空回転軸(3)を介して中空回転冷却体(4)を回転させ、偏析凝固の原理により中空回転冷却体(4)の外周面に高純度の精製ケイ素を晶出させる。このとき、冷却流体吹出し部材(17)も中空回転軸(3)とともに、冷却流体排出管(21)に対して回転する。中空回転冷却体(4)の回転により、凝固界面から液相中に排出された不純物を凝固界面から遠ざける液相全体に分散させながら凝固を進めることができる。したがって、平衡偏析係数に近い値の偏析係数で支配されて凝固が進行し、中空回転冷却体(4)の外周面に、短時間に高純度の精製ケイ素が晶出する。なお、中空回転冷却体(4)の回転時の周速は、500〜6000mm/sec、特に500〜4000mm/secであることが好ましい。下限値未満であれば、精製の効果が少なく、上限値を越えるとケイ素の固相が中空回転冷却体(4)の外周面に付着しにくくなるおそれがあるからである。
【0028】
中空回転冷却体(4)の周壁に向かって吹出されてその外周面を冷却し、るつぼ(2)内に保持されている溶融粗製ケイ素(S)の有する熱により加熱された冷却流体は、冷却流体排出管(21)の下端開口からその内部に入り、冷却流体排出管(21)内を上方に流れ、ロータリジョイント(23)のボディ(24)の冷却流体送出口(26)を通り、エルボ(29)を経て冷却流体送出管に送出される。したがって、中空回転軸(3)の外周面と溶解炉(1)の頂壁(1a)における貫通穴(6)の周囲の部分との間に設けられたパッキン(9)は、高温に加熱された冷却流体の有する熱の影響を受けない。
【0029】
実施形態2
この実施形態は図4〜図6に示すものである。
【0030】
この場合、中空回転軸(31)は、溶解炉(1)の頂壁(1a)の貫通穴(6)に上方から通されてその下端部が溶解炉(1)内に位置する上部構成部材(32)と、上部構成部材(32)の下端に固定された下部構成部材(33)とよりなる。上部構成部材(32)はたとえばステンレス鋼等の金属により形成されている。下部構成部材(33)はたとえば黒鉛により形成されている。
【0031】
上部構成部材(32)の下端開口は閉鎖壁(34)で閉鎖されている。閉鎖壁(34)の中央部には貫通穴(35)が形成され、貫通穴(35)内に黒鉛製リング(36)が嵌め止められている。また、閉鎖壁(34)における貫通穴(35)の周囲の部分には、複数の円弧状長穴(37)が同一円周上にくるように形成されている。上部構成部材(32)の下端には外向きフランジ(38)が一体に形成されている。なお、上部構成部材(32)の上端部は、実施形態1の中空回転軸(3)の上端部と同様にしてロータリジョイント(23)の回転管(28)の下端部に接続されている。
【0032】
下部構成部材(33)の上端には、たとえばステンレス鋼等の金属からなる閉鎖部材(39)が嵌め止められている。閉鎖部材(39)の中央部に、黒鉛製リング(36)の内径よりも大径の貫通穴(40)が形成され、貫通穴(40)の周囲の部分に、上部構成部材(32)の円弧状長穴(37)と通じる複数の円弧状長穴(41)が同一円周上にくるように形成されている。また、閉鎖部材(39)の周縁部には外向きフランジ(42)が一体に形成されており、この外向きフランジ(42)と上部構成部材(32)の外向きフランジ(38)とが図示しないボルト、ナット等の緊結手段により連結されることによって、上部構成部材(32)の下端に下部構成部材(33)が固定されている。そして、閉鎖壁(34)と閉鎖部材(39)とが、中空回転軸(31)の中間部の隔壁となっており、これらに形成された円弧状長穴(37)(41)が隔壁の貫通穴となっている。なお、下部構成部材(33)の下端部には、実施形態1の中空回転軸(3)の下端部と同様に、下拡がり状のテーパ部(33a)が形成され、テーパ部(33a)よりも下方の部分におねじ部(33b)が形成されている。そして、下部構成部材(33)のおねじ部(33b)が、中空回転冷却体(4)のめねじ部(4a)にねじ嵌められることにより、中空回転冷却体(4)が下部構成部材(33)に固定されている。
【0033】
中空回転軸(31)内に配置された冷却流体排出管(43)は実施形態1の冷却流体排出管(21)よりも短く、その上端部はロータリージョイント(23)の冷却流体送出口(26)に接続され、下端部は黒鉛製リング(36)に回転自在に通されて下部構成部材(33)内の上端部に至っている。そして、上部構成部材(32)の内周面と冷却流体排出管(43)の外周面との間の部分が上部冷却流体通路(44)となされており、上部冷却流体通路(44)の上端部および冷却流体排出管(43)の管路が、それぞれロータリジョイント(23)のボディ(24)に形成された冷却流体導入口(25)および同送出口(26)に連通させられている。
【0034】
下部構成部材(33)内に、下部が中空回転冷却体(4)内に位置する冷却流体吹出し部材(45)が配置されている。冷却流体吹出し部材(45)は内外2重管よりなり、かつ内外両管(46)(48)の間の部分が下部冷却流体通路(49)となされている。下部冷却流体通路(49)の下端は、内管(46)の下端と外管(48)の下端とを連結する閉鎖壁(50)により閉鎖されている。冷却流体吹出し部材(45)の外管(48)における中空回転冷却体(4)内に位置する部分に下狭まりテーパ状の拡開部(48a)が形成され、拡開部(48a)に多数の冷却流体吹出し口(51)が形成されている。冷却流体吹出し部材(45)の上端部は、下部構成部材(33)上端の閉鎖部材(39)に固定され、上部冷却流体通路(44)と下部冷却流体通路(49)とが、閉鎖壁(34)および閉鎖部材(39)に形成された円弧状長穴(37)(41)を介して連通させられている。また、冷却流体吹出し部材(45)の内管(46)の上端部は冷却流体排出管(43)の下端部を囲繞しており、内管(46)が冷却流体排出管(43)に連通させられている。
【0035】
その他の構成は実施形態1と同じであり、同一部分には同一符号を付す。
【0036】
このような精製装置を用いてのケイ素の精製は、次のようにして行われる。
【0037】
上記実施形態1と同様にして、ヒータ(5)によりるつぼ(2)内の溶融粗製ケイ素(S)を凝固温度を越えた温度に加熱保持しておく。
【0038】
ついで、冷却流体供給管からロータリジョイント(23)のボディ(24)に形成された冷却流体導入口(25)、およびボディ(24)内を経て中空回転軸(31)の上部構成部材(32)内の上部冷却流体通路(44)に冷却流体を送り込む。この冷却流体は、上部冷却流体通路(44)を通って下方に流れ、閉鎖壁(34)および閉鎖部材(39)に形成された円弧状長穴(37)(41)を通って冷却流体吹出し部材(45)内の下部冷却流体通路(49)内に入り、さらにこの下部冷却流体通路(49)内を下方に流れ、冷却流体吹出し部材(45)の外管(48)における拡開部(48a)の吹出し口(51)から中空回転冷却体(4)の周壁に向かって吹出される。そして、上記実施形態1と同様にして、中空回転冷却体(4)の外周面に高純度の精製ケイ素を晶出させる。
【0039】
中空回転冷却体(4)の周壁に向かって吹出されてその外周面を冷却し、るつぼ(2)内に保持されている溶融粗製ケイ素(S)の有する熱により加熱された冷却流体は、冷却流体吹出し部材(45)の内管(46)の下端開口からその内部に入り、この中を上方に流れ、さらに冷却流体排出管(43)に流入してこの管(43)内を上方に流れ、ロータリジョイント(23)のボディ(24)の冷却流体送出口(26)を通り、エルボ(29)を経て冷却流体送出管に送出される。したがって、中空回転軸(3)の外周面と溶解炉(1)の頂壁(1a)における貫通穴(6)の周囲の部分との間を密封するパッキン(9)は、高温に加熱された冷却流体の有する熱の影響を受けない。
【0040】
上記2つの実施形態においては、溶解炉(1)内が不活性ガス雰囲気となされているが、これに代えて、真空雰囲気としてもよい。この場合、溶解炉(1)の蓋に、不活性ガス供給管(7)の代わりに真空引き管を貫通状に固定しておき、適当な真空ポンプにより溶解炉(1)内を真空引きして真空雰囲気とする。
【0041】
また、上記2つの実施形態においては、この発明による精製装置が、ケイ素の精製に適用されているが、たとえば99.9999wt%の純度を有する超高純度アルミニウムを製造するためのアルミニウムの精製に適用することもできる。
【0042】
【発明の効果】
この発明の金属の精製装置によれば、上述のように、中空回転軸の外周面と溶解炉の頂壁における回転軸貫通部の周囲の部分との間を密封するパッキンは、高温に加熱された冷却流体の有する熱の影響を受けないので、パッキンの性能が長期間にわたって維持される。また、溶解炉が密閉状であるので、るつぼ内の溶融金属の大気中のほこり等による汚染が防止される。
【図面の簡単な説明】
【図1】この発明による装置の実施形態1の全体構成を示す一部を切欠いた正面図である。
【図2】同じく下部の構成を示す拡大垂直断面図である。
【図3】同じく上部の構成を示す拡大垂直断面図である。
【図4】この発明による装置の実施形態2の下部の構成を示す拡大垂直断面図である。
【図5】図4の部分拡大図である。
【図6】図5のVI−VI線断面図である。
【符号の説明】
(1) 密閉状溶解炉
(1a) 頂壁
(2) 溶融金属保持るつぼ
(3) 中空回転軸
(4) 中空回転冷却体
(5) ヒータ(加熱手段)
(9) パッキン
(12) 回転駆動手段
(17) 冷却流体吹出し部材
(18) 冷却流体吹出し口
(19) 貫通穴
(21) 冷却流体排出管
(22) 冷却流体通路
(23) ロータリジョイント
(24) ボディ
(25) 冷却流体導入口
(26) 冷却流体送出口
(31) 中空回転軸
(32) 上部構成部材
(33) 下部構成部材
(34) 閉鎖壁
(35) 貫通穴
(37) 円弧状長穴
(39) 閉鎖部材
(41) 円弧状長穴
(43) 冷却流体排出管
(44) 上部冷却流体通路
(45) 冷却流体吹出し部材
(46) 内管
(48) 外管
(49) 下部冷却流体通路
(50) 閉鎖壁
(51) 冷却流体吹出し口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification apparatus that uses segregation solidification to purify a metal such as aluminum or silicon containing eutectic impurities to produce a higher purity metal.
[0002]
[Prior art and problems to be solved by the invention]
For example, as an aluminum refining device, a crucible, a vertical hollow rotating shaft, a hollow rotating cooling body fixed to the lower end of the hollow rotating shaft, a cooling fluid supply pipe arranged in the hollow rotating shaft, and a rotation A hollow cylindrical cooling fluid blowing member disposed in a cooling body and communicated with a cooling fluid supply pipe is provided, and a plurality of cooling fluid blowing ports are formed on the peripheral wall of the cooling fluid blowing member. (See Japanese Patent Publication No. 3-65415). Although not described in the above publication, such a refining apparatus includes a melting furnace that opens upward and includes a heating means and accommodates a crucible, and a rotation driving means that rotationally drives a hollow rotating shaft. The upper end portion of the hollow rotary shaft and the upper end portion of the cooling fluid supply pipe are connected to the rotary joint, and the upper end portion of the cooling fluid supply pipe is communicated with a cooling fluid inlet formed in the body of the rotary joint. This rotary joint is a so-called single hole type having only a cooling fluid inlet in the body. A partition wall is provided at an intermediate portion of the length of the hollow rotary shaft, and the cooling fluid supply pipe penetrates the partition wall in an airtight manner. Further, a cooling fluid delivery port is formed in the peripheral wall of the hollow rotary shaft below the partition wall. Further, below the partition wall, a portion between the inner peripheral surface of the hollow rotary shaft and the outer peripheral surface of the cooling fluid supply pipe is a cooling fluid passage. Then, the hollow rotary cooling body is immersed in the molten metal placed in the crucible, and the hollow rotary cooling body is rotated by rotating the hollow rotary shaft by the rotation driving means, and the cooling fluid supply pipe is used to rotate the cooling fluid blowing member. A cooling fluid is supplied to the inside, and a high-purity metal is crystallized on the outer peripheral surface of the hollow rotating cooling body while blowing the cooling fluid into the hollow rotating cooling body from the cooling fluid outlet of the cooling fluid blowing member. . The cooling fluid blown out from the blowing member is discharged into the atmosphere from the cooling fluid delivery port through the cooling fluid passage.
[0003]
However, in such a refining apparatus, since the melting furnace is opened upward, contamination of the molten metal in the crucible occurs due to dust in the atmosphere, and high purity, for example, a metal having a purity of 99.9999 wt% or more. There was a problem that could not get.
[0004]
Further, for example, as a silicon refining device, a closed melting furnace equipped with a heating means, a molten silicon holding crucible arranged in the melting furnace, a vertical hollow rotating shaft arranged through the top wall of the melting furnace, a hollow A hollow rotary cooling body integrally provided at the lower end of the rotating shaft, and a cooling fluid supply pipe arranged in the hollow rotating shaft, and a large number of peripheral walls of the portion existing in the hollow rotary cooling body in the cooling fluid supply pipe There is known one in which a cooling fluid outlet is formed (see JP-A-63-45112). Although not described in the above publication, such a refining device is provided with a rotational drive means for rotationally driving the hollow rotary shaft, and the upper end portion of the hollow rotary shaft and the upper end portion of the cooling fluid supply pipe are connected to the rotary joint. The upper end of the cooling fluid supply pipe is connected to a cooling fluid inlet formed in the body of the rotary joint. This rotary joint is a so-called single hole type having only a cooling fluid inlet in the body. A partition wall is provided at an intermediate portion of the length of the hollow rotary shaft, and the cooling fluid supply pipe penetrates the partition wall in an airtight manner. Further, a cooling fluid delivery port is formed in the peripheral wall of the hollow rotary shaft below the partition wall. Further, below the partition wall, a portion between the inner peripheral surface of the hollow rotary shaft and the outer peripheral surface of the cooling fluid supply pipe is a cooling fluid passage. Then, in order to prevent oxidation of silicon in the melting furnace, an inert gas atmosphere or a vacuum atmosphere is used, and a hollow rotating cooling body is immersed in molten silicon placed in a crucible, and the hollow rotating shaft is rotated by a rotation driving means. And rotating the hollow rotary cooling body, and blowing out the cooling fluid from the cooling fluid outlet of the cooling fluid supply pipe into the hollow rotary cooling body, and crystallizing high-purity silicon on the outer peripheral surface thereof. . The cooling fluid blown from the cooling fluid outlet of the cooling fluid supply pipe into the hollow rotating cooling body flows upward through the cooling fluid passage and is sent out to the atmosphere from the cooling fluid outlet.
[0005]
Incidentally, Japanese Patent Laid-Open No. 63-45112 does not disclose any sealing device between the top wall of the melting furnace and the outer peripheral surface of the hollow rotating shaft. It is considered that a known packing is generally used as the oil seal. However, there are the following problems in this case. That is, the cooling fluid blown out from the outlet of the cooling fluid supply pipe into the hollow rotary cooling body is heated to a temperature exceeding 200 ° C. by the heat of the molten silicon in the crucible, and thus cooled to a high temperature. Fluid flows upward in the cooling fluid passage. Therefore, there is a problem that the packing provided between the top wall of the melting furnace and the outer peripheral surface of the hollow rotary shaft is damaged by being heated by the heat of the high-temperature cooling fluid and loses the sealing function.
[0006]
An object of the present invention is to provide a metal refining apparatus that solves the above problems all at once.
[0007]
[Means for Solving the Problems]
  In the metal refining device according to the first aspect of the present invention, a crucible in which molten metal is placed is disposed in a melting furnace, a vertical hollow rotating shaft is passed through the top wall of the melting furnace, and a lower end of the hollow rotating shaft is provided. Dipped in the molten metalTapered cylindrical shape that narrows downwardA metal refining apparatus is provided with a hollow rotary cooling body, and rotates the hollow rotary cooling body and crystallizes the metal on the outer peripheral surface of the hollow rotary cooling body while supplying a cooling fluid to the inside. Thus, the cooling fluid is supplied into the hollow rotary cooling body through the outer portion in the hollow rotary shaft, and is discharged through the inner portion.
[0008]
  According to a second aspect of the present invention, there is provided the metal refining device according to the first aspect, wherein a cooling fluid discharge pipe is disposed in the hollow rotary shaft, and an inner peripheral surface of the hollow rotary shaft and the cooling fluid discharge pipe are disposed. This portion serves as a cooling fluid passage, and the cooling fluid is supplied into the hollow rotary cooling body through the cooling fluid passage and discharged through the cooling fluid discharge pipe.
  According to a third aspect of the present invention, there is provided the metal refining device according to the first or second aspect, wherein the hollow rotary cooling body sends the cooling fluid fed into the cooling fluid passage toward the peripheral wall of the hollow rotary cooling body. A cooling fluid blowing member for blowing is provided.
  According to a fourth aspect of the present invention, there is provided a metal refining apparatus comprising: a melting furnace having a molten metal holding crucible disposed therein; a vertical hollow rotating shaft disposed through the top wall of the melting furnace; and the hollow rotating shaft being driven to rotate. A rotary driving means, a packing that seals between an outer peripheral surface of the hollow rotary shaft and a portion around the rotary shaft penetrating portion in the top wall of the melting furnace, and an inner space is formed at the lower end of the hollow rotary shaft Provided to communicate with the internal space of the rotating shaftTapered cylindrical shape that narrows downwardA hollow rotary cooling body and a means for supplying a cooling fluid into the hollow rotary cooling body are provided. The hollow rotary cooling body is immersed in a molten metal placed in the crucible, and the hollow rotary cooling body is rotated. And a metal refining device for crystallizing metal on the outer peripheral surface of the hollow rotary cooling body while supplying the cooling fluid to the inside of the hollow rotary cooling body by the cooling fluid supply means. A cooling fluid discharge member in which a cooling fluid discharge pipe located in a hollow rotary cooling body is disposed, and a number of cooling fluid discharge ports are formed on a peripheral wall between a lower end of the hollow rotation shaft and a lower end of the cooling fluid discharge pipe Is disposed in the hollow rotary cooling body, and the portion between the hollow rotary shaft and the inner peripheral surface of the cooling fluid outlet member and the outer peripheral surface of the cooling fluid discharge pipe is a cooling fluid passage.The cooling fluid is blown out from the cooling fluid blowing port of the cooling fluid blowing member toward the peripheral wall of the hollow rotating cooling body.It has been made.
  According to a fifth aspect of the present invention, there is provided the metal purifying apparatus according to the fourth aspect, wherein the cooling fluid inlet port is formed such that the upper end portion of the cooling fluid passage and the conduit of the cooling fluid discharge pipe are respectively formed in the body of the rotary joint. And communicated with the outlet.
  According to the metal refining device, the cooling fluid fed into the cooling fluid passage from the cooling fluid inlet of the rotary joint flows downward through the cooling fluid passage inside the hollow rotary shaft, and is blown out by the cooling fluid blowing member. It blows out toward the peripheral wall of a rotary cooling body from an opening | mouth, and cools the outer peripheral surface of a hollow rotary cooling body. Next, the cooling fluid heated by the heat of the molten metal in the crucible held in the crucible enters the inside through the lower end opening of the cooling fluid discharge pipe, flows upward in the cooling fluid discharge pipe, and flows into the rotary joint. It is sent out through the cooling fluid delivery port. Therefore, the packing provided between the outer peripheral surface of the hollow rotary shaft and the portion around the rotary shaft penetrating portion on the top wall is not affected by the heat of the cooling fluid heated to a high temperature.
[0009]
According to a sixth aspect of the present invention, there is provided the metal purification apparatus according to the fourth or fifth aspect, wherein the cooling fluid blowing member is formed of graphite or ceramics, and a lower end portion of the cooling fluid discharge pipe is the cooling fluid blowing member. It is inserted in the through hole formed in the bottom wall of.In this case, the cooling fluid discharge pipe penetrates the partition wall without interposing a seal between the outer peripheral surface of the lower end portion of the cooling fluid discharge pipe and the inner peripheral surface of the through hole formed in the bottom wall of the cooling fluid blowing member. It can be fitted in the hole in a rotatable and airtight manner. Therefore, the number of parts is reduced.
[0010]
  According to a seventh aspect of the present invention, there is provided a metal refining apparatus comprising a melting furnace having a molten metal holding crucible disposed therein, a vertical hollow rotating shaft disposed through the top wall of the melting furnace, and a rotary drive of the hollow rotating shaft. A rotary driving means, a packing that seals between an outer peripheral surface of the hollow rotary shaft and a portion around the rotary shaft penetrating portion in the top wall of the melting furnace, and an inner space is formed at the lower end of the hollow rotary shaft A hollow rotary cooling body provided so as to communicate with the internal space of the rotary shaft, and means for supplying a cooling fluid into the hollow rotary cooling body, the hollow rotary cooler being inserted into the molten metal placed in the crucible A metal refining apparatus that immerses a cooling body, rotates the hollow rotary cooling body, and crystallizes metal on the outer peripheral surface of the hollow rotary cooling body while supplying the cooling fluid to the inside of the hollow rotary cooling body. So ,
  A partition wall is provided at an intermediate portion of the length of the hollow rotary shaft, and a lower end portion is rotatably fitted in a through hole formed in the partition wall at a portion above the partition wall in the hollow rotary shaft. A cooling fluid discharge pipe is disposed, and a portion between an inner peripheral surface of a portion above the partition wall in the hollow rotary shaft and an outer peripheral surface of the cooling fluid discharge pipe is an upper cooling fluid passage,The upper cooling passage is in communication with the cooling fluid supply means;
  A cooling fluid blowing member having a lower portion positioned in the hollow rotating cooling body is disposed in a portion below the partition in the hollow rotating shaft, the cooling fluid blowing member is composed of an inner and outer double pipe, and both inner and outer pipes A lower cooling fluid passage is formed between the lower cooling fluid passage, and a lower end of the lower cooling fluid passage is closed by a closing wall connecting a lower end of the inner tube and a lower end of the outer tube, and the outer portion of the cooling fluid blowing member is A cooling fluid outlet is formed in the tube,
  The upper cooling fluid passage and the lower cooling fluid passage are communicated with each other through a through hole formed in the partition wall, and the inner pipe of the cooling fluid blowing member is communicated with the cooling fluid discharge pipe. Is.
[0011]
According to an eighth aspect of the present invention, there is provided the metal refining device according to the seventh aspect of the present invention, wherein an expansion portion is provided in a portion of the outer pipe of the cooling fluid blowing member located in the hollow rotating cooling body. In this case, the distance between the outlet and the peripheral wall of the rotating cooling body is reduced, and the cooling efficiency of the outer peripheral surface of the rotating cooling body is improved.
According to a ninth aspect of the present invention, there is provided the metal refining device according to the seventh or eighth aspect, wherein the upper end portion of the upper cooling fluid passage and the pipe line of the cooling fluid discharge pipe are respectively connected to The cooling fluid is communicated with a cooling fluid inlet and a delivery outlet formed in the body of the rotary joint.
UpMoneyAccording to the genus purification apparatus, the cooling fluid fed into the upper cooling fluid passage from the cooling fluid inlet of the rotary joint flows downward through the upper cooling fluid passage and further passes through the through hole formed in the partition wall. Into the lower cooling fluid passage, further flows downward in the lower cooling fluid passage, and is blown out from the outlet of the outer pipe of the cooling fluid blowing member toward the peripheral wall of the rotary cooling body. Cool down. Next, the cooling fluid heated by the heat of the molten metal in the crucible held in the crucible enters the inner pipe of the cooling fluid blowing member, flows upward in this, and further flows into the cooling fluid discharge pipe. It flows upward in the lever tube and is sent to the outside through the cooling fluid outlet of the rotary joint. Therefore, the packing provided between the outer peripheral surface of the hollow rotary shaft and the portion around the rotary shaft penetrating portion on the top wall is not affected by the heat of the cooling fluid heated to a high temperature.
[0012]
According to the invention of claim 10Metal purification equipmentThe invention of any one of claims 7-9InSaidThe lower end of the cooling fluid discharge pipe passes through a graphite or ceramic ring.SaidIt is inserted into the through hole formed in the partition wall of the hollow rotary shaftIs a thing. In this case, the graphite or ceramic ring serves as a seal between the outer peripheral surface of the lower end portion of the cooling fluid discharge pipe and the inner peripheral surface of the through hole formed in the partition wall of the hollow rotary shaft. Can be inserted into the through hole of the partition wall in a rotatable and airtight manner. Therefore, a separate seal is not required and the number of parts is reduced.
[0013]
According to the invention of claim 11Metal purification equipmentThe invention of claim 5 or 9InSaidA rotary joint, a cylindrical body whose upper end is closed and whose lower end is open;SaidWith a rotating tube supported rotatably in the body,SaidThe upper end of the rotating tubeSaidThe lower end of the body is positioned below the lower surface of the upper end closing wall, and the lower end isSaidProtruding below the body,SaidOn the peripheral wall of the bodySaidIn the upper part of the rotating tubeSaidA cooling fluid inlet is formed,SaidA cooling fluid delivery port is formed in the top closed wall of the body,SaidThe upper end of the hollow rotating shaftSaidConnected to the lower end of the rotating tube,SaidThe upper end of the cooling fluid discharge pipe is connected to the cooling fluid delivery portIs a thing.
[0014]
A metal purification method according to the invention of claim 12 is a metal purification method using the apparatus according to any one of claims 4 to 6,
While immersing the hollow rotating cooling body in the molten crude metal placed in the crucible, sending the cooling fluid into the cooling fluid passage and blowing out the cooling fluid from the outlet of the cooling fluid blowing member toward the peripheral wall of the hollow rotating cooling body , The rotary rotating cooling body is rotated by the rotation driving means through the hollow rotating shaft, and thereby high purity purified metal is crystallized on the outer peripheral surface of the hollow rotating cooling body, and is blown out toward the peripheral wall of the hollow rotating cooling body. The cooling fluid which cooled the outer peripheral surface of the lever is discharged through a cooling fluid discharge pipe.
A metal purification method according to the invention of claim 13 is a metal purification method using the apparatus according to any one of claims 7 to 11,
A hollow rotary cooling body is immersed in a molten crude metal placed in a crucible, and a cooling fluid is fed into the upper cooling fluid passage and the lower cooling fluid passage from the outlet of the outer pipe of the cooling fluid outlet member. While the cooling fluid is blown out toward the peripheral wall, the rotary rotary cooling body is rotated by the rotation driving means via the hollow rotary shaft, thereby crystallizing high-purity purified metal on the outer peripheral surface of the hollow rotary cooling body. The cooling fluid that is blown out toward the peripheral wall of the rotating cooling body and cools the outer peripheral surface thereof is discharged through the inner pipe and the cooling fluid discharge pipe of the cooling fluid blowing member.
The metal according to the invention of claim 14 is purified by the method of claim 12 or 13.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the refining device according to the present invention is applied to a method for producing high-purity silicon having a purity of 99.9 wt% or more by refining crude silicon.
[0016]
Embodiment 1
This embodiment is shown in FIGS. FIG. 1 shows the overall configuration of a metal refining apparatus according to the present invention, and FIGS. 2 and 3 show the configuration of the main part thereof.
[0017]
1 to 3, a metal refining apparatus includes a closed melting furnace (1), a molten silicon holding crucible (2) disposed in the melting furnace (1), and a top wall of the melting furnace (1) ( 1a) A vertical hollow rotary shaft (3) arranged through and a lower end of the hollow rotary shaft (3) in a fixed manner so that the internal space communicates with the internal space of the hollow rotary shaft (3). A hollow rotary cooling body (4) provided.
[0018]
The melting furnace (1) is formed of a refractory. A heater (5) (heating means) is disposed along the inner peripheral surface of the peripheral wall (1b) of the melting furnace (1). A through hole (6) is formed at the center of the top wall (1a) of the melting furnace (1). The top wall (1a) of the melting furnace (1) has an inert gas supply pipe (7) for supplying an inert gas such as nitrogen gas and argon gas into the melting furnace (1), and a melting furnace (1 A vacuum exhaust pipe (50) for evacuating the inside is attached in a penetrating manner.
[0019]
The molten silicon holding crucible (2) is formed of a material that has little reaction with silicon, such as graphite or alumina, and is less contaminated with molten silicon. The crucible (2) is placed on a mounting table (8) made of a refractory placed on the bottom wall (1c) of the melting furnace (1).
[0020]
The hollow rotating shaft (3) is made of, for example, graphite. The hollow rotary shaft (3) is passed through a through hole (6) formed in the top wall (1a). The outer peripheral surface of the hollow rotary shaft (3) and the inner peripheral surface of the through hole (6) are sealed with, for example, a packing (9) using a synthetic rubber used as an oil seal. A taper portion (3a) spreading downward is formed at the lower end portion of the hollow rotary shaft (3), and a screw portion (3b) is formed at a portion below the taper portion (3a). A female thread portion (3c) is formed on the inner peripheral surface of the lower end portion of the hollow rotary shaft (3). Such a hollow rotary shaft (3) is rotatable above a melting furnace (1) via a bearing (not shown) on a holding member (11) provided to be movable up and down with respect to the fixed portion (10). It is supported by. The hollow rotating shaft (3) is rotated by the rotation driving means (12). The rotation drive means (12) includes an electric motor (13) mounted upward on the holding member (11), a belt wheel (14) fixed around the shaft (13a) of the electric motor (13), and a hollow rotary shaft. A belt wheel (15) fixed around (3) and a belt (16) stretched over both belt wheels (14) and (15).
[0021]
The hollow rotary cooling body (4) has a tapered cylindrical shape having a bottom and narrowing downward. The hollow rotating cooling body (4) is formed of a material that has good thermal conductivity and does not react with molten silicon and does not contaminate it, such as silicon nitride or graphite. A large-diameter portion is formed on the inner peripheral surface of the hollow rotary cooling body (4) via a step portion, and a female screw portion (4a) is formed on the large-diameter portion. Then, the male screw part (3b) of the hollow rotary shaft (3) is screwed into the female screw part (4a) of the hollow rotary cooling body (4), so that the hollow rotary cooling body (4) becomes a hollow rotary shaft ( It is fixed to 3). The outer diameter of the upper end portion of the hollow rotary cooling body (4) is equal to the large end diameter of the tapered portion (3a) of the hollow rotary shaft (3), and the lower end surface of the hollow rotary shaft (3) is hollow. While being in contact with the upper surface of the stepped portion of the rotating cooling body (4), the upper end surface of the hollow rotating cooling body (4) is in contact with the lower end surface of the tapered portion (3a) of the hollow rotating shaft (3).
[0022]
At the lower end of the hollow rotating shaft (3), a cooling fluid blowing member (17) that is cylindrical with a bottom and has a taper shape that narrows downward is attached so that it is located in the hollow rotating cooling body (4). It has been. A male thread part (17a) is formed at the upper end of the outer peripheral surface of the peripheral wall of the cooling fluid blowing member (17), and this male thread part (17a) is screwed onto the female thread part (3c) of the hollow rotary shaft (3). By fitting, the blowing member (17) is attached to the hollow rotating shaft (3). The cooling fluid blowing member (17) is made of graphite, and a number of cooling fluid blowing ports (18) are formed in the peripheral wall (17b), and a through hole (19 is formed in the center of the bottom wall (17c). ) Is formed.
[0023]
A cooling fluid discharge pipe (21) having a lower end located in the cooling fluid blowing member (17) and an upper end protruding above the upper end of the hollow rotating shaft (3) is disposed in the hollow rotation shaft (3). ing. The portion between the inner peripheral surface of the hollow rotary shaft (3) and the outer peripheral surface of the cooling fluid discharge pipe (21), and the inner peripheral surface of the cooling fluid outlet member (17) and the outer peripheral surface of the cooling fluid discharge pipe (21) The portion between the two is a cooling fluid passage (22).
[0024]
The upper end of the hollow rotary shaft (3) and the upper end of the cooling fluid discharge pipe (21) are connected to the rotary joint (23), and the upper end of the cooling fluid passage (22) and the cooling fluid discharge pipe (21) The pipe lines communicate with a cooling fluid introduction port (25) and a delivery port (26) formed in the body (24) of the rotary joint (23), respectively. The rotary joint (23) has a cylindrical body (24) whose upper end is closed and whose lower end is open, and a vertical shape made of stainless steel, for example, which is rotatably supported by a bearing (27) in the body (24). And a rotary tube (28). Although not shown, the inner peripheral surface of the body (24) and the outer peripheral surface of the rotary tube (28) are sealed by a moving surface sealing device such as a mechanical seal using a bellows. . The upper end of the rotary tube (28) is located below the lower surface of the upper end closing wall (24a) of the body (24), and the lower end protrudes downward from the body (24). A threaded portion is formed on the outer peripheral surface of the portion protruding downward from the body (24), and this male threaded portion is formed on the inner peripheral surface of the upper end portion of the hollow rotary shaft (3). The upper end portion of the hollow rotary shaft (3) is connected to the lower end portion of the rotary tube (28). A cooling fluid introduction port (25) is formed in a portion of the peripheral wall (24b) of the body (24) above the rotary tube (28), and a cooling fluid delivery port (26) is formed on the upper end closing wall (24a) of the body (24). ) Is formed. The rotary joint (23) is a so-called double hole type having a cooling fluid introduction port (25) and a cooling fluid delivery port (26) in the body (24). The upper end of the cooling fluid discharge pipe (21) is inserted and fixed to the cooling fluid delivery port (26). An elbow (29) communicating with the cooling fluid outlet (26) is attached to the upper end of the body (24) of the rotary joint (23). Although not shown, the cooling fluid supply pipe (25) is connected to the cooling fluid inlet (25) of the body (24) of the rotary joint (23), and the cooling fluid discharge pipe (21) is connected to the elbow (29). .
[0025]
Purification of silicon using such a purification apparatus is performed as follows.
[0026]
The crude silicon to be purified is placed in the crucible (2) in advance, and the melting furnace (1) is evacuated by the vacuum exhaust pipe (50), and then the melting furnace (1 ) Is supplied with an inert gas to create an inert gas atmosphere in the melting furnace (1). In this way, a perfect inert gas atmosphere can be created in the melting furnace (1). Then, the crude silicon is heated and dissolved by the heater (5) to form molten crude silicon (S), which is heated and held at a temperature exceeding the solidification temperature. The molten crude silicon (S) is placed in an inert gas atmosphere. The molten crude silicon (S) may be separately dissolved and then put into the crucible (2).
[0027]
Next, a cooling fluid inlet (25) formed in the body (24) of the rotary joint (23) from the cooling fluid supply pipe, and a cooling fluid passage (22) in the hollow rotary shaft (3) through the body (24). The cooling fluid is fed into the hollow rotating shaft (12) by the rotation driving means (12) while blowing the cooling fluid from the outlet (18) of the cooling fluid blowing member (17) toward the peripheral wall of the hollow rotating cooling body (4). The hollow rotary cooling body (4) is rotated through 3), and high purity purified silicon is crystallized on the outer peripheral surface of the hollow rotary cooling body (4) by the principle of segregation solidification. At this time, the cooling fluid blowing member (17) also rotates with the hollow rotating shaft (3) relative to the cooling fluid discharge pipe (21). By rotation of the hollow rotary cooling body (4), solidification can proceed while dispersing impurities discharged from the solidification interface into the liquid phase throughout the liquid phase. Accordingly, solidification proceeds under the control of a segregation coefficient close to the equilibrium segregation coefficient, and high-purity purified silicon crystallizes in a short time on the outer peripheral surface of the hollow rotary cooling body (4). In addition, it is preferable that the peripheral speed at the time of rotation of a hollow rotary cooling body (4) is 500-6000 mm / sec, especially 500-4000 mm / sec. This is because if it is less than the lower limit value, the effect of purification is small, and if the upper limit value is exceeded, the silicon solid phase may be difficult to adhere to the outer peripheral surface of the hollow rotary cooling body (4).
[0028]
The cooling fluid heated by the heat of the molten crude silicon (S) held in the crucible (2) is cooled by being blown out toward the peripheral wall of the hollow rotary cooling body (4) to cool the outer peripheral surface. The fluid discharge pipe (21) enters the inside from the lower end opening, flows upward in the cooling fluid discharge pipe (21), passes through the cooling fluid delivery port (26) of the body (24) of the rotary joint (23), and is elbowed. It is sent to the cooling fluid delivery pipe via (29). Accordingly, the packing (9) provided between the outer peripheral surface of the hollow rotary shaft (3) and the portion around the through hole (6) in the top wall (1a) of the melting furnace (1) is heated to a high temperature. It is not affected by the heat of the cooling fluid.
[0029]
Embodiment 2
This embodiment is shown in FIGS.
[0030]
In this case, the hollow rotating shaft (31) is passed through the through hole (6) of the top wall (1a) of the melting furnace (1) from above, and the lower component is located in the melting furnace (1). (32) and a lower component member (33) fixed to the lower end of the upper component member (32). The upper component member (32) is made of a metal such as stainless steel. The lower component member (33) is made of, for example, graphite.
[0031]
The lower end opening of the upper component member (32) is closed by a closing wall (34). A through hole (35) is formed in the central portion of the closed wall (34), and a graphite ring (36) is fitted into the through hole (35). Further, a plurality of arc-shaped elongated holes (37) are formed on the same circumference in a portion around the through hole (35) in the closed wall (34). An outward flange (38) is integrally formed at the lower end of the upper component (32). The upper end portion of the upper component member (32) is connected to the lower end portion of the rotary pipe (28) of the rotary joint (23) in the same manner as the upper end portion of the hollow rotary shaft (3) of the first embodiment.
[0032]
A closing member (39) made of a metal such as stainless steel is fitted on the upper end of the lower component member (33). A through hole (40) having a diameter larger than the inner diameter of the graphite ring (36) is formed in the central portion of the closing member (39), and the upper component member (32) is formed around the through hole (40). A plurality of arc-shaped elongated holes (41) communicating with the arc-shaped elongated hole (37) are formed on the same circumference. In addition, an outward flange (42) is integrally formed on the peripheral portion of the closing member (39), and the outward flange (42) and the outward flange (38) of the upper component member (32) are illustrated. The lower component member (33) is fixed to the lower end of the upper component member (32) by being connected by tightening means such as bolts and nuts. The closing wall (34) and the closing member (39) serve as a partition wall in the middle of the hollow rotary shaft (31), and the arc-shaped elongated holes (37) and (41) formed in these walls serve as partition walls. It is a through hole. In the same way as the lower end portion of the hollow rotary shaft (3) of the first embodiment, a lower expanding taper portion (33a) is formed at the lower end portion of the lower component member (33), and is formed from the taper portion (33a). Also, a screw part (33b) is formed in the lower part. Then, the male screw part (33b) of the lower component member (33) is screwed into the female screw part (4a) of the hollow rotary cooling body (4), so that the hollow rotary cooling body (4) becomes the lower component member ( It is fixed to 33).
[0033]
The cooling fluid discharge pipe (43) disposed in the hollow rotary shaft (31) is shorter than the cooling fluid discharge pipe (21) of the first embodiment, and the upper end thereof is the cooling fluid delivery port (26) of the rotary joint (23). ), And the lower end portion is rotatably passed through the graphite ring (36) to reach the upper end portion in the lower component member (33). The portion between the inner peripheral surface of the upper component member (32) and the outer peripheral surface of the cooling fluid discharge pipe (43) is an upper cooling fluid passage (44), and the upper end of the upper cooling fluid passage (44). The cooling fluid discharge pipe (43) and the cooling fluid discharge pipe (43) are connected to a cooling fluid inlet (25) and a sending outlet (26) formed in the body (24) of the rotary joint (23), respectively.
[0034]
In the lower component member (33), a cooling fluid blowing member (45) having a lower portion located in the hollow rotary cooling body (4) is disposed. The cooling fluid blowing member (45) is composed of an inner and outer double pipe, and a portion between the inner and outer pipes (46) and (48) is a lower cooling fluid passage (49). The lower end of the lower cooling fluid passage (49) is closed by a closing wall (50) connecting the lower end of the inner pipe (46) and the lower end of the outer pipe (48). In the outer pipe (48) of the cooling fluid blowing member (45), a narrowed and tapered widened portion (48a) is formed in a portion located in the hollow rotary cooling body (4), and a large number of widened portions (48a) are formed. The cooling fluid outlet (51) is formed. The upper end portion of the cooling fluid blowing member (45) is fixed to the closing member (39) at the upper end of the lower component member (33), and the upper cooling fluid passage (44) and the lower cooling fluid passage (49) are closed walls ( 34) and arcuate elongated holes (37) and (41) formed in the closing member (39). The upper end of the inner pipe (46) of the cooling fluid outlet member (45) surrounds the lower end of the cooling fluid discharge pipe (43), and the inner pipe (46) communicates with the cooling fluid discharge pipe (43). It has been made.
[0035]
Other configurations are the same as those of the first embodiment, and the same portions are denoted by the same reference numerals.
[0036]
Purification of silicon using such a purification apparatus is performed as follows.
[0037]
In the same manner as in the first embodiment, the molten crude silicon (S) in the crucible (2) is heated and held at a temperature exceeding the solidification temperature by the heater (5).
[0038]
Next, the cooling fluid inlet (25) formed in the body (24) of the rotary joint (23) from the cooling fluid supply pipe, and the upper component (32) of the hollow rotary shaft (31) through the body (24) Cooling fluid is fed into the upper cooling fluid passage (44). This cooling fluid flows downward through the upper cooling fluid passageway (44) and blows out the cooling fluid through arcuate slots (37) (41) formed in the closing wall (34) and the closing member (39). It enters into the lower cooling fluid passage (49) in the member (45) and flows downward in the lower cooling fluid passage (49), and the expanded portion in the outer pipe (48) of the cooling fluid blowing member (45) ( The air is blown out from the blowout port (51) of 48a) toward the peripheral wall of the hollow rotary cooling body (4). Then, in the same manner as in Embodiment 1, high purity purified silicon is crystallized on the outer peripheral surface of the hollow rotary cooling body (4).
[0039]
The cooling fluid heated by the heat of the molten crude silicon (S) held in the crucible (2) is cooled by being blown out toward the peripheral wall of the hollow rotary cooling body (4) to cool the outer peripheral surface. It enters the inside through the lower end opening of the inner pipe (46) of the fluid blowing member (45), flows upward in this, and further flows into the cooling fluid discharge pipe (43) and flows upward in this pipe (43). Then, it passes through the cooling fluid delivery port (26) of the body (24) of the rotary joint (23), and is sent to the cooling fluid delivery pipe through the elbow (29). Therefore, the packing (9) that seals between the outer peripheral surface of the hollow rotary shaft (3) and the portion around the through hole (6) in the top wall (1a) of the melting furnace (1) was heated to a high temperature. Not affected by the heat of the cooling fluid.
[0040]
In the above two embodiments, the inside of the melting furnace (1) is an inert gas atmosphere, but instead of this, a vacuum atmosphere may be used. In this case, a vacuum pulling tube is fixed to the lid of the melting furnace (1) in place of the inert gas supply pipe (7) in a penetrating manner, and the melting furnace (1) is evacuated by an appropriate vacuum pump. A vacuum atmosphere.
[0041]
In the above two embodiments, the purification apparatus according to the present invention is applied to the purification of silicon. For example, it is applied to the purification of aluminum for producing ultra-high purity aluminum having a purity of 99.9999 wt%. You can also
[0042]
【The invention's effect】
This inventionGoldAccording to the genus refining apparatus, as described above, the packing that seals between the outer peripheral surface of the hollow rotary shaft and the portion around the rotary shaft penetrating portion in the top wall of the melting furnace is a cooling fluid heated to a high temperature. Therefore, the performance of the packing is maintained for a long time. Further, since the melting furnace is hermetically sealed, contamination of the molten metal in the crucible due to dust in the atmosphere is prevented.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing the overall configuration of Embodiment 1 of an apparatus according to the present invention.
FIG. 2 is an enlarged vertical sectional view showing the structure of the lower part.
FIG. 3 is an enlarged vertical sectional view showing the configuration of the upper part.
FIG. 4 is an enlarged vertical sectional view showing the structure of the lower part of Embodiment 2 of the apparatus according to the present invention.
FIG. 5 is a partially enlarged view of FIG. 4;
6 is a cross-sectional view taken along line VI-VI in FIG.
[Explanation of symbols]
(1) Closed melting furnace
(1a) Top wall
(2) Molten metal holding crucible
(3) Hollow rotating shaft
(4) Hollow rotating cooling body
(5) Heater (heating means)
(9) Packing
(12) Rotation drive means
(17) Cooling fluid outlet
(18) Cooling fluid outlet
(19) Through hole
(21) Cooling fluid discharge pipe
(22) Cooling fluid passage
(23) Rotary joint
(24) Body
(25) Cooling fluid inlet
(26) Cooling fluid outlet
(31) Hollow rotating shaft
(32) Upper component
(33) Lower component
(34) Closure wall
(35) Through hole
(37) Arc-shaped slot
(39) Closing member
(41) Arc-shaped slot
(43) Cooling fluid discharge pipe
(44) Upper cooling fluid passage
(45) Cooling fluid outlet
(46) Inner pipe
(48) Outer pipe
(49) Lower cooling fluid passage
(50) Closed wall
(51) Cooling fluid outlet

Claims (14)

溶融金属が入れられるるつぼが溶解炉内に配置され、前記溶解炉の頂壁に垂直状中空回転軸が貫通させられ、前記中空回転軸の下端に、前記溶融金属中に浸漬される下方に向かって狭くなったテーパ筒状の中空回転冷却体が設けられており、前記中空回転冷却体を回転させるとともに、その内部に冷却流体を供給しながら、前記中空回転冷却体の外周面に金属を晶出させる金属の精製装置であって、
前記冷却流体が、前記中空回転軸内における外側の部分を通って前記中空回転冷却体内に供給され、同じく内側の部分を通って排出されるようになされている金属の精製装置。
A crucible into which the molten metal is placed is placed in the melting furnace, a vertical hollow rotating shaft is passed through the top wall of the melting furnace, and the lower end of the hollow rotating shaft is directed downwardly immersed in the molten metal. A tapered cylindrical hollow rotating cooling body is provided, and while rotating the hollow rotating cooling body and supplying a cooling fluid to the inside thereof, a metal is crystallized on the outer peripheral surface of the hollow rotating cooling body. A metal refining device,
A metal refining device in which the cooling fluid is supplied into the hollow rotary cooling body through an outer portion in the hollow rotary shaft and is also discharged through an inner portion.
前記中空回転軸内に冷却流体排出管が配置され、前記中空回転軸の内周面と前記冷却流体排出管との間の部分が冷却流体通路となされ、前記冷却流体が、前記冷却流体通路を通って前記中空回転冷却体内に供給され、前記冷却流体排出管内を通って排出されるようになされている請求項1記載の金属の精製装置。  A cooling fluid discharge pipe is disposed in the hollow rotary shaft, and a portion between an inner peripheral surface of the hollow rotary shaft and the cooling fluid discharge pipe serves as a cooling fluid passage, and the cooling fluid passes through the cooling fluid passage. The metal refining device according to claim 1, wherein the metal refining device is supplied to the hollow rotary cooling body through the cooling fluid discharge pipe and discharged through the cooling fluid discharge pipe. 前記中空回転冷却体が、前記冷却流体通路に送り込まれた冷却流体を、前記中空回転冷却体の周壁に向かって吹出す冷却流体吹出し部材を備えている請求項1または2記載の金属の精製装置。  The metal refining device according to claim 1, wherein the hollow rotary cooling body includes a cooling fluid blowing member that blows the cooling fluid fed into the cooling fluid passage toward a peripheral wall of the hollow rotary cooling body. . 溶融金属保持るつぼを内部に配置した溶解炉、前記溶解炉の頂壁を貫通して配された垂直状中空回転軸、前記中空回転軸を回転駆動する回転駆動手段、前記中空回転軸の外周面と前記溶解炉の頂壁における回転軸貫通部の周囲の部分との間を密封するパッキン、前記中空回転軸の下端部に、内部空間が前記中空回転軸の内部空間と連通するように設けられた下方に向かって狭くなったテーパ筒状の中空回転冷却体、および前記中空回転冷却体内に冷却流体を供給する手段を備えており、前記るつぼ内に入れられた溶融金属中に前記中空回転冷却体を浸漬し、前記中空回転冷却体を回転させるとともに、前記冷却流体供給手段により前記中空回転冷却体の内部に冷却流体を供給しながら、その外周面に金属を晶出させる金属の精製装置であって、
前記中空回転軸内に下端が前記中空回転冷却体内に位置する冷却流体排出管が配置され、前記中空回転軸の下端と前記冷却流体排出管の下端との間に、周壁に多数の冷却流体吹出し口が形成された冷却流体吹出し部材が、前記中空回転冷却体内に位置するように配置され、前記中空回転軸および前記冷却流体吹出し部材の内周面と前記冷却流体排出管の外周面との間の部分が冷却流体通路となされ、前記冷却流体吹出し部材の前記冷却流体吹出し口から前記中空回転冷却体の周壁に向かって冷却流体を吹出すようになされている金属の精製装置。
A melting furnace having a molten metal holding crucible disposed therein, a vertical hollow rotating shaft disposed through the top wall of the melting furnace, a rotation driving means for rotating the hollow rotating shaft, and an outer peripheral surface of the hollow rotating shaft And a packing that seals between the periphery of the rotating shaft penetrating portion on the top wall of the melting furnace, and an inner space is provided at the lower end of the hollow rotating shaft so as to communicate with the inner space of the hollow rotating shaft. A hollow rotary cooling body having a tapered cylindrical shape narrowed downward , and means for supplying a cooling fluid into the hollow rotary cooling body, and the hollow rotary cooling is contained in the molten metal placed in the crucible. A metal refining apparatus for immersing a body, rotating the hollow rotary cooling body, and crystallizing metal on the outer peripheral surface of the hollow rotary cooling body while supplying the cooling fluid to the inside of the hollow rotary cooling body by the cooling fluid supply means There
A cooling fluid discharge pipe having a lower end located in the hollow rotary cooling body is disposed in the hollow rotary shaft, and a large number of cooling fluid outlets are provided on a peripheral wall between the lower end of the hollow rotary shaft and the lower end of the cooling fluid discharge pipe. A cooling fluid blowing member having a mouth is disposed so as to be positioned in the hollow rotary cooling body, and is provided between the hollow rotary shaft and the inner circumferential surface of the cooling fluid blowing member and the outer circumferential surface of the cooling fluid discharge pipe. The metal refining device is configured such that the portion is a cooling fluid passage, and the cooling fluid is blown out from the cooling fluid blowing port of the cooling fluid blowing member toward the peripheral wall of the hollow rotating cooling body .
前記冷却流体通路の上端部および前記冷却流体排出管の管路が、それぞれロータリジョイントのボディに形成された冷却流体導入口および同送出口に連通させられている請求項4記載の金属の精製装置。  The metal purifier according to claim 4, wherein an upper end portion of the cooling fluid passage and a pipe line of the cooling fluid discharge pipe are communicated with a cooling fluid inlet and a outlet formed in a body of a rotary joint, respectively. . 前記冷却流体吹出し部材が黒鉛またはセラミックスで形成されており、前記冷却流体排出管の下端部が前記冷却流体吹出し部材の底壁に形成された貫通穴内に嵌め入れられている請求項4または5記載の金属の精製装置。  6. The cooling fluid blowing member is formed of graphite or ceramics, and a lower end portion of the cooling fluid discharge pipe is fitted into a through hole formed in a bottom wall of the cooling fluid blowing member. Metal purification equipment. 溶融金属保持るつぼを内部に配置した溶解炉、前記溶解炉の頂壁を貫通して配された垂直状中空回転軸、前記中空回転軸を回転駆動する回転駆動手段、前記中空回転軸の外周面と前記溶解炉の頂壁における回転軸貫通部の周囲の部分との間を密封するパッキン、前記中空回転軸の下端部に、内部空間が前記中空回転軸の内部空間と連通するように設けられた中空回転冷却体、および前記中空回転冷却体内に冷却流体を供給する手段を備えており、前記るつぼ内に入れられた溶融金属中に前記中空回転冷却体を浸漬し、前記中空回転冷却体を回転させるとともに、前記冷却流体供給手段により前記中空回転冷却体の内部に冷却流体を供給しながら、その外周面に金属を晶出させる金属の精製装置であって、
前記中空回転軸の長さの中間部に隔壁が設けられ、前記中空回転軸内における前記隔壁よりも上方の部分に、下端部が前記隔壁に形成された貫通穴内に回転自在に嵌め入れられた冷却流体排出管が配置され、前記中空回転軸における隔壁よりも上方の部分の内周面と前記冷却流体排出管の外周面との間の部分が上部冷却流体通路となされ、前記上部冷却通 路が前記冷却流体供給手段に連通させられ、
前記中空回転軸内における前記隔壁よりも下方の部分に、下部が前記中空回転冷却体内に位置する冷却流体吹出し部材が配置され、前記冷却流体吹出し部材が内外2重管よりなり、かつ内外両管の間の部分が下部冷却流体通路となされ、前記下部冷却流体通路の下端が、前記内管の下端と前記外管の下端とを連結する閉鎖壁により閉鎖され、前記冷却流体吹出し部材の前記外管に冷却流体吹出し口が形成され、
前記上部冷却流体通路と前記下部冷却流体通路とが、前記隔壁に形成された貫通穴を介して連通させられ、前記冷却流体吹出し部材の前記内管が前記冷却流体排出管に連通させられている金属の精製装置。
A melting furnace having a molten metal holding crucible disposed therein, a vertical hollow rotating shaft disposed through the top wall of the melting furnace, a rotation driving means for rotating the hollow rotating shaft, and an outer peripheral surface of the hollow rotating shaft And a packing that seals between the periphery of the rotating shaft penetrating portion on the top wall of the melting furnace, and an inner space is provided at the lower end of the hollow rotating shaft so as to communicate with the inner space of the hollow rotating shaft. A hollow rotary cooling body, and means for supplying a cooling fluid into the hollow rotary cooling body, and the hollow rotary cooling body is immersed in a molten metal placed in the crucible, A metal refining device that rotates and supplies a cooling fluid to the inside of the hollow rotary cooling body by the cooling fluid supply means, and crystallizes metal on an outer peripheral surface thereof,
A partition wall is provided at an intermediate portion of the length of the hollow rotary shaft, and a lower end portion is rotatably fitted in a through hole formed in the partition wall at a portion above the partition wall in the hollow rotary shaft. cooling fluid discharge pipe is disposed, the portion between the inner peripheral surface and the outer peripheral surface of the cooling fluid discharge pipe in the upper portion than the partition wall in the hollow rotating shaft made and upper cooling fluid passages, the upper cooling passage channel Is communicated with the cooling fluid supply means,
A cooling fluid blowing member having a lower portion positioned in the hollow rotating cooling body is disposed in a portion below the partition in the hollow rotating shaft, the cooling fluid blowing member is composed of an inner and outer double pipe, and both inner and outer pipes A lower cooling fluid passage is formed between the lower cooling fluid passage, and a lower end of the lower cooling fluid passage is closed by a closing wall connecting a lower end of the inner tube and a lower end of the outer tube, and the outer portion of the cooling fluid blowing member is A cooling fluid outlet is formed in the tube,
The upper cooling fluid passage and the lower cooling fluid passage are communicated with each other through a through hole formed in the partition wall, and the inner pipe of the cooling fluid blowing member is communicated with the cooling fluid discharge pipe. Metal purification equipment.
前記冷却流体吹出し部材の外管における前記中空回転冷却体内に位置する部分に拡開部が設けられている請求項7記載の金属の精製装置。  The metal purifier according to claim 7, wherein an expansion portion is provided in a portion of the outer pipe of the cooling fluid blowing member located in the hollow rotating cooling body. 前記上部冷却流体通路の上端部および前記冷却流体排出管の管路が、それぞれロータリジョイントのボディに形成された冷却流体導入口および同送出口に連通させられている請求項7または8記載の金属の精製装置。  The metal according to claim 7 or 8, wherein an upper end portion of the upper cooling fluid passage and a pipe line of the cooling fluid discharge pipe are communicated with a cooling fluid inlet and a delivery outlet formed in a body of a rotary joint, respectively. Purification equipment. 前記冷却流体排出管の下端部が黒鉛またはセラミックス製リングを介して前記中空回転軸の隔壁に形成された貫通穴内に嵌め入れられている請求項7〜9のうちのいずれかに記載の金属の精製装置。  The lower end part of the said cooling fluid discharge pipe is inserted in the through-hole formed in the partition of the said hollow rotating shaft through the ring made from graphite or ceramics, The metal in any one of Claims 7-9 Purification equipment. 前記ロータリジョイントが、上端が閉鎖されるとともに下端が開口した筒状ボディと、前記ボディ内に回転自在に支持された回転管とを備えており、前記回転管の上端が前記ボディの上端閉鎖壁の下面よりも下方に位置するとともに、同下端が前記ボディよりも下方に突出しており、前記ボディの周壁における前記回転管よりも上方の部分に前記冷却流体導入口が形成され、前記ボディの上端閉鎖壁に冷却流体送出路が形成され、
前記中空回転軸の上端部が前記回転管の下端部に接続されるとともに、前記冷却流体排出管の上端部が前記冷却流体送出口に接続されている請求項5または9記載の金属の精製装置。
The rotary joint includes a cylindrical body whose upper end is closed and whose lower end is open, and a rotating tube rotatably supported in the body, the upper end of the rotating tube being an upper end closing wall of the body The cooling fluid inlet is formed in a portion of the peripheral wall of the body above the rotating tube, and the lower end of the cooling fluid introduction port is formed at the upper end of the body. A cooling fluid delivery path is formed in the closed wall;
The metal purifier according to claim 5 or 9, wherein an upper end portion of the hollow rotary shaft is connected to a lower end portion of the rotary tube, and an upper end portion of the cooling fluid discharge pipe is connected to the cooling fluid delivery port. .
請求項4〜6のうちのいずれかに記載された装置を用いた金属の精製方法であって、
るつぼ内に入れられた溶融粗製金属内に中空回転冷却体を浸漬し、冷却流体を冷却流体通路に送り込んで冷却流体吹出し部材の吹出し口から中空回転冷却体の周壁に向かって冷却流体を吹出しながら、回転駆動手段により中空回転軸を介して中空回転冷却体を回転させ、これにより中空回転冷却体の外周面に高純度の精製金属を晶出させ、中空回転冷却体の周壁に向かって吹出されてその外周面を冷却した冷却流体を、冷却流体排出管を通して排出することを特徴とする金属の精製方法。
A method for purifying a metal using the apparatus according to any one of claims 4 to 6,
While immersing the hollow rotating cooling body in the molten crude metal placed in the crucible, sending the cooling fluid into the cooling fluid passage and blowing out the cooling fluid from the outlet of the cooling fluid blowing member toward the peripheral wall of the hollow rotating cooling body , The rotary rotating cooling body is rotated by the rotation driving means through the hollow rotating shaft, and thereby high purity purified metal is crystallized on the outer peripheral surface of the hollow rotating cooling body, and is blown out toward the peripheral wall of the hollow rotating cooling body. A method for purifying a metal, characterized in that a cooling fluid having cooled the outer peripheral surface thereof is discharged through a cooling fluid discharge pipe.
請求項7〜11のうちのいずれかに記載された装置を用いた金属の精製方法であって、
るつぼ内に入れられた溶融粗製金属内に中空回転冷却体を浸漬し、冷却流体を、上部冷却流体通路および下部冷却流体通路に送り込んで冷却流体吹出し部材の外管の吹出し口から中空回転冷却体の周壁に向かって冷却流体を吹出しながら、回転駆動手段により中空回転軸を介して中空回転冷却体を回転させ、これにより中空回転冷却体の外周面に高純度の精製金属を晶出させ、中空回転冷却体の周壁に向かって吹出されてその外周面を冷却した冷却流体を、冷却流体吹出し部材の内管および冷却流体排出管を通して排出することを特徴とする金属の精製方法。
A metal purification method using the apparatus according to any one of claims 7 to 11,
A hollow rotary cooling body is immersed in a molten crude metal placed in a crucible, and a cooling fluid is fed into the upper cooling fluid passage and the lower cooling fluid passage from the outlet of the outer pipe of the cooling fluid outlet member. While the cooling fluid is blown out toward the peripheral wall, the rotary rotary cooling body is rotated by the rotation driving means via the hollow rotary shaft, thereby crystallizing high-purity purified metal on the outer peripheral surface of the hollow rotary cooling body. A method for purifying a metal, characterized in that a cooling fluid blown toward a peripheral wall of a rotary cooling body and cooled on an outer peripheral surface thereof is discharged through an inner pipe and a cooling fluid discharge pipe of a cooling fluid blowing member.
請求項12または13記載の方法により精製された金属。  A metal purified by the method according to claim 12 or 13.
JP19987795A 1995-08-04 1995-08-04 Metal purification equipment Expired - Lifetime JP3713564B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19987795A JP3713564B2 (en) 1995-08-04 1995-08-04 Metal purification equipment
DE69616686T DE69616686T2 (en) 1995-08-04 1996-07-31 Device for cleaning metals
EP96112391A EP0757013B1 (en) 1995-08-04 1996-07-31 Apparatus for purifying metal
NO19963234A NO315268B1 (en) 1995-08-04 1996-08-02 Device for cleaning metal
US08/691,320 US5736096A (en) 1995-08-04 1996-08-02 Apparatus for purifying metal
KR1019960032492A KR100419489B1 (en) 1995-08-04 1996-08-03 Apparatus for purifying metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19987795A JP3713564B2 (en) 1995-08-04 1995-08-04 Metal purification equipment

Publications (2)

Publication Number Publication Date
JPH0948607A JPH0948607A (en) 1997-02-18
JP3713564B2 true JP3713564B2 (en) 2005-11-09

Family

ID=16415110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19987795A Expired - Lifetime JP3713564B2 (en) 1995-08-04 1995-08-04 Metal purification equipment

Country Status (1)

Country Link
JP (1) JP3713564B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992327B (en) * 2012-12-17 2014-07-09 青岛隆盛晶硅科技有限公司 Method and equipment for purifying polycrystalline silicon through solidification crucible rotary electron beam melting
JP6114222B2 (en) * 2014-03-27 2017-04-12 京セラ株式会社 Ingot manufacturing apparatus and silicon ingot manufacturing method
JP6114223B2 (en) * 2014-03-27 2017-04-12 京セラ株式会社 Ingot manufacturing apparatus and silicon ingot manufacturing method
CN113758252B (en) * 2021-08-24 2024-07-02 上海汉虹精密机械有限公司 Crucible lifting and rotating mechanism special for silicon carbide furnace
CN117604311B (en) * 2024-01-24 2024-04-19 北京航空航天大学 Aluminum alloy rotary blowing refining method based on three-channel rotor

Also Published As

Publication number Publication date
JPH0948607A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
KR100419489B1 (en) Apparatus for purifying metal
US4747906A (en) Process and apparatus for purifying silicon
JP3713564B2 (en) Metal purification equipment
JP4187892B2 (en) Metal purification apparatus and purification method
JP3713565B2 (en) Metal purification equipment
JP4094785B2 (en) Metal purification equipment
JP3809544B2 (en) Metal purification equipment
JP2001107153A5 (en)
JP4365480B2 (en) Manufacturing method of high purity silicon
JP3814697B2 (en) Metal purification equipment
FR2839730A1 (en) Device for silicon carbide single crystal formation comprises substrate between two superposed cylindrical compartments, seed crystal at top of first compartment, gas precursor input, and heater
CN113106267B (en) Ultrahigh-purity aluminum crystallization method
US5707447A (en) Crystal pulling apparatus
JP2000264776A (en) Manufacture of quartz glass crucible for silicon single crystal pulling
JP3873177B2 (en) Metal purification apparatus and metal purification method using the same
JPH092892A (en) Pull up apparatus for semiconductor single crystal
JPH10102158A (en) Method for refining aluminum
JP2008100857A (en) Apparatus and method for refining metal
JP2000053411A (en) Apparatus for production of polycrystalline silicon lump
JP2865126B2 (en) Optical fiber drawing equipment
JP4527868B2 (en) Slab cooling vessel
JPS58209112A (en) Vacuum cvd apparatus
JPH0365415B2 (en)
JP3042028B2 (en) Metal casting method and casting apparatus
JP2002145695A (en) Apparatus for manufacturing crystal silicon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term