JP3712229B2 - Surface treatment method of aluminum or its alloy - Google Patents

Surface treatment method of aluminum or its alloy Download PDF

Info

Publication number
JP3712229B2
JP3712229B2 JP2000325941A JP2000325941A JP3712229B2 JP 3712229 B2 JP3712229 B2 JP 3712229B2 JP 2000325941 A JP2000325941 A JP 2000325941A JP 2000325941 A JP2000325941 A JP 2000325941A JP 3712229 B2 JP3712229 B2 JP 3712229B2
Authority
JP
Japan
Prior art keywords
base material
silver
aluminum
anodic oxide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000325941A
Other languages
Japanese (ja)
Other versions
JP2002047596A (en
Inventor
勇一郎 松尾
孝保 池田
Original Assignee
株式会社Gha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gha filed Critical 株式会社Gha
Priority to JP2000325941A priority Critical patent/JP3712229B2/en
Priority to KR1020010003703A priority patent/KR100365187B1/en
Priority to EP01125530A priority patent/EP1207220B1/en
Priority to DE60132422T priority patent/DE60132422D1/en
Priority to CNB011375086A priority patent/CN1181228C/en
Publication of JP2002047596A publication Critical patent/JP2002047596A/en
Application granted granted Critical
Publication of JP3712229B2 publication Critical patent/JP3712229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム又はその合金の表面に表面処理を行う表面処理方法に関する。
【0002】
【従来の技術】
アルミニウム又はその合金の表面処理方法として、特公平5−14033号公報に開示されたものが知られている。この公知の表面処理方法は、アルミニウム又はその合金から形成された母材の表面に陽極酸化処理を施して陽極酸化被膜を形成し、その後金属塩を含む電解液中にて陽極酸化被膜を有する母材に交流電圧を加えて陽極酸化被膜中に金属を析出される方法であり、主として母材の表面の色を所要の色調にすることを目的としている。
【0003】
また、アルミニウム又はその合金の表面処理方法として、特開平9−71897号公報に開示されたものが知られている。かかる公知の表面処理は、アルミニウム又はその合金から形成された母材の表面に陽極酸化処理を施して陽極酸化被膜を形成し、その後光触媒作用を有する半導体微粒子を含む分散液中に陽極酸化被膜を有する母材を浸漬し、かく浸漬した母材の陽極酸化被膜の細孔中に電気泳動法により半導体微粒子を充填する方法であり、主として母材に抗菌性、防汚性等を付与することを目的としている。この表面処理方法では、更に、陽極酸化被膜の表面に半導体微粒子に加えて銀、銅等の抗菌性金属を析出することも開示されており、このようにすることによって母材の抗菌性をも高めている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような公知の表面処理方法では、まず母材の表面に陽極酸化被膜を形成し、その後電解処理によって金属を析出させている(又は電気泳動法により半導体微粒子を充填させている)。それ故に、母材に所要の通りの表面処理を行うのに2〜3回の処理工程が必要となり、このことに起因して、表面処理に要する時間が長くなるとともに、表面処理のための設備も大型化且つ複雑化し、これによって表面処理を行うためのためのコストも高くなるという問題がある。
【0005】
また、アルミニウム又はその合金から形成された母材、例えば炊飯器の内釜、ホットプレートでは、その表面にフッ素樹脂被膜が施されている。このようにフッ素樹脂被膜を形成した場合、フッ素樹脂被膜の熱伝導率が比較的小さいので、調理器具類の加熱効率が高くなく、加熱効率(調理加熱効率)の向上が望まれている。また、このような母材では、安全衛生の観点から抗菌性を有するものが望まれている。
【0006】
本発明の目的は、簡単な表面処理でもって母材に抗菌性、脱臭性、熱伝導性、導電性等を持たせることができるアルミニウム又はその合金の表面処理方法を提供することである。
本発明の他の目的は、簡単な表面処理でもって、粒子状樹脂被膜を有する母材に抗菌性、脱臭性、熱伝導性、導電性等を持たせることができるアルミニウム又はその合金の表面処理方法を提供することである。
【0010】
【課題を解決するための手段】
本発明は、アルミニウム又はその合金から形成された母材の片面にフッ素樹脂被膜を形成した後、前記フッ素樹脂被膜を有する母材を、硫酸浴、シュウ酸浴又はこれらの混合浴中に硝酸銀又は硫酸銀を添加した電解液中にて、交直重畳の電流を加えて電解処理し、これによって前記フッ素樹脂被膜を通して前記母材の片面に陽極酸化被膜を形成すると同時に、添加した硝酸銀又は硫酸銀の銀をこの陽極酸化被膜及び前記フッ素樹脂被膜に析出させるとともに、前記母材の他面に陽極酸化被膜を形成すると同時に、この陽極酸化被膜に添加した硝酸銀又は硫酸銀の銀を析出させることを特徴とするアルミニウム又はその合金の表面処理方法である。
【0011】
本発明に従えば、まず、アルミニウム又はその合金から形成された母材の片面にフッ素樹脂被膜を形成し、その後にフッ素樹脂被膜を形成した母材を電解処理する。電解処理の電解液として硫酸浴、シュウ酸浴又はこれらの混合浴中に硝酸銀又は硫酸銀を添加したものを用い、この電解液中に交直重畳の電流を加えて電解処理する。このように電解処理することによって、母材の片面においてはフッ素樹脂被膜を通して電解液が母材に作用し、母材の片面に陽極酸化被膜を形成することができるとともに、この陽極酸化被膜及びその表面のフッ素樹脂被膜に硝酸銀又は硫酸銀の銀を析出させることができる。また、母材の他面においては、その表面に陽極酸化被膜を形成すると同時に、形成した陽極酸化被膜に硝酸銀又は硫酸銀の銀を析出させることができる。このように銀が析出するので、母材の両面の抗菌性、脱臭性、熱伝導性、導電性を高めることができる。このような母材としては、片面にフッ素樹脂被膜を施す鍋(例えば調理鍋、フライパン等)、釜(炊飯器の内釜等)、ホットプレート等がある。
【0018】
また、本発明では、前記母材は、鍋、釜、ホットプレート、食器、ケトル、又はフォイルであることを特徴とする。
本発明に従えば、アルミニウム又はアルミ合金の母材の表面に陽極酸化被膜を形成すると同時に、この陽極酸化被膜にを析出させているので、抗菌性、脱臭性、熱伝導性、導電性が良く、鍋、釜、ホットプレート、食器、ケトル、食品を包むフォイルに好都合に適用することができ、これらに適用することによって、食品、調理品の安全性を高めることができるとともに、加熱調理を行うときの加熱効率を高めることができる。
【0019】
また、アルミニウム又はアルミ合金の母材の表面にフッ素樹脂被膜を形成し、このフッ素樹脂被膜を通して母材の表面の陽極酸化被膜及びフッ素樹脂被膜にを析出させているので、フッ素樹脂被膜を施しているにもかかわらず抗菌性、脱臭性、熱伝導性、導電性が高められ、鍋(調理鍋等)、釜(炊飯釜の内釜等)に好都合に適用することができ、これらに適用することによって、食品、調理品の安全性を高めることができるとともに、加熱調理を行うときの加熱効率を高めることができる。
【0021】
【発明の実施の形態】
以下、添付図面を参照して、本発明に従うアルミニウム又はその合金の表面処理方法の実施形態について説明する。
まず、図1及び図2を参照して、本発明に従うアルミニウム又はその合金の表面処理方法の実施例について説明する。図1は、本発明に従う表面処理方法の実施例を実施するための処理装置の一例を簡略的に示す簡略図であり、図2は、図1の処理装置によって処理した母材の一部を拡大するとともに簡略化して示す部分拡大断面図である。
【0022】
図1において、図示の処理装置は、直方体状の電解槽2を備え、この電解槽2内の両側部に電極4,6が配設されている。この形態では、電極4,6は、長手方向、図1において左右方向に間隔をおいて配設された4個のプレート状電極8,10から構成され、これらプレート状電極8,10がカーボンから形成されている。電極4,6は電気的に並列に配置され、一方の電極4の4個のプレート状電極8は電気的に直列に接続され、他方の電極6の4個のプレート状電極10は電気的に直列に接続されている。
【0023】
一対の電極4,6の間に表面処理すべき母材12,14が配設される。一方の母材12は電極4に対向してその内側に配設され、他方の母材14は電極6に対向してその内側に配設される。母材12,14は、例えばプレート状部材から構成され、かかる母材12,14はアルミニウム又はアルミニウム合金から形成される。この処理装置は、アルミニウム又はその合金から形成された母材12,14に後述する如くして表面処理を行う。
【0024】
この電解槽2内には、表面処理するための電解液が充填され、処理すべき母材12,14はこの電解液中に浸漬される。電解液としては、硫酸浴、シュウ酸浴又はこれらの混合浴が用いられる。そして、このような浴に金属の硝酸塩として硝酸銀及び硝酸銅のいずれか一つ又は二つ、即ち硝酸銀、硝酸銅又はこれら双方が添加される。硫酸浴を用いる場合、硫酸が例えば150〜300g/リットルの割合で溶解され、シュウ酸浴を用いる場合、例えば例えば20〜40g/リットルの割合で溶解される。また、このような浴に添加される硝酸銀又は硝酸銅は、例えば2〜10g/リットルの割合で加えられる。金属の硝酸塩が2g/リットルより少なくなると、表面処理を行ったときの金属の析出量が少なくなり、また金属の硝酸塩が10g/リットルを超えると、表面処理を行ったときに陽極酸化被膜にピット(孔食)が発生して被膜欠陥が発生し易くなる。
【0025】
硝酸塩に代えて、金属の硫酸塩としての硫酸銀及び硫酸銅のいずれか一つ又は二つ、即ち硫酸銀、硫酸銅又はこれら双方を添加するようにしてもよく、この場合にも、添加される硫酸銀又は硫酸銅は、例えば2〜10g/リットルの割合で加えられる。
母材12,14に表面処理を施す際、母材12,14に交直重畳波形の電流、即ち交流電流と直流のプラス側電流とを重畳させた電流が加えられ、このような電流を加えて母材12,14に電解処理を施す。この形態では、直流電源16のプラス側がリアクタ18に電気的に接続され、またこの直流電源16のマイナス側が電極4,6(プレート状電極8,10)に電気的に接続される。更に、交流電源20がリアクタ18に電気的に接続され、リアクタ18は直流電源16のプラス側の電流を交流電源20からの交流電流に重畳し、重畳した重畳電流を処理すべき母材12,14に送給する。
【0026】
表面処理時には、電流密度が例えば1〜10A/dmの範囲になるように選定され、この電流密度が所定設定時間継続して通電される。電流密度が10A/dmを超えると、表面処理によって形成される陽極酸化被膜にヤケ等の変色が発生し易く、また母材12,14とこれを保持する治具との接触部に放電による損傷が発生し易くなる。一方、電流密度が1A/dmより小さくなると、電解液中を流れる電流が小さく、表面処理の処理効率が悪くなる。
【0027】
この表面処理時、電解液の浴の温度は例えば−10〜25℃の範囲になるように選定される。浴の温度が25℃を超えると、母材12,14の表面に生成される陽極酸化被膜が軟質化し、場合によっては平坦な被膜が得られなくなる。一方、浴の温度が−10℃より低くなると、表面処理の処理効率が悪くなり、処理コストが増大する。
上述した処理装置でもって母材12,14に表面処理を施すと、母材12,14の表面は図2に示す通りに形成される。図2を参照して、アルミニウム又はその合金から形成された母材12,14の表面に陽極酸化被膜22(所謂アルマイト被膜)が形成される。この陽極酸化被膜22は、母材12(14)の表面に形成されるバリヤ層24と、このバリヤ層24の表面に形成される多孔質層26とから構成され、バリヤ層24の厚さは約0.01〜0.1μm程度に、また多孔質層26の厚さは約10〜200μm程度に形成される。
【0028】
上述した表面処理方法で処理すると、多孔質層26に多数存在する孔28内に硝酸塩の金属、例えば硝酸銀(又は硫酸銀)を用いた場合に銀、硝酸銅(又は硫酸銅)を用いた場合に銅、また硝酸銀及び硝酸銅(又は硫酸銀及び硫酸銅)を用いた場合に銀及び銅が析出し、かかる孔28の底部に析出金属30が形成される。従って、多孔質層26の孔28に金属、この実施形態では銀及び/又は銅が析出するので、母材12(14)に抗菌性、防汚性が付与され、衛生上の安全が保たれるとともに、その表面の陽極酸化被膜22の熱伝導性、導電性が高められ、これによって放熱性の向上及び静電気の防止の効果が得られる。また、母材の表面に陽極酸化被膜22が形成されるので、母材12(14)の表面の硬度が大きくなり、耐摩耗性も向上し、特に硬質の陽極酸化被膜22を形成するようにすることによって、充分な耐摩耗性、高硬度を持たせることができる。
【0029】
このような処理は、母材12,14としてのアルミニウム又はその合金製の各種製品、例えば食器(茶碗、皿、カップ等)、アルミ箔食器(各種容器類、皿等)、調理用アルミホフォイル、鍋(調理鍋、フライパン等)、ケトル等に好都合に適用することができ、これらに適用することによって、調理時の加熱効率の向上を図ることができるとともに、食品衛生上の安全も確保することができる。
【0030】
また、このような表面処理によって、陽極酸化被膜22の硬度が増大することに加えて熱伝導性(換言すると放熱性)も向上するので、調理機器類の分野以外の部材に、例えば建築用部材(アルミサッシ用部材、ドア、壁部材等)、交通若しくは輸送機器用部材(自動車、航空機、船舶等の各種部品等)にも好都合に適用することができ、これらに適用することによって、耐火性、耐摩耗性を高めることができる。
【0031】
尚、上述した実施形態では、表面処理する際に交直重畳波形の電流を加えて電解処理しているが、交直重畳の電流に代えて、マイナス波を流すPR又はマイナス波を流すパルス波の電流を加えるようにしても、上述したと同様に、1回の電解処理でもって所定の表面処理を行うことができ、母材12,14の表面に上記陽極酸化被膜22を形成するとともに、形成した陽極酸化被膜22に金属を析出させることができる。
【0032】
上述した例では、アルミニウム又はその合金から形成された母材12,14に陽極酸化被膜22を形成するのに適用して説明したが、これに限定されず、アルミニウム又はその合金製の母材の表面に粒子状樹脂被膜、例えばフッ素樹脂被膜を有する母材に陽極酸化被膜を形成するとともに、形成した陽極酸化被膜に銀及び/又は銅を析出させるのにも適用することができる。
上述した処理装置を用いて上述したと同様にして表面処理を施す、即ち上述した電解液に粒子状樹脂被膜としてのフッ素樹脂被膜を有する母材を浸漬し、この浸漬状態にて上述したと同様の電流を加えると、粒子状被膜を有する母材は、図3に示すように形成される。即ち、母材32の表面に陽極酸化被膜34が形成され、この陽極酸化被膜34は母材32の表面のバリア層36と、バリア層36の表面の多孔質層38から構成される。この場合、母材32の表面にフッ素樹脂被膜40が存在するので、母材32の表面に作用する電解液の量が少なく、母材32の表面に形成される陽極酸化被膜34の膜厚は薄く、例えば2〜4μm程度となり、かかる2〜4μmの被膜にバリア層36及び多孔質層38が含まれる。また、このように処理すると、陽極酸化被膜34の表面側の多孔質層38に多数存在する孔42内に硝酸塩(又は硫酸塩)の金属、例えば硝酸銀(又は硫酸銀)を用いた場合に銀、硝酸銅(又は硫酸銅)を用いた場合に銅、硝酸銀及び硝酸銅(又は硫酸銀及び硫酸銅)を用いた場合に銀及び銅が、かかる孔42に析出し、加えて、フッ素樹脂被膜40にも析出し、この析出は陽極酸化被膜34からフッ素樹脂被膜40の表面に向けて進行する。このとき、フッ素樹脂被膜40は、図3に示すように、微細な球状粒子の集合であり、その樹脂被膜40の内部には相互に連通する空隙が存在しており、電解処理するための電解液は、これら空隙を通して母材32の表面に作用する。そして、このことに関連して、母材32表面に形成される陽極酸化被膜34の膜厚は薄くなるとともに、電解液中の金属はフッ素樹脂被膜40の空隙を通して陽極酸化被膜34の多孔質層38の孔42に析出するとともに、フッ素樹脂被膜40の空隙にも析出する。このようにフッ素樹脂被膜40を有していても母材32の表面に陽極酸化被膜34が形成されるので、その母材32の表面の硬度を高めて耐摩耗性を付与することができるとともに、生成された陽極酸化被膜34及びフッ素樹脂被膜40に硝酸塩又は硫酸塩の金属、即ち銀及び/又は銅が析出するので、母材32及びその表面のフッ素樹脂被膜40の熱伝導性、導電性を高めることができ、これによって放熱性の向上及び静電気防止の効果が得られる。加えて母材12,14及びフッ素樹脂被膜40に抗菌性、防汚性を付与することができ、衛生上の安全も保つことができる。
【0033】
このような処理は、フッ素樹脂被膜40を有するアルミニウム又はその合金製の各種製品、例えば鍋(調理鍋、フライパン等)、釜(炊飯器の内釜等)、ホットプレート等に好都合に適用することができ、これらに適用することによって、調理時の加熱効率の向上を図ることができるとともに、食品衛生上の安全も確保することができる。
母材としての炊飯器の内釜(又は鍋)に適用した場合、内釜本体(又は鍋本体)はアルミニウムから形成され、その内面にフッ素樹脂被膜が施されている。このような炊飯内釜(又は鍋)に上述した表面処理を施すと、炊飯内釜(又は鍋)の内面側においては、表面側のフッ素樹脂被膜の空隙を通して電解液が内釜本体に作用し、内釜本体(又は鍋本体)の内側表面に薄い陽極酸化被膜が形成されるとともに、電解液中の硝酸塩又は硫酸塩の金属がこの陽極酸化被膜及び表面のフッ素樹脂被膜に析出する。また、炊飯内釜(又は鍋)の外面側においては、上述した記載から理解されるように、電解液が直接的に内釜本体に作用し、内釜本体(又は鍋本体)の外側用面に比較的厚い陽極酸化被膜が形成され、この陽極酸化被膜に硝酸塩又は硫酸塩の金属が析出する。従って、炊飯内釜自体(又は鍋自体)の熱伝導性が高められ、これによって加熱効率がよくなり、効率のよい炊飯(又は加熱調理)を行うことができる。
【0034】
上述した実施形態では、母材32の表面にフッ素樹脂被膜40を設けたものに適用して説明したが、これに限定されず、フェノール樹脂被膜又はアクリル樹脂被膜等の粒子状樹脂被膜(樹脂被膜層に連続した空隙を有するもの)を有する母材にも同様の電解処理を施すことによって、母材の表面に陽極酸化被膜を形成するとともに、この形成した陽極酸化被膜、また、その表面を覆う粒子状樹脂被膜に金属(銀、銅又はこれら双方)を析出させることができる。
【0035】
また、上述した例では、一回の電解処理でもって粒子状樹脂被膜を有する母材の表面に陽極酸化被膜を形成すると同時に、この陽極酸化被膜に金属を析出させているが、陽極酸化被膜の形成と、金属の析出とを別の工程で行うようにしてもよい。この場合、粒子状樹脂被膜を形成した母材を硫酸浴、シュウ酸浴又はこれらの混合浴に浸漬して陽極酸化処理を施し、その後、硝酸塩としての硝酸銀及び硝酸銅のいずれか一つ又は二つ、又は硫酸塩としての硫酸銀及び硫酸銅のいずれか一つ又は二つを添加した電解液でもって電解処理すればよく、このようにしても同様の陽極酸化被膜の形成、この陽極酸化被膜への金属の析出を行うことができる。尚、この場合には、電解処理の電流としては種々の電流、例えば商業用電源である交流、交直重畳、マイナス波を流すPR又はマイナス波を流すパルス波等の電流を加えることによって所定の電解処理を行うことができる。
【0036】
〔実施例及び比較例〕
実施例1
本発明の効果を確認するために、母材に次の通りの表面処理を行った。実施例1として、図1に示す処理装置を用い、硫酸200g/リットルの硫酸浴に硫酸塩として硫酸銀を5g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム(材質:A1050)製プレート(縦100mm×横50mm×厚さ1mm)を用い、このプレートを陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は5℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は3.0A/dmであった。上述した条件で電解処理を30分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0037】
実施例2
実施例2として、硫酸200g/リットルの硫酸浴に硫酸塩として硫酸銅を5g/リットルを添加した電解液を用いて電解処理を行った。母材としては実施例1と同様のものを用い、この母材に実施例1と同様の条件でもって電解処理を行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
実施例3
実施例3として、硫酸150g/リットルの硫酸浴に硝酸塩として硝酸銀を5g/リットルを添加した電解液を用いて電解処理を行った。母材としては実施例1と同様のものを用い、この母材に実施例1と同様の条件でもって電解処理を行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0038】
実施例4
実施例4として、図1に示す処理装置を用い、硫酸230g/リットルの硫酸浴に硝酸塩として硝酸銅を2g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム(材質:A1050)製繊維布(縦200mm×横200mm×厚さ1.0mm)を用い、この繊維布を陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は20℃であり、電解処理中、交流と直流の電流比率を2:1とした交直重畳の電流を加え、その電流密度は2.0A/dmであった。上述した条件で電解処理を30分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0039】
実施例5
実施例5として、図1に示す処理装置を用い、硫酸230g/リットルの硫酸浴に硫酸塩として硫酸銀を10g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム合金(材質:ADC12)製プレート(縦70mm×横150mm×厚さ5mm)を用い、このプレートを陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は15℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は4.0A/dmであった。上述した条件で電解処理を30分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0040】
実施例6
実施例6として、図1に示す処理装置を用い、硫酸250g/リットルの硫酸浴に硝酸塩として硝酸銀を10g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム(材質:A2024)製プレート(縦50mm×横150mm×厚さ0.8mm)を用い、このプレートを陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は5℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は3.0A/dmであった。上述した条件で電解処理を60分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0041】
実施例7
実施例7として、図1に示す処理装置を用い、硫酸150g/リットルの硫酸浴に硝酸塩として硝酸銀を10g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム(材質:A3004)製炊飯器内釜(内面にフッ素被膜が施されている)を用い、この炊飯器内釜を陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は5℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は3.0A/dmであった。上述した条件で電解処理を30分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0042】
実施例8
実施例8として、図1に示す処理装置を用い、硫酸150g/リットルの硫酸浴に硝酸塩として硝酸銀を10g/リットルを添加した電解液を用いて電解処理を行った。母材としてアルミニウム(材質:A6063)製プレート(縦50mm×横100mm×厚さ1mm)を用い、このプレートを陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は5℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は3.0A/dmであった。上述した条件で電解処理を50分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0043】
比較例1
比較例1として、図1に示す処理装置を用い、硫酸200g/リットルの硫酸浴(金属の硝酸塩及び硫酸塩の双方を含んでいない)を電解液としてを用いて電解処理を行った。母材としてアルミニウム(材質:A1050)製プレート(縦100mm×横150mm×厚さ1mm)を用い、このプレートを陽極(プラス)側とし、カーボン電極を陰極(マイナス)側とした。電解処理時の電解液の温度は5℃であり、電解処理中、交流と直流の電流比率を1:1とした交直重畳の電流を加え、その電流密度は3.0A/dmであった。上述した条件で電解処理を30分行い、母材の表面に形成された陽極酸化被膜の厚さを測定するとともに、その表面の色調を調べた。
【0044】
〔被膜厚さ及び色調〕
上述した実施例1〜8及び比較例において母材の表面に形成された陽極酸化被膜の厚さ及びその表面の色調は表1に示す通りであった。
【0045】
【表1】

Figure 0003712229
表1から理解されるように、実施例1及び3〜8においては、母材の表面に形成された陽極酸化被膜の色調が黄金色乃至黄土色又は紫系褐色であり、このような色調は硝酸塩又は硫酸塩の金属である銀又は銅が析出しているためであり、目視でもって銀又は銅の析出を確認することができた。尚、比較例1においては、硝酸塩及び硫酸塩が全く添加されてなく、従って析出する金属が存在せず、陽極酸化被膜は形成されるが、その表面の色調はほぼ無色透明であり、金属が析出していないことを示している。
【0046】
〔熱伝導性試験〕
熱伝導性を確認するために、次の通りの試験を行った。実施例9として、母材としてアルミニウム(材質:A1050)製プレート(縦100mm×横50mm×厚さ1mm)を用い、実施例1と同様の条件でこの母材の表面に4μmの陽極酸化被膜を形成した。そして、この実施例9のプレートの熱伝導率を測定した。また、実施例10として、実施例9と同様の母材を用いるとともに、同一の条件でもって母材の表面に25μmの陽極酸化被膜を形成し、また実施例11として、実施例9と同様の母材を用いるとともに、同一の条件でもって母材の表面に50μmの陽極酸化被膜を形成し、これら実施例10,11のプレートの熱伝導率を測定した。これらの測定結果は表2に示す通りである。
【0047】
比較例2として、実施例9の母材としてのアルミニウム(材質:A1050)製プレート、また比較例3として厚さ50μmの硬質アルマイト被膜(金属の析出がない陽極酸化被膜)を有するアルミニウム製プレート(実施例9のプレートと同じもの)の熱伝導率を測定し、それらの結果を表2に示す。
【0048】
【表2】
Figure 0003712229
表2から理解されるように、実施例9〜11のプレート、即ち金属としての銀が析出した陽極酸化被膜を有するプレートでは、母材としてのアルミニウム生地とほぼ同じ熱伝導率を有し、300℃付近以上においては実施例9〜11のプレートの方がアルミニウム生地よりも大きくなっている。これに対し、比較例3のプレート、即ち単なる硬質アルマイト被膜を有するプレートでは、その熱伝導率はアルミニウム生地の熱伝導率よりも小さくて約1/3程度である。これらのことから、硝酸塩の金属としての銀が析出することによって、熱伝導率が大きくなり、熱伝導性が大きく改善されることが確認できた。
【0049】
〔抗菌性試験〕
抗菌性を確認するために、次の通りの実験を行った。実施例12として実施例3と同様にして電解処理を施したもの(実施例3と同様の表面処理を施し、表面の陽極酸化被膜の膜厚が30μmのもの)を用いて抗菌力試験を行った。抗菌力試験は、大腸菌、黄色ブドウ球菌、腸炎ビブリオ及びサルモネラ菌を含む菌液をそれぞれ滴下し、環境温度が35℃の雰囲気で24時間保存し、24時間経過後の各生菌数を測定した。
【0050】
比較例4として、実施例3における電解液から硝酸銀を除いた液を用いた以外は実施例3と同様にして電解処理を施したもの(表面に膜厚30μmの陽極酸化被膜が存在するが、銀が析出していないもの)を用い、実施例12と同様にして抗菌力試験を行った。
【0051】
【表3】
Figure 0003712229
実施例12及び比較例4の測定結果は、表3に示す通りである。比較例4では、24時間経過後においても大腸菌、黄色ブドウ球菌、腸炎ビブリオ、サルモネラ菌が生存しているが、実施例12では、24時間経過後において生存する菌数を検出することができなかった。これらのことから、陽極酸化被膜に銀を析出させることによって、優れた抗菌性が得られることが確認できた。
【0052】
〔臭気試験〕
実施例13として、実施例12と同様にして電解処理を行ったものを用いて臭気試験を行った。臭気試験は、ビーカに川の水を1リットル入れ、その中に実施例13にて電解処理したものを浸漬し、1週間経過後にビーカから発する臭いの程度を調べた。また、比較例5として、比較例4と同様にして電解処理を行ったものを用い、実施例13と同様にして臭気試験を行って臭いの程度を調べた。
【0053】
実施例13では、1週間経過しても臭気はほとんど発しなかったが、比較例5では臭い臭気が発した。これらのことから、陽極酸化被膜に銀を析出させることによって、優れた脱臭性が得られることが確認できた。
〔耐火試験〕
耐火性能を確認するために、次の通りの実験を行った。実施例14として実施例8(材質:A6063)と同様にして電解処理を行ったものを用いて耐火試験を行った。耐火試験は、実施例14にて電解処理したものにガスバーナの火炎をさらした。ガスバーナの火炎温度は1400℃であり、150mmの間隔をおいてガスバーナの火炎にて加熱し、その加熱時間は20秒であった。
【0054】
比較のために、比較例6として比較例2(材質:A1050)と同様にして電解処理を行ったものを用い、また比較例7として生地のアルミニウム(材質A6063)製プレート(電解処理を全く施していないもの)を用い、実施例14と同様にして耐火試験を行った。
【0055】
【表4】
Figure 0003712229
実施例14及び比較例6,7の耐火試験の結果は、図4に示す通りであり、実施例14では加熱した後においても表面の色、また形状に変化はなかった。これに対し、比較例6では表面の色が薄くなり、またその形状も幾分変形し、また、比較例7では表面の色は変化しなかったが、その形状は大きく曲がって変形した。これらのことから、アルミニウム製プレートの表面に陽極酸化被膜が存在すると、生地のものに比して耐火性能が向上し、この陽極酸化被膜に銀を析出させると、この耐火性能が更に向上し、銀を析出させることによって充分な耐火性能が得られることが確認できた。
【0056】
〔銀析出確認試験〕
実施例15としてアルミニウム(A3004)製プレートの表面の一部にフッ素樹脂被膜を形成し、このフッ素樹脂被膜を有するプレートに実施例1と同様の条件でもって電解処理を施し、その表面(フッ素樹脂被膜が存在しない部分)に陽極酸化被膜を30μm形成した。このように作成した実施例15のプレートでは、アルミニウム部分(フッ素樹脂被膜が存在しない部分)の表面は黄金色を呈しており、これは生成された陽極酸化被膜に銀が析出していることを示しているのに対し、フッ素樹脂被膜部分は、電解処理を施したが外観上変化は見られなかった。
【0057】
この実施例15のプレートに銀が析出しているか否かを確認するために、銀の析出確認試験を行った。この確認試験は、実施例15のプレートのアルミニウム部分側からとフッ素樹脂被膜部分側から走査電子顕微鏡で観察し、アルミニウム部分とフッ素樹脂部分をX線回析法により銀が存在しているかを調べた。アルミニウム部分の結果は、図4に示す通りであり、銀が析出して存在している。また、フッ素樹脂被膜部分の結果は、図5に示す通りであり、この部分においても銀が析出して存在している。これらのことから、硝酸塩の金属としての銀が、陽極酸化被膜及びフッ素樹脂被膜に析出していることが確認できた。
【0058】
〔炊飯保温試験〕
炊飯保温性能を確認するために、次の通りの実験を行った。実施例16として実施例7と同様にして電解処理を行った炊飯釜を用いて炊飯保温試験を行った。炊飯保温試験は、実施例16にて電解処理した炊飯内釜(炊飯内釜の内面にフッ素樹脂被膜が施され、このフッ素樹脂被膜に硝酸銀の金属が析出しているもの)を用いて炊飯を行い、炊き上げ時、炊き上げから1日目、2日目、3日目における炊飯米の色及び臭いの変化を調べた。また、比較例8として、電解処理を施さない従来の炊飯内釜(炊飯内釜の内面に単にフッ素樹脂被膜が施されているもの)を用いて炊飯を行い、実施例16と同様に、炊き上げ時、炊き上げから1日目、2日目、3日目における炊飯米の色及び臭いの変化を調べた。
【0059】
【表5】
Figure 0003712229
実施例16及び比較例8の結果は、表5に示す通りであり、実施例16の炊飯釜では炊き上げ後3日経過しても炊飯米の色に変化はなく、また臭いも発生しなかった。これに対し、比較例8の炊飯釜では炊き上げ後2日目で炊飯米の色が黄ばみ始め、臭いにおいては炊き上げ後1日目で臭いが出始め、炊き上げ後2日目で強い臭いが発するようになった。これらのことから、母材表面の陽極酸化被膜への銀の析出が確認することができ、また析出した銀による脱臭作用も確認することができた。
【0061】
【発明の効果】
本発明の請求項1の表面処理方法によれば、アルミニウム又はその合金から形成された母材の片面においてはフッ素樹脂被膜を通して母材の表面に陽極酸化被膜を形成すると同時に、形成した陽極酸化被膜及びその表面のフッ素樹脂被膜に硝酸銀又は硫酸銀の銀を析出させることができ、また母材の他面においては直接的に陽極酸化被膜を形成すると同時に、形成した陽極酸化被膜に硝酸銀又は硫酸銀の銀を析出させることができる。このようなフッ素樹脂被膜を施した母材でも、形成された陽極酸化被膜及びフッ素樹脂被膜に銀が析出しているので、母材の抗菌性、脱臭性、熱伝導性、導電性が高められる。
【0064】
また、本発明の請求項の表面処理方法によれば、アルミニウム又はアルミ合金の母材の表面に陽極酸化被膜を形成するとともに、この陽極酸化被膜に銀を析出させているので、抗菌性、脱臭性、熱伝導性、導電性が良く、鍋、釜、ホットプレート、食器、ケトル、食品を包むフォイルに好都合に適用することができ、これらに適用することによって、食品、調理品の安全性を高めることができるとともに、加熱調理を行うときの加熱効率を高めることができる。また、アルミニウム又はアルミ合金の母材の表面のフッ素樹脂被膜を通して母材の表面に陽極酸化被膜を形成するとともに、形成した陽極酸化被膜及びその表面のフッ素樹脂被膜に銀を析出させているので、フッ素樹脂被膜を施しているにもかかわらず抗菌性、脱臭性、熱伝導性、導電性が高められ、鍋(調理鍋等)、釜(炊飯器の内釜等)に好都合に適用することができ、これらに適用することによって、食品、調理品の安全性を高めることができるとともに、加熱調理を行うときの加熱効率を高めることができる。
【図面の簡単な説明】
【図1】本発明に従う表面処理方法の実施例を実施するための処理装置の一例を簡略的に示す簡略図である。
【図2】図1の処理装置によって処理した母材の一部を拡大するとともに簡略化して示す部分拡大断面図である。
【図3】図1の処理装置によって処理した他の母材の一部を拡大するとともに簡略化して示す部分拡大断面図である。
【図4】実施例15のプレートのアルミニウム部分をX線回析法により調べた結果を示す図である。
【図5】実施例15のプレートのフッ素樹脂被膜部分をX線回析法により調べた結果を示す図である。
【符号の説明】
2 電解槽
4,6 電極
12,14、32 母材
16 直流電源
18 交流電源
22,34 陽極酸化被膜
24,36 バリア層
26,38 多孔質層
30,42 析出金属[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface treatment method for performing a surface treatment on the surface of aluminum or an alloy thereof.
[0002]
[Prior art]
As a surface treatment method for aluminum or an alloy thereof, one disclosed in Japanese Patent Publication No. 5-14033 is known. In this known surface treatment method, the surface of a base material made of aluminum or an alloy thereof is anodized to form an anodized film, and then the base having an anodized film in an electrolyte containing a metal salt. This is a method in which an AC voltage is applied to the material to deposit a metal in the anodized film, and the purpose is mainly to make the color of the surface of the base material a required color tone.
[0003]
Further, as a surface treatment method for aluminum or an alloy thereof, the one disclosed in JP-A-9-71897 is known. Such known surface treatment is performed by anodizing the surface of a base material formed of aluminum or an alloy thereof to form an anodized film, and then forming the anodized film in a dispersion containing semiconductor fine particles having a photocatalytic action. This is a method of immersing the base material having the base material and filling the fine particles of the anodic oxide coating of the base material soaked with the semiconductor fine particles by electrophoresis, and mainly imparting antibacterial and antifouling properties to the base material. It is aimed. In this surface treatment method, it is further disclosed that antibacterial metals such as silver and copper are deposited on the surface of the anodic oxide coating in addition to the semiconductor fine particles. It is increasing.
[0004]
[Problems to be solved by the invention]
However, in such a known surface treatment method, first, an anodized film is formed on the surface of the base material, and then a metal is deposited by electrolytic treatment (or semiconductor fine particles are filled by electrophoresis). Therefore, two to three processing steps are required to perform the surface treatment as required on the base material, and as a result, the time required for the surface treatment is increased and the equipment for the surface treatment is used. However, there is a problem that the size and the complexity of the apparatus are increased, which increases the cost for performing the surface treatment.
[0005]
Moreover, in the base material formed from aluminum or its alloy, for example, the inner pot of a rice cooker, or a hot plate, the surface is provided with a fluororesin coating. When the fluororesin coating is thus formed, the thermal conductivity of the fluororesin coating is relatively small, so that the heating efficiency of cooking utensils is not high, and improvement in heating efficiency (cooking heating efficiency) is desired. Further, such a base material is desired to have antibacterial properties from the viewpoint of safety and health.
[0006]
An object of the present invention is to provide a surface treatment method for aluminum or an alloy thereof, which can impart antibacterial properties, deodorizing properties, thermal conductivity, conductivity, etc. to a base material with a simple surface treatment.
Another object of the present invention is to provide a surface treatment of aluminum or an alloy thereof capable of imparting antibacterial properties, deodorizing properties, thermal conductivity, conductivity, etc. to a base material having a particulate resin film with a simple surface treatment. Is to provide a method.
[0010]
[Means for Solving the Problems]
  The present inventionAfter forming a fluororesin film on one side of a base material made of aluminum or an alloy thereof, add the base material having the fluororesin film to a sulfuric acid bath, an oxalic acid bath, or a mixed bath thereof, and add silver nitrate or silver sulfate In the electrolytic solution, an AC / DC superimposed current is applied to perform electrolytic treatment, thereby forming an anodic oxide coating on one side of the base material through the fluororesin coating and simultaneously adding the silver nitrate or silver sulfate silver to the anode. Aluminum or silver oxide or silver sulfate added to the anodic oxide coating is deposited at the same time as the oxide coating and the fluororesin coating are deposited on the other surface of the base material. This is a surface treatment method of the alloy.
[0011]
  According to the present invention, first formed from aluminum or an alloy thereof.Fluoropolymer coating on one side of the base materialForm and thenFluorine resin coatingThe base material formed with is subjected to electrolytic treatment. In a sulfuric acid bath, an oxalic acid bath or a mixed bath thereof as an electrolytic solution for electrolytic treatmentSilver nitrate or silver sulfateIn the electrolyte solution.AC / DC superimpositionElectrolyze by applying current.By performing the electrolytic treatment in this way, the electrolytic solution acts on the base material through the fluororesin coating on one side of the base material, and an anodic oxide coating can be formed on one side of the base material. Silver nitrate or silver sulfate silver can be deposited on the fluororesin coating on the surface. In addition, on the other surface of the base material, an anodic oxide film can be formed on the surface, and silver nitrate or silver sulfate silver can be deposited on the formed anodic oxide film. Thus, since silver precipitates, the antibacterial property, deodorizing property, heat conductivity, and electroconductivity of both surfaces of a base material can be improved. Examples of such a base material include a pan (for example, a cooking pan, a frying pan, etc.) having a fluororesin coating on one side, a pot (such as an inner pot of a rice cooker), a hot plate, and the like.
[0018]
  In the present invention, the base material is a pot, a pot, a hot plate, tableware, a kettle, or a foil.
  According to the present invention, an anodic oxide film is formed on the surface of an aluminum or aluminum alloy base material, and at the same time,SilverAnti-bacterial, deodorant, thermal conductivity, good conductivity, and can be conveniently applied to pots, kettles, hotplates, dishes, kettles, and food-wrapping foils By this, while being able to improve the safety | security of a foodstuff and a cooked product, the heating efficiency at the time of cooking by heating can be improved.
[0019]
  Also, the surface of aluminum or aluminum alloy base materialFluorine resin coatingForming thisFluorine resin coatingThrough the anodic oxide coating and fluororesin coating on the surface of the base materialSilverBecauseFluorine resin coatingDespite being applied, antibacterial properties, deodorizing properties, thermal conductivity, and conductivity are enhanced, and can be conveniently applied to pots (cooking pans, etc.) and kettles (cooking pots, etc.) By applying it, the safety of foods and cooked products can be increased, and the heating efficiency when cooking is performed can be increased.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a surface treatment method of aluminum or an alloy thereof according to the present invention will be described with reference to the accompanying drawings.
First, with reference to FIG. 1 and FIG. 2, the Example of the surface treatment method of the aluminum or its alloy according to this invention is described. FIG. 1 is a simplified view schematically showing an example of a processing apparatus for carrying out an embodiment of a surface treatment method according to the present invention, and FIG. 2 shows a part of a base material processed by the processing apparatus of FIG. It is a partial expanded sectional view expanding and simplifying.
[0022]
In FIG. 1, the illustrated processing apparatus includes a rectangular parallelepiped electrolytic cell 2, and electrodes 4 and 6 are disposed on both sides of the electrolytic cell 2. In this embodiment, the electrodes 4 and 6 are composed of four plate-like electrodes 8 and 10 arranged at intervals in the longitudinal direction, in the left-right direction in FIG. 1, and these plate-like electrodes 8 and 10 are made of carbon. Is formed. The electrodes 4 and 6 are electrically arranged in parallel, the four plate electrodes 8 of one electrode 4 are electrically connected in series, and the four plate electrodes 10 of the other electrode 6 are electrically connected. Connected in series.
[0023]
Base materials 12 and 14 to be surface-treated are disposed between the pair of electrodes 4 and 6. One base material 12 is disposed on the inside facing the electrode 4, and the other base material 14 is disposed on the inside facing the electrode 6. The base materials 12 and 14 are made of, for example, a plate-like member, and the base materials 12 and 14 are made of aluminum or an aluminum alloy. In this processing apparatus, surface treatment is performed on the base materials 12 and 14 formed of aluminum or an alloy thereof as described later.
[0024]
The electrolytic cell 2 is filled with an electrolytic solution for surface treatment, and the base materials 12 and 14 to be treated are immersed in the electrolytic solution. As the electrolytic solution, a sulfuric acid bath, an oxalic acid bath, or a mixed bath thereof is used. Then, one or two of silver nitrate and copper nitrate, that is, silver nitrate, copper nitrate, or both are added as metal nitrates to such a bath. When a sulfuric acid bath is used, sulfuric acid is dissolved at a rate of 150 to 300 g / liter, for example, and when an oxalic acid bath is used, it is dissolved at a rate of, for example, 20 to 40 g / liter. Moreover, silver nitrate or copper nitrate added to such a bath is added at a rate of 2 to 10 g / liter, for example. If the metal nitrate is less than 2 g / liter, the amount of metal deposited when the surface treatment is performed decreases, and if the metal nitrate exceeds 10 g / liter, pits are formed on the anodized film when the surface treatment is performed. (Pitting corrosion) occurs and film defects are likely to occur.
[0025]
Instead of nitrate, either one or two of silver sulfate and copper sulfate as metal sulfates, that is, silver sulfate, copper sulfate, or both of them may be added. Silver sulfate or copper sulfate is added at a rate of 2 to 10 g / liter, for example.
When the base materials 12 and 14 are subjected to surface treatment, a current having an AC / DC superimposed waveform, that is, a current obtained by superimposing an alternating current and a positive DC current is applied to the base materials 12 and 14. The base materials 12 and 14 are subjected to electrolytic treatment. In this embodiment, the positive side of the DC power supply 16 is electrically connected to the reactor 18, and the negative side of the DC power supply 16 is electrically connected to the electrodes 4 and 6 (plate-like electrodes 8 and 10). Further, the AC power source 20 is electrically connected to the reactor 18, and the reactor 18 superimposes the positive current of the DC power source 16 on the AC current from the AC power source 20, and the base material 12 to process the superimposed superimposed current. 14 is sent.
[0026]
At the time of surface treatment, the current density is, for example, 1 to 10 A / dm.2The current density is continuously energized for a predetermined set time. Current density is 10 A / dm2If it exceeds 1, discoloration such as burns is likely to occur in the anodized film formed by the surface treatment, and damage due to electric discharge is likely to occur at the contact portion between the base materials 12 and 14 and the jig holding the base material. On the other hand, the current density is 1 A / dm2If it is smaller, the current flowing in the electrolyte is small, and the processing efficiency of the surface treatment is deteriorated.
[0027]
At the time of this surface treatment, the temperature of the electrolyte bath is selected to be in the range of, for example, −10 to 25 ° C. When the temperature of the bath exceeds 25 ° C., the anodized film formed on the surfaces of the base materials 12 and 14 becomes soft, and in some cases, a flat film cannot be obtained. On the other hand, when the bath temperature is lower than −10 ° C., the treatment efficiency of the surface treatment is deteriorated and the treatment cost is increased.
When surface treatment is performed on the base materials 12 and 14 with the processing apparatus described above, the surfaces of the base materials 12 and 14 are formed as shown in FIG. Referring to FIG. 2, anodized film 22 (so-called anodized film) is formed on the surfaces of base materials 12 and 14 made of aluminum or an alloy thereof. The anodic oxide coating 22 is composed of a barrier layer 24 formed on the surface of the base material 12 (14) and a porous layer 26 formed on the surface of the barrier layer 24. The thickness of the barrier layer 24 is as follows. The porous layer 26 is formed to have a thickness of about 0.01 to 0.1 μm and a thickness of the porous layer 26 of about 10 to 200 μm.
[0028]
When the surface treatment method described above is used, when a nitrate metal such as silver nitrate (or silver sulfate) is used in the holes 28 existing in the porous layer 26, silver or copper nitrate (or copper sulfate) is used. When copper, silver nitrate and copper nitrate (or silver sulfate and copper sulfate) are used, silver and copper are deposited, and a deposited metal 30 is formed at the bottom of the hole 28. Accordingly, since metal, silver and / or copper, is deposited in the hole 28 of the porous layer 26, antibacterial and antifouling properties are imparted to the base material 12 (14), and hygienic safety is maintained. In addition, the thermal conductivity and conductivity of the anodic oxide coating 22 on the surface thereof are enhanced, thereby obtaining the effect of improving heat dissipation and preventing static electricity. Further, since the anodic oxide film 22 is formed on the surface of the base material, the hardness of the surface of the base material 12 (14) is increased, the wear resistance is improved, and particularly the hard anodic oxide film 22 is formed. By doing so, sufficient abrasion resistance and high hardness can be provided.
[0029]
Such treatment includes various products made of aluminum or its alloys as the base materials 12, 14, such as tableware (tea bowls, plates, cups, etc.), aluminum foil tableware (various containers, plates, etc.), cooking aluminum foils, It can be conveniently applied to pots (cooking pans, frying pans, etc.), kettles, etc., and by applying to these, heating efficiency during cooking can be improved and food hygiene safety is ensured Can do.
[0030]
Moreover, in addition to the increase in the hardness of the anodic oxide coating 22 by such surface treatment, the thermal conductivity (in other words, the heat dissipation) is also improved. (Aluminum sash members, doors, wall members, etc.), traffic or transportation equipment members (automobiles, aircraft, ships, etc.) can be conveniently applied, and by applying them, fire resistance Abrasion resistance can be increased.
[0031]
In the above-described embodiment, the electrolytic treatment is performed by applying the AC / DC superimposed waveform current during the surface treatment, but instead of the AC / DC superimposed current, the PR wave that flows a negative wave or the pulse wave current that flows a negative wave. As described above, a predetermined surface treatment can be performed by a single electrolytic treatment as described above, and the anodic oxide coating 22 is formed on the surfaces of the base materials 12 and 14 and formed. Metal can be deposited on the anodic oxide coating 22.
[0032]
In the above-described example, the description is applied to the formation of the anodic oxide coating 22 on the base materials 12 and 14 formed of aluminum or an alloy thereof. However, the present invention is not limited to this, and the base material made of aluminum or an alloy thereof is used. The present invention can be applied to the formation of an anodized film on a base material having a particulate resin film, for example, a fluororesin film, on the surface, and to deposit silver and / or copper on the formed anodized film.
Surface treatment is performed in the same manner as described above using the processing apparatus described above, that is, a base material having a fluororesin coating as a particulate resin coating is immersed in the above-described electrolytic solution, and the same as described above in this immersion state When the current of 1 is applied, the base material having the particulate film is formed as shown in FIG. That is, an anodized film 34 is formed on the surface of the base material 32, and the anodized film 34 is composed of a barrier layer 36 on the surface of the base material 32 and a porous layer 38 on the surface of the barrier layer 36. In this case, since the fluororesin coating 40 is present on the surface of the base material 32, the amount of the electrolytic solution acting on the surface of the base material 32 is small, and the film thickness of the anodic oxide coating 34 formed on the surface of the base material 32 is as follows. The thickness is, for example, about 2 to 4 μm, and the barrier layer 36 and the porous layer 38 are included in the 2 to 4 μm film. Further, when treated in this manner, a metal of nitrate (or sulfate), for example, silver nitrate (or silver sulfate) is used in the holes 42 existing in the porous layer 38 on the surface side of the anodic oxide coating 34. When copper nitrate (or copper sulfate) is used, when copper, silver nitrate and copper nitrate (or silver sulfate and copper sulfate) are used, silver and copper are deposited in the holes 42, and in addition, a fluororesin film 40 also deposits and proceeds from the anodic oxide coating 34 toward the surface of the fluororesin coating 40. At this time, as shown in FIG. 3, the fluororesin coating 40 is a collection of fine spherical particles, and there are voids communicating with each other inside the resin coating 40. The liquid acts on the surface of the base material 32 through these voids. In relation to this, the thickness of the anodic oxide coating 34 formed on the surface of the base material 32 is reduced, and the metal in the electrolytic solution passes through the voids of the fluororesin coating 40 and the porous layer of the anodic oxide coating 34. In addition to depositing in the 38 holes 42, it also deposits in the voids of the fluororesin coating 40. As described above, since the anodic oxide coating 34 is formed on the surface of the base material 32 even if the fluororesin coating 40 is provided, the hardness of the surface of the base material 32 can be increased and wear resistance can be imparted. Since the metal of nitrate or sulfate, that is, silver and / or copper, is deposited on the generated anodic oxide coating 34 and fluororesin coating 40, the thermal conductivity and conductivity of the base material 32 and the fluororesin coating 40 on the surface thereof. This can improve heat dissipation and prevent static electricity. In addition, antibacterial and antifouling properties can be imparted to the base materials 12 and 14 and the fluororesin coating 40, and sanitary safety can be maintained.
[0033]
Such treatment is advantageously applied to various products made of aluminum or its alloys having the fluororesin coating 40, such as pots (cooking pans, frying pans, etc.), kettles (cookers for rice cookers, etc.), hot plates, etc. By applying to these, it is possible to improve the heating efficiency during cooking and to ensure food hygiene safety.
When applied to an inner pot (or pan) of a rice cooker as a base material, the inner pot body (or pan body) is made of aluminum, and a fluororesin coating is applied to the inner surface thereof. When the above-described surface treatment is applied to such a rice cooking pot (or pot), on the inner surface side of the rice cooking pot (or pot), the electrolyte acts on the inner pot main body through the gap of the fluororesin coating on the surface side. A thin anodic oxide film is formed on the inner surface of the inner pot body (or pan body), and a nitrate or sulfate metal in the electrolytic solution is deposited on the anodic oxide film and the surface fluororesin film. Moreover, on the outer surface side of the rice cooking inner pot (or pan), as understood from the above description, the electrolyte directly acts on the inner pot main body, and the outer surface of the inner pot main body (or pan main body). A relatively thick anodic oxide film is formed on the anodic oxide film, and nitrate or sulfate metal is deposited on the anodic oxide film. Accordingly, the thermal conductivity of the cooker inner pot itself (or the pan itself) is enhanced, thereby improving the heating efficiency and allowing efficient cooking of rice (or heat cooking).
[0034]
In the above-described embodiment, the description is made by applying to the surface of the base material 32 provided with the fluororesin coating 40. However, the present invention is not limited to this, and a particulate resin coating (resin coating) such as a phenol resin coating or an acrylic resin coating. The base material having a continuous void in the layer) is subjected to the same electrolytic treatment to form an anodic oxide film on the surface of the base material, and to cover the formed anodic oxide film and its surface. Metals (silver, copper, or both) can be deposited on the particulate resin coating.
[0035]
In the above-described example, an anodic oxide film is formed on the surface of the base material having the particulate resin film by a single electrolytic treatment, and at the same time, a metal is deposited on the anodic oxide film. The formation and metal deposition may be performed in separate steps. In this case, the base material on which the particulate resin film is formed is immersed in a sulfuric acid bath, an oxalic acid bath, or a mixed bath thereof and subjected to an anodizing treatment, and then either one or two of silver nitrate and copper nitrate as nitrates are performed. Or an electrolytic solution to which any one or two of silver sulfate and copper sulfate as a sulfate is added, and in this way, the formation of the same anodic oxide film, this anodic oxide film The metal can be deposited on the surface. In this case, as the current for the electrolysis treatment, various currents such as alternating current, AC / DC superposition, PR for passing a negative wave, or pulse wave for passing a negative wave are applied to a predetermined electrolysis. Processing can be performed.
[0036]
[Examples and Comparative Examples]
Example 1
In order to confirm the effect of the present invention, the base material was subjected to the following surface treatment. In Example 1, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution obtained by adding 5 g / liter of silver sulfate as a sulfate to a sulfuric acid bath of 200 g / liter of sulfuric acid. An aluminum (material: A1050) plate (length 100 mm × width 50 mm × thickness 1 mm) was used as a base material, and this plate was the anode (plus) side and the carbon electrode was the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 5 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 3.0 A / dm.2Met. The electrolytic treatment was performed for 30 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0037]
Example 2
As Example 2, electrolytic treatment was performed using an electrolytic solution in which 5 g / liter of copper sulfate was added as a sulfate salt to a sulfuric acid bath of 200 g / liter of sulfuric acid. As the base material, the same material as in Example 1 was used. This base material was subjected to electrolytic treatment under the same conditions as in Example 1, and the thickness of the anodized film formed on the surface of the base material was measured. The color of the surface was examined.
Example 3
As Example 3, electrolytic treatment was performed using an electrolytic solution in which 5 g / liter of silver nitrate was added as a nitrate salt to a sulfuric acid bath of 150 g / liter of sulfuric acid. As the base material, the same material as in Example 1 was used. This base material was subjected to electrolytic treatment under the same conditions as in Example 1, and the thickness of the anodized film formed on the surface of the base material was measured. The color of the surface was examined.
[0038]
Example 4
In Example 4, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution obtained by adding 2 g / liter of copper nitrate as a nitrate salt to a sulfuric acid bath of 230 g / liter of sulfuric acid. An aluminum (material: A1050) fiber cloth (length 200 mm × width 200 mm × thickness 1.0 mm) was used as a base material. The fiber cloth was used as the anode (plus) side, and the carbon electrode was used as the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 20 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 2: 1 is applied, and the current density is 2.0 A / dm 2.2Met. The electrolytic treatment was performed for 30 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0039]
Example 5
As Example 5, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution in which 10 g / liter of silver sulfate was added as a sulfate salt to a sulfuric acid bath of 230 g / liter of sulfuric acid. An aluminum alloy (material: ADC12) plate (length 70 mm × width 150 mm × thickness 5 mm) was used as a base material, and this plate was the anode (plus) side and the carbon electrode was the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 15 ° C., and during the electrolytic treatment, an AC / DC superposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 4.0 A / dm.2Met. The electrolytic treatment was performed for 30 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0040]
Example 6
As Example 6, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution in which 10 g / liter of silver nitrate was added as a nitrate salt to a sulfuric acid bath of 250 g / liter of sulfuric acid. An aluminum (material: A2024) plate (length 50 mm × width 150 mm × thickness 0.8 mm) was used as a base material, and this plate was the anode (plus) side and the carbon electrode was the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 5 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 3.0 A / dm.2Met. The electrolytic treatment was performed for 60 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0041]
Example 7
As Example 7, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution in which 10 g / liter of silver nitrate was added as a nitrate salt to a sulfuric acid bath of 150 g / liter of sulfuric acid. A rice cooker inner pot made of aluminum (material: A3004) is used as a base material (the inner surface is coated with a fluorine coating), the rice cooker inner pot is set as the anode (plus) side, and the carbon electrode is set as the cathode (minus) side. did. The temperature of the electrolytic solution during the electrolytic treatment is 5 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 3.0 A / dm.2Met. The electrolytic treatment was performed for 30 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0042]
Example 8
In Example 8, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using an electrolytic solution obtained by adding 10 g / liter of silver nitrate as a nitrate salt to a sulfuric acid bath of 150 g / liter of sulfuric acid. An aluminum (material: A6063) plate (length 50 mm × width 100 mm × thickness 1 mm) was used as a base material, and this plate was the anode (plus) side and the carbon electrode was the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 5 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 3.0 A / dm.2Met. The electrolytic treatment was performed for 50 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0043]
Comparative Example 1
As Comparative Example 1, the treatment apparatus shown in FIG. 1 was used, and an electrolytic treatment was performed using a sulfuric acid bath of 200 g / liter sulfuric acid (not containing both metal nitrate and sulfate) as an electrolytic solution. An aluminum (material: A1050) plate (length 100 mm × width 150 mm × thickness 1 mm) was used as a base material, and this plate was the anode (plus) side and the carbon electrode was the cathode (minus) side. The temperature of the electrolytic solution during the electrolytic treatment is 5 ° C., and during the electrolytic treatment, an AC / DC superimposed current with an AC / DC current ratio of 1: 1 is applied, and the current density is 3.0 A / dm.2Met. The electrolytic treatment was performed for 30 minutes under the above-described conditions, and the thickness of the anodized film formed on the surface of the base material was measured, and the color tone of the surface was examined.
[0044]
[Film thickness and color tone]
Table 1 shows the thickness of the anodized film formed on the surface of the base material and the color tone of the surface in Examples 1 to 8 and Comparative Examples described above.
[0045]
[Table 1]
Figure 0003712229
As understood from Table 1, in Examples 1 and 3 to 8, the color tone of the anodized film formed on the surface of the base material is golden to ocher or purple brown, and such color tone is This is because silver or copper, which is a metal of nitrate or sulfate, is deposited, and precipitation of silver or copper could be confirmed visually. In Comparative Example 1, nitrates and sulfates were not added at all, and therefore no precipitated metal was present, and an anodic oxide film was formed. However, the surface color was almost colorless and transparent, and the metal was It shows that it is not precipitated.
[0046]
[Thermal conductivity test]
In order to confirm the thermal conductivity, the following test was performed. As Example 9, an aluminum (material: A1050) plate (length 100 mm × width 50 mm × thickness 1 mm) was used as a base material, and a 4 μm anodic oxide coating was formed on the surface of the base material under the same conditions as in Example 1. Formed. And the thermal conductivity of the plate of this Example 9 was measured. Further, as Example 10, a base material similar to that of Example 9 was used, and an anodic oxide film having a thickness of 25 μm was formed on the surface of the base material under the same conditions. Further, Example 11 was the same as Example 9. While using the base material, a 50 μm anodic oxide film was formed on the surface of the base material under the same conditions, and the thermal conductivity of the plates of Examples 10 and 11 was measured. These measurement results are as shown in Table 2.
[0047]
As Comparative Example 2, an aluminum plate (material: A1050) as a base material of Example 9, and as Comparative Example 3, an aluminum plate having a hard anodized film (anodized film with no metal deposition) having a thickness of 50 μm ( The same as the plate of Example 9) was measured, and the results are shown in Table 2.
[0048]
[Table 2]
Figure 0003712229
As understood from Table 2, the plates of Examples 9 to 11, that is, the plate having the anodic oxide film on which silver as a metal is deposited have substantially the same thermal conductivity as the aluminum material as the base material, and 300 Above 9 ° C., the plates of Examples 9 to 11 are larger than the aluminum fabric. On the other hand, in the plate of Comparative Example 3, that is, a plate having a simple hard anodized film, the thermal conductivity is about 1/3 smaller than the thermal conductivity of the aluminum cloth. From these facts, it was confirmed that precipitation of silver as the metal of the nitrate increased the thermal conductivity and greatly improved the thermal conductivity.
[0049]
[Antimicrobial test]
In order to confirm the antibacterial property, the following experiment was conducted. As Example 12, an antibacterial activity test was performed using the same electrolytic treatment as in Example 3 (the same surface treatment as in Example 3 was performed and the surface anodized film thickness was 30 μm). It was. In the antibacterial activity test, bacterial solutions containing Escherichia coli, Staphylococcus aureus, Vibrio parahaemolyticus, and Salmonella were dropped, stored in an atmosphere at an ambient temperature of 35 ° C. for 24 hours, and the number of viable bacteria after 24 hours was measured.
[0050]
As Comparative Example 4, an electrolytic treatment was carried out in the same manner as in Example 3 except that a solution obtained by removing silver nitrate from the electrolytic solution in Example 3 (an anodic oxide film having a thickness of 30 μm exists on the surface, An antibacterial activity test was conducted in the same manner as in Example 12 using a sample in which silver was not deposited.
[0051]
[Table 3]
Figure 0003712229
The measurement results of Example 12 and Comparative Example 4 are as shown in Table 3. In Comparative Example 4, Escherichia coli, Staphylococcus aureus, Vibrio parahaemolyticus, and Salmonella survive even after 24 hours, but in Example 12, the number of surviving bacteria after 24 hours could not be detected. . From these facts, it was confirmed that excellent antibacterial properties were obtained by precipitating silver on the anodized film.
[0052]
[Odor test]
As Example 13, an odor test was performed using the same electrolytic treatment as in Example 12. In the odor test, 1 liter of river water was put into a beaker, and the electrolytic treatment in Example 13 was immersed therein, and the degree of odor emitted from the beaker after one week was examined. Further, as Comparative Example 5, an electrolytic treatment was performed in the same manner as in Comparative Example 4, and an odor test was performed in the same manner as in Example 13 to examine the degree of odor.
[0053]
In Example 13, almost no odor was generated even after one week, but in Comparative Example 5, an odor was generated. From these facts, it was confirmed that excellent deodorization was obtained by precipitating silver on the anodized film.
(Fire resistance test)
In order to confirm the fire resistance, the following experiment was conducted. As Example 14, a fire resistance test was performed using the same electrolytic treatment as in Example 8 (material: A6063). In the fire resistance test, a gas burner flame was exposed to the electrolytic treatment in Example 14. The flame temperature of the gas burner was 1400 ° C., and it was heated with a flame of the gas burner at an interval of 150 mm, and the heating time was 20 seconds.
[0054]
For comparison, Comparative Example 6 was subjected to electrolytic treatment in the same manner as Comparative Example 2 (material: A1050), and Comparative Example 7 was a plate made of aluminum (material A6063) made of fabric (electrolyzed at all). The fire resistance test was conducted in the same manner as in Example 14.
[0055]
[Table 4]
Figure 0003712229
The results of the fire resistance test of Example 14 and Comparative Examples 6 and 7 are as shown in FIG. 4. In Example 14, the surface color and shape did not change even after heating. In contrast, in Comparative Example 6, the color of the surface became light and the shape thereof was somewhat deformed. In Comparative Example 7, the color of the surface did not change, but the shape was greatly bent and deformed. From these, when an anodized film is present on the surface of the aluminum plate, the fire resistance is improved compared to that of the fabric, and when the silver is deposited on the anodized film, the fire resistance is further improved. It was confirmed that sufficient fire resistance was obtained by precipitating silver.
[0056]
[Silver precipitation confirmation test]
In Example 15, a fluororesin film was formed on a part of the surface of an aluminum (A3004) plate, and the plate having this fluororesin film was subjected to electrolytic treatment under the same conditions as in Example 1 to obtain the surface (fluororesin). A 30 μm anodic oxide coating was formed on the portion where no coating was present. In the plate of Example 15 created in this way, the surface of the aluminum portion (portion where the fluororesin coating does not exist) has a golden color, which indicates that silver is deposited on the generated anodic oxide coating. On the other hand, the fluororesin film portion was subjected to electrolytic treatment, but no change in appearance was observed.
[0057]
In order to confirm whether or not silver was deposited on the plate of Example 15, a silver deposition confirmation test was performed. In this confirmation test, the plate of Example 15 was observed with a scanning electron microscope from the aluminum portion side and the fluororesin coating portion side, and the aluminum portion and the fluororesin portion were examined for the presence of silver by X-ray diffraction. It was. The result of the aluminum portion is as shown in FIG. 4, and silver is present by precipitation. Further, the result of the fluororesin coating part is as shown in FIG. 5, and silver is also deposited in this part. From these facts, it was confirmed that silver as a metal of nitrate was deposited on the anodized film and the fluororesin film.
[0058]
[Cooking rice heat test]
In order to confirm the rice cooking performance, the following experiment was conducted. As Example 16, a rice cooking heat test was conducted using a rice cooker that had been subjected to electrolytic treatment in the same manner as in Example 7. The rice cooking heat test was conducted using the rice cooking pot electrolyzed in Example 16 (the inner surface of the rice cooking pot was coated with a fluororesin coating, and the silver nitrate metal was deposited on the fluororesin coating). When cooking, the change in the color and smell of cooked rice on the first, second, and third days after cooking was examined. Moreover, as Comparative Example 8, rice was cooked using a conventional rice cooker that was not subjected to electrolytic treatment (the inner surface of the rice cooker was simply coated with a fluororesin coating), and cooked in the same manner as in Example 16. At the time of raising, the change of the color and smell of cooked rice on the first day, the second day, and the third day after cooking was examined.
[0059]
[Table 5]
Figure 0003712229
The results of Example 16 and Comparative Example 8 are as shown in Table 5. In the rice cooking pot of Example 16, there is no change in the color of the cooked rice even after 3 days have passed after cooking, and no odor is generated. It was. On the other hand, in the rice cooker of Comparative Example 8, the color of the cooked rice begins to turn yellow on the second day after cooking. Came out. From these facts, it was possible to confirm the precipitation of silver on the anodized film on the surface of the base material, and it was also possible to confirm the deodorizing action due to the precipitated silver.
[0061]
【The invention's effect】
  Claim 1 of the present inventionAccording to this surface treatment method, an anodic oxide film is formed on the surface of the base material through the fluororesin film on one side of the base material formed of aluminum or an alloy thereof, and at the same time, the formed anodic oxide film and the fluororesin on the surface are formed. Silver nitrate or silver sulfate silver can be deposited on the coating, and on the other side of the base material, an anodic oxide coating is directly formed, and at the same time, silver nitrate or silver sulfate silver is deposited on the formed anodic oxide coating. Can do. Even in the base material provided with such a fluororesin coating, silver is deposited on the formed anodic oxide coating and fluororesin coating, so that the antibacterial property, deodorizing property, thermal conductivity, and conductivity of the base material are improved. .
[0064]
  Further, the claims of the present invention2According to this surface treatment method, an anodized film is formed on the surface of the base material of aluminum or an aluminum alloy, and silver is deposited on the anodized film, so that antibacterial properties, deodorizing properties, thermal conductivity, conductivity It can be conveniently applied to pans, kettles, hotplates, tableware, kettles, and foils that wrap foods. By applying to these, it is possible to increase the safety of foods and cooked products and to heat them. Heating efficiency when cooking can be increased. In addition, since the anodized film is formed on the surface of the base material through the fluororesin film on the surface of the base material of aluminum or aluminum alloy, silver is deposited on the formed anodized film and the fluororesin film on the surface thereof. Antibacterial, deodorant, thermal conductivity, and conductivity are enhanced despite the fluororesin coating, and it can be conveniently applied to pots (cooking pans, etc.) and pots (cookers for rice cookers, etc.) In addition, by applying to these, the safety of foods and cooked products can be increased, and the heating efficiency when cooking is performed can be increased.
[Brief description of the drawings]
FIG. 1 is a simplified diagram schematically showing an example of a processing apparatus for carrying out an embodiment of a surface treatment method according to the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a part of a base material processed by the processing apparatus of FIG.
FIG. 3 is a partially enlarged cross-sectional view showing a part of another base material processed by the processing apparatus of FIG.
4 is a diagram showing the results of examining the aluminum portion of the plate of Example 15 by X-ray diffraction. FIG.
5 is a view showing the results of examining the fluororesin coating portion of the plate of Example 15 by X-ray diffraction. FIG.
[Explanation of symbols]
2 Electrolysis tank
4,6 electrodes
12, 14, 32 Base material
16 DC power supply
18 AC power supply
22, 34 Anodized film
24, 36 Barrier layer
26,38 porous layer
30,42 Deposited metal

Claims (2)

アルミニウム又はその合金から形成された母材の片面にフッ素樹脂被膜を形成した後、前記フッ素樹脂被膜を有する母材を、硫酸浴、シュウ酸浴又はこれらの混合浴中に硝酸銀又は硫酸銀を添加した電解液中にて、交直重畳の電流を加えて電解処理し、これによって前記フッ素樹脂被膜を通して前記母材の片面に陽極酸化被膜を形成すると同時に、添加した硝酸銀又は硫酸銀の銀をこの陽極酸化被膜及び前記フッ素樹脂被膜に析出させるとともに、前記母材の他面に陽極酸化被膜を形成すると同時に、この陽極酸化被膜に添加した硝酸銀又は硫酸銀の銀を析出させることを特徴とするアルミニウム又はその合金の表面処理方法。  After forming a fluororesin film on one side of a base material made of aluminum or an alloy thereof, add the base material having the fluororesin film to a sulfuric acid bath, an oxalic acid bath, or a mixed bath thereof, and add silver nitrate or silver sulfate In the electrolytic solution, an AC / DC superimposed current is applied to perform electrolytic treatment, thereby forming an anodic oxide coating on one side of the base material through the fluororesin coating and simultaneously adding the silver nitrate or silver sulfate silver to the anode. Aluminum or silver fluoride or silver sulfate added to the anodic oxide coating is deposited at the same time as the anodic oxide coating is formed on the other surface of the base material while being deposited on the oxide coating and the fluororesin coating. The surface treatment method of the alloy. 前記母材は、鍋、釜、ホットプレート、食器、ケトル、又はフォイルであることを特徴とする請求項に記載のアルミニウム又はその合金の表面処理方法。The surface treatment method for aluminum or an alloy thereof according to claim 1 , wherein the base material is a pot, a pot, a hot plate, tableware, a kettle, or a foil.
JP2000325941A 2000-05-22 2000-10-25 Surface treatment method of aluminum or its alloy Expired - Fee Related JP3712229B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000325941A JP3712229B2 (en) 2000-05-22 2000-10-25 Surface treatment method of aluminum or its alloy
KR1020010003703A KR100365187B1 (en) 2000-05-22 2001-01-26 Surface treatment method for aluminium or alloy thereof
EP01125530A EP1207220B1 (en) 2000-10-25 2001-10-25 Method for surface treatment of aluminum or aluminum alloy
DE60132422T DE60132422D1 (en) 2000-10-25 2001-10-25 Process for the surface treatment of aluminum and aluminum alloy
CNB011375086A CN1181228C (en) 2000-10-25 2001-10-25 Aluminium or its alloy surface treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-150652 2000-05-22
JP2000150652 2000-05-22
JP2000325941A JP3712229B2 (en) 2000-05-22 2000-10-25 Surface treatment method of aluminum or its alloy

Publications (2)

Publication Number Publication Date
JP2002047596A JP2002047596A (en) 2002-02-15
JP3712229B2 true JP3712229B2 (en) 2005-11-02

Family

ID=26592360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325941A Expired - Fee Related JP3712229B2 (en) 2000-05-22 2000-10-25 Surface treatment method of aluminum or its alloy

Country Status (2)

Country Link
JP (1) JP3712229B2 (en)
KR (1) KR100365187B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412007B2 (en) 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
JP4588410B2 (en) * 2004-10-19 2010-12-01 株式会社Gha Surface treatment method of aluminum or its alloy using acidic deep water
JP4706432B2 (en) * 2005-10-24 2011-06-22 富士ゼロックス株式会社 Core mold for seamless tubular body, method for producing core mold for seamless tubular body, and method for producing seamless tubular body using core mold
JP5278789B2 (en) 2007-12-28 2013-09-04 スズキ株式会社 Anodizing equipment
FR2990615B1 (en) * 2012-05-16 2015-07-31 Seb Sa PROCESS FOR OBTAINING A COOKING CONTAINER HAVING AN ELECTROCHEMICALLY COLORED ANODIZED EXTERIOR
ITBS20130073A1 (en) * 2013-05-21 2014-11-22 B E 4 S R L CUTTING BLADE AND ITS IMPLEMENTATION METHOD
JP6212383B2 (en) * 2013-12-25 2017-10-11 株式会社豊田中央研究所 Method for anodizing aluminum-based members
CN104152969B (en) * 2014-08-04 2016-07-27 石狮市星火铝制品有限公司 A kind of aluminium alloy alternating current electrolysis deposition silver-bearing copper color method
US10107574B2 (en) 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JP6443068B2 (en) * 2015-01-19 2018-12-26 アイシン精機株式会社 Alumite coating, aluminum alloy member provided with alumite coating, and method for producing alumite coating
JP7204153B2 (en) * 2018-09-28 2023-01-16 三菱ケミカル株式会社 Antibacterial laminate and method for producing antibacterial laminate
CN110067013A (en) * 2019-04-28 2019-07-30 西安理工大学 A kind of more cathodes, which are staggered the time, is connected differential arc oxidation control method

Also Published As

Publication number Publication date
JP2002047596A (en) 2002-02-15
KR100365187B1 (en) 2002-12-18
KR20010107527A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
EP1207220A1 (en) Method for surface treatment of aluminum or aluminum alloy
JP3712229B2 (en) Surface treatment method of aluminum or its alloy
JP2010510387A (en) Treatment method for copper coating aluminum cookware
JP4619197B2 (en) Aluminum substrate with anodized film and method for producing the same
JP2009052069A (en) Electrode for electrolysis
JP6224086B2 (en) Method for obtaining a cooking vessel with an anodized and electrochemically colored outer surface
GB2342099A (en) Electrode for chromium plating
KR100790767B1 (en) Electrolytic electrode and process of producing the same
RU2710148C1 (en) Coating of functional elements from metal
US3294498A (en) Cr-fe diffusion coating ferrous metal substrate
JP6540801B2 (en) Container steel plate and method of manufacturing container steel plate
BR112019014820A2 (en) COLORING TREATMENT METHOD FOR ALUMINUM OR ALUMINUM ALLOY
KR101310598B1 (en) Tin-plated steel sheet and method for producing the same
KR200414351Y1 (en) Kitchen utensils
ES2237898T3 (en) THREE POROSITY STRUCTURES OF HIGH POROSITY OF ALLOYS CONTAINING CHROME.
JP5789058B2 (en) Method for producing photocatalyst body
KR101433832B1 (en) Magnesium keronite method for improving corrosion resistance
CN110699732A (en) Micro-arc oxidation-based cookware coloring process
JP2012057188A (en) Member for heating cooker
KR101290065B1 (en) Manufacturing method of roasting plate for roasted meat
JP4868466B2 (en) Surface treatment method of aluminum or aluminum alloy and aluminum or alloy product treated by the surface treatment method
JPH05255890A (en) Coated material excellent in far infrared ray radiating property
JP6540800B2 (en) Container steel plate and method of manufacturing container steel plate
JPS58190651A (en) Collecting plate for solar heat
JP2006288727A (en) Inner pot for cooker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350