JP3711382B2 - Hybrid solar temperature converter - Google Patents

Hybrid solar temperature converter Download PDF

Info

Publication number
JP3711382B2
JP3711382B2 JP2001194207A JP2001194207A JP3711382B2 JP 3711382 B2 JP3711382 B2 JP 3711382B2 JP 2001194207 A JP2001194207 A JP 2001194207A JP 2001194207 A JP2001194207 A JP 2001194207A JP 3711382 B2 JP3711382 B2 JP 3711382B2
Authority
JP
Japan
Prior art keywords
solar
temperature
heat collector
hybrid
solar heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001194207A
Other languages
Japanese (ja)
Other versions
JP2003014316A (en
Inventor
雅継 天野
忠良 田中
元昭 木村
俊作 中内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001194207A priority Critical patent/JP3711382B2/en
Publication of JP2003014316A publication Critical patent/JP2003014316A/en
Application granted granted Critical
Publication of JP3711382B2 publication Critical patent/JP3711382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池を冷却して出力を向上させるばかりでなく、冷却で得られた低圧蒸気から熱を回収し、高温熱利用を可能にする装置に関する。
【0002】
【従来の技術】
従来の温水器を図1に示す。図1において、1は太陽熱吸収面であり、2は温水タンクである。この図1が示すように、単に、温水タンク2やパイプ3等を設け、温水を通過させ、配管により給湯する方法が主流であった。これは、きわめて簡単であるが、給湯温度は、その日の日照に左右され、高々60℃程度の温度しか得ることができない。
【0003】
また、太陽電池においては、その温度制御が難しく、素子の温度上昇により、性能の低下を引き起こす難点があり、従来の空気冷却式をもってしても、日射条件に合わせた素子の温度を維持することは不可能であった。
【0004】
【発明が解決しようとする課題】
上記従来の温水器では、日射が十分でないとき、高温が得られず、利用価値の低い装置となってしまうが、本発明の課題は、閉ループ内の体積(圧力)調整を行なうことで、日射に左右されず利用価値の高い温水を得るとともに、本体の熱絶縁を必要としないで効率の良い熱収集が可能とする太陽熱温度変換装置を実現することである。
【0005】
さらに、本発明は、太陽電池を冷却し、温度制御を行うことで、太陽電池の最適性能の温度を維持すると共に、モジュール化したハイブリット型とすることにより利用拡大を図り、さらに、回収した熱の多目的利用を可能にし、太陽エネルギーの多用化、省エネルギー化を図ることが可能なハイブリッド型太陽熱温度変換装置を実現することである。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、太陽電池を併設したハイブリット型の太陽熱集熱器を減圧した閉じた系に設置し、作動流体を媒体にして太陽熱で加熱された太陽電池を作動流体の蒸発で冷却し、得られた低圧の蒸気を圧縮して昇温し、昇温した高温を熱利用すると共に、太陽電池の冷却により発電性能向上を行うことを特徴とするハイブリット型太陽熱温度変換装置を提供する。
【0007】
さらに、本発明は上記課題を解決するために、太陽熱集熱器、圧縮機、熱交換器及び蒸発器を、作動流体が循環する閉じた系内に設けて成るハイブリット型太陽熱温度変換装置において、上記太陽熱集熱器は、その外表面に太陽電池を配設するとともに、作動流体を通過させることにより、加熱された太陽電池を冷却するものであり、上記熱交換器は、上記太陽熱集熱器において加温され、さらに上記圧縮機で圧縮され液体となった作動流体の熱を利用するものであることを特徴とするハイブリット型太陽熱温度変換装置を提供する。
【0008】
上記太陽熱集熱器は、その入口及び出口に夫々逆止弁が付設されていることを特徴とする。
【0009】
上記太陽熱集熱器の出口側にバイパス管を設け、このバイパス管の開閉により上記閉じられた系内の体積を変えることによって、上記逆止弁により区切られた上記太陽熱集熱器内の内圧を外気温度より低い温度の飽和蒸気圧になるように調節することにより、気温の変化に応じて太陽吸収面の温度を調節可能とすることを特徴とする。
【0010】
上記圧縮機の動力源は、上記太陽電池の電力を利用することを特徴とする。
【0011】
【発明の実施の形態】
本発明に係るハイブリッド型太陽熱温度変換装置の実施の形態を実施例に基づいて図面を参照して説明する。本発明は、太陽熱温水器で高温の熱を得るとともに、太陽電池の性能維持を図るものであり、電力供給と温水供給の両方を可能とするハイブリッド型太陽熱温度変換装置である。
【0012】
即ち、本発明は太陽電池を併用した太陽熱集熱器において、太陽電池の電力を用いて、太陽熱エネルギーを高い温度領域に変換し、熱エネルギーをより利用価値の高いものにする。また、太陽熱集熱器は水の蒸発により太陽電池を冷却し、太陽電池を最適温度に保つことができる。
【0013】
図2は、本発明に係るハイブリッド型太陽熱温度変換装置の第1の実施例の構成を説明する図である。ハイブリッド型太陽熱温度変換装置4は、作動媒体が循環する系(閉ループ)5が設けられている。作動媒体は、本実施例では水を利用する。6は太陽熱集熱器であり、入口側、出口側において2つの逆止弁7、8が設けられている。この太陽熱集熱器6の外表面が太陽熱吸収面9となって機能し、この太陽熱吸収面9には太陽電池10が貼り付けてある。
【0014】
11は圧縮機で、太陽電池10の電力で駆動する。12は熱交換器で外部と熱交換する。太陽熱吸収面9で加熱された媒体は、圧縮機11により圧縮され、熱交換器12で熱交換により外部に熱を与える。膨張弁13乃至膨張部14において膨張することによって媒体は蒸気になる。熱交換器12及び膨張部14で熱交換される外部の冷媒(空気、水等)は、熱交換用共通配管17から分岐し熱交換用配管19が、弁18、18を介して、熱交換器12及び膨張部14に配設され熱交換可能としている。
【0015】
太陽熱集熱器6の出口側には容積調整流路が設けられている。この容積調整流路は通常の管路15を有するとともに、管路15に対して、開閉弁16を有する1又は2以上バイパス管路15’が設けられている。この開閉弁16を選択的に開閉することにより系5内の容積を変え、太陽熱集熱器6の内圧を、外気温度(周囲温度)より低い温度の飽和蒸気圧になるように調節し、これによって気温の変化に応じて太陽吸収面の温度を調節することができる。
【0016】
このような構成のハイブリッド型太陽熱温度変換装置の作用を図3のP−V線図により説明する。○印を付した番号は、図2中の符号の付与された構成に対応する。圧縮機11において容積が一定の下で圧縮され、動力仕事を熱に変えて作動ガスの温度をTcから昇温する。昇温した作動流体は、熱交換器12において等圧の下で熱交換を行い温度がThに降下する。この熱交換器12において、弁18及び熱交換用配管19を選択的に開閉して、冬季における暖房、給湯等に供せられる。
【0017】
作動流体は、熱交換器12から、膨張弁13乃至膨張部14に流れ、そこで膨張し圧力が下降し、この際生じた冷熱が夏期の冷房の用に供される。さらに作動流体は逆止弁7を通り、太陽電池9の貼り付いた太陽熱集熱器10において、太陽電池9を冷却し太陽電池の温度をTcに保つようにすることができる。
【0018】
太陽熱集熱器6の出口側から出た作動流体は、容積調整流路及び逆止弁8を通り圧縮機11に再度、流入する。
【0019】
図4は、第2の実施例を示す図である。この第2の実施例は、図2に示す第1の実施例とほぼ同様の構成を有し、太陽熱集熱器6、圧縮機11、熱交換器12、膨張弁13及び膨張部14が閉ループ5内に設けられているが、この実施例2では、内部の体積を連続的に変化させるアキュミュレータ17が閉ループ内に設けられている構成を特徴とするものである。
【0020】
以上第1及び第2の実施例により本発明を説明したが、これらの実施例に限定されることなく、特許請求の範囲記載の技術事項の範囲内でいろいろな実施例があることは言うまでもない。
【0021】
【発明の効果】
本発明に係るハイブリッド型太陽熱温度変換装置は以上の構成であるから、次のような効果が生じる。日射量が少ない時は十分な温度が得られず、熱エネルギーとして利用することが難しい。しかし、本発明によれば、太陽電池の温度制御が可能になるだけでなく、常時高温度の熱が得られ、本体の熱絶縁を必要としないために効率の良い熱収集が可能であり、太陽熱エネルギーをより利用価値の高いものにできる。
【0022】
また、太陽電池と一体化したモジュールを製作することで太陽電池を冷却してそのの性能向上と利用価値を高めることができる。
【図面の簡単な説明】
【図1】従来例を説明する図である。
【図2】本発明の第1の実施例を説明する図である。
【図3】本発明の第2の実施例を説明するためのP−V線図である。
【図4】本発明の第2の実施例を説明する図である。
【符号の説明】
5 閉じた系(閉ループ)
6 太陽熱集熱器
7、8 逆止弁
9 太陽熱吸収面
10 太陽電池
11 圧縮機
12 熱交換器
13 膨張弁
14 膨張部
15 容積調整路
15’ バイパス管
16 開閉弁
17 熱交換用共通配管
18 弁
19 熱交換用配管
20 アキュミュレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus that not only improves the output by cooling a solar cell, but also recovers heat from the low-pressure steam obtained by cooling to enable utilization of high-temperature heat.
[0002]
[Prior art]
A conventional water heater is shown in FIG. In FIG. 1, 1 is a solar heat absorption surface, and 2 is a hot water tank. As shown in FIG. 1, a method of simply providing a hot water tank 2, a pipe 3 and the like, allowing hot water to pass through, and supplying hot water by piping has been the mainstream. This is very simple, but the hot water supply temperature depends on the sunshine of the day, and only a temperature of about 60 ° C. can be obtained at most.
[0003]
In addition, in solar cells, it is difficult to control the temperature, and there is a difficulty in causing a decrease in performance due to an increase in the temperature of the device. Was impossible.
[0004]
[Problems to be solved by the invention]
In the above conventional water heater, when the solar radiation is not sufficient, a high temperature cannot be obtained and the device becomes less useful. However, the problem of the present invention is to adjust the volume (pressure) in the closed loop. It is to realize a solar temperature conversion device that obtains hot water having high utility value regardless of the temperature and enables efficient heat collection without requiring thermal insulation of the main body.
[0005]
In addition, the present invention cools the solar cell and performs temperature control to maintain the temperature of the optimum performance of the solar cell, and to expand the use by making it a modular hybrid type, and further to recover the recovered heat It is possible to realize a hybrid solar temperature conversion device that enables multi-purpose use of solar energy, and can diversify solar energy and save energy.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is to install a hybrid solar collector with a solar cell in a closed system where the pressure is reduced, and to use a solar cell heated by solar heat as a working fluid. A hybrid solar temperature converter characterized in that it cools by evaporation, compresses the obtained low-pressure vapor to raise its temperature, uses the elevated temperature as heat, and improves power generation performance by cooling the solar cell I will provide a.
[0007]
Furthermore, in order to solve the above-mentioned problems, the present invention provides a hybrid solar temperature converter comprising a solar heat collector, a compressor, a heat exchanger, and an evaporator provided in a closed system in which a working fluid circulates. The solar heat collector cools the heated solar cell by disposing a solar cell on its outer surface and allowing a working fluid to pass through. The heat exchanger is the solar heat collector. The hybrid solar temperature converter is characterized in that it uses the heat of the working fluid that has been heated and further compressed into a liquid by the compressor.
[0008]
The solar heat collector is characterized in that check valves are attached to the inlet and the outlet, respectively.
[0009]
By providing a bypass pipe on the outlet side of the solar heat collector and changing the volume in the closed system by opening and closing the bypass pipe, the internal pressure in the solar heat collector delimited by the check valve is reduced. By adjusting so that the saturated vapor pressure is lower than the outside air temperature, the temperature of the solar absorption surface can be adjusted in accordance with the change in the air temperature.
[0010]
The power source of the compressor uses the power of the solar cell.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments of a hybrid solar temperature converter according to the present invention will be described based on examples with reference to the drawings. The present invention is a hybrid solar temperature converter that obtains high-temperature heat with a solar water heater and maintains the performance of the solar cell, and enables both power supply and hot water supply.
[0012]
That is, the present invention uses a solar battery power to convert solar thermal energy into a high temperature region in a solar collector using a solar battery in combination, thereby making the thermal energy more useful. Also, the solar heat collector can cool the solar cell by evaporating water and keep the solar cell at the optimum temperature.
[0013]
FIG. 2 is a diagram for explaining the configuration of the first embodiment of the hybrid solar temperature converter according to the present invention. The hybrid solar temperature converter 4 is provided with a system (closed loop) 5 in which the working medium circulates. The working medium uses water in this embodiment. 6 is a solar heat collector, and two check valves 7 and 8 are provided on the inlet side and the outlet side. The outer surface of the solar heat collector 6 functions as a solar heat absorption surface 9, and a solar cell 10 is attached to the solar heat absorption surface 9.
[0014]
Reference numeral 11 denotes a compressor that is driven by the electric power of the solar cell 10. A heat exchanger 12 exchanges heat with the outside. The medium heated by the solar heat absorption surface 9 is compressed by the compressor 11, and heat is given to the outside by heat exchange by the heat exchanger 12. The medium becomes vapor by expanding in the expansion valve 13 to the expansion section 14. The external refrigerant (air, water, etc.) heat exchanged by the heat exchanger 12 and the expansion part 14 branches from the heat exchange common pipe 17, and the heat exchange pipe 19 exchanges heat via the valves 18 and 18. It is arrange | positioned at the container 12 and the expansion part 14, and heat exchange is possible.
[0015]
A volume adjustment flow path is provided on the outlet side of the solar heat collector 6. The volume adjusting flow path has a normal pipe line 15, and one or more bypass pipe lines 15 ′ having an opening / closing valve 16 are provided for the pipe line 15. By selectively opening and closing the on-off valve 16, the volume in the system 5 is changed, and the internal pressure of the solar heat collector 6 is adjusted to a saturated vapor pressure lower than the outside air temperature (ambient temperature). The temperature of the solar absorption surface can be adjusted according to changes in the air temperature.
[0016]
The operation of the hybrid solar temperature converter having such a configuration will be described with reference to the PV diagram of FIG. The numbers marked with “○” correspond to the components with the reference numerals in FIG. The compressor 11 is compressed under a constant volume, and the power work is changed to heat to raise the temperature of the working gas from Tc. The heated working fluid is subjected to heat exchange under equal pressure in the heat exchanger 12, and the temperature drops to Th. In the heat exchanger 12, the valve 18 and the heat exchanging pipe 19 are selectively opened and closed and used for heating, hot water supply and the like in winter.
[0017]
The working fluid flows from the heat exchanger 12 to the expansion valve 13 to the expansion section 14, where it expands and the pressure drops, and the generated cold heat is used for cooling in summer. Furthermore, the working fluid passes through the check valve 7 and in the solar heat collector 10 to which the solar cell 9 is attached, the solar cell 9 can be cooled to keep the temperature of the solar cell at Tc.
[0018]
The working fluid exiting from the outlet side of the solar heat collector 6 flows again into the compressor 11 through the volume adjustment flow path and the check valve 8.
[0019]
FIG. 4 is a diagram showing a second embodiment. The second embodiment has substantially the same configuration as that of the first embodiment shown in FIG. 2, and the solar heat collector 6, the compressor 11, the heat exchanger 12, the expansion valve 13 and the expansion portion 14 are closed loop. However, the second embodiment is characterized in that the accumulator 17 for continuously changing the internal volume is provided in the closed loop.
[0020]
Although the present invention has been described with reference to the first and second embodiments, the present invention is not limited to these embodiments, and it goes without saying that there are various embodiments within the scope of the technical matters described in the claims. .
[0021]
【The invention's effect】
Since the hybrid solar temperature converter according to the present invention has the above configuration, the following effects are produced. When the amount of solar radiation is small, a sufficient temperature cannot be obtained and it is difficult to use as heat energy. However, according to the present invention, not only can the temperature of the solar cell be controlled, but high temperature heat is always obtained, and efficient heat collection is possible because the main body does not require thermal insulation, Solar thermal energy can be made more valuable.
[0022]
Also, by producing a module integrated with the solar cell, the solar cell can be cooled to improve its performance and utility value.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a conventional example.
FIG. 2 is a diagram for explaining a first embodiment of the present invention.
FIG. 3 is a PV diagram for explaining a second embodiment of the present invention.
FIG. 4 is a diagram for explaining a second embodiment of the present invention.
[Explanation of symbols]
5 Closed system (closed loop)
6 Solar heat collectors 7 and 8 Check valve 9 Solar heat absorption surface 10 Solar cell 11 Compressor 12 Heat exchanger 13 Expansion valve 14 Expansion part 15 Volume adjustment path 15 'Bypass pipe 16 On-off valve 17 Common pipe 18 for heat exchange 19 Piping for heat exchange 20 Accumulator

Claims (2)

太陽電池を併設したハイブリット型の太陽熱集熱器を減圧した閉じた系に設置し、作動流体を媒体にして太陽熱で加熱された太陽電池を作動流体の蒸発で冷却し、得られた低圧の蒸気を圧縮して昇温し、昇温した高温を熱利用すると共に、太陽電池の冷却により発電性能向上を行うハイブリット型太陽熱温度変換装置であって、
上記太陽熱集熱器は、その入口及び出口に夫々逆止弁が付設されており、
上記太陽熱集熱器の出口側にバイパス管を設け、このバイパス管の開閉により上記閉じられた系内の体積を変えることによって、上記逆止弁により区切られた上記太陽熱集熱器内の内圧を外気温度より低い温度の飽和蒸気圧になるように調節することにより、気温の変化に応じて太陽吸収面の温度を調節可能とすることを特徴とするハイブリット型太陽熱温度変換装置。
A hybrid solar collector with a solar cell is installed in a closed system with reduced pressure, and the solar cell heated by solar heat using the working fluid as a medium is cooled by evaporation of the working fluid, and the resulting low-pressure steam Is a hybrid solar temperature conversion device that heats up and heats the heated high temperature and improves the power generation performance by cooling the solar cell ,
The solar heat collector is provided with check valves at its inlet and outlet, respectively.
By providing a bypass pipe on the outlet side of the solar heat collector and changing the volume in the closed system by opening and closing the bypass pipe, the internal pressure in the solar heat collector delimited by the check valve is reduced. A hybrid type solar thermal temperature conversion device characterized in that the temperature of the solar absorption surface can be adjusted according to a change in air temperature by adjusting the saturated vapor pressure to a temperature lower than the outside air temperature .
太陽熱集熱器、圧縮機、熱交換器及び蒸発器を、作動流体が循環する閉じた系内に設けて成るハイブリット型太陽熱温度変換装置において、上記太陽熱集熱器は、その外表面に太陽電池を配設するとともに、上記蒸発器で蒸気となった作動流体を通過させることにより、加熱された太陽電池を冷却するものであり、蒸気熱交換器は、上記太陽熱集熱器において加温され、さらに上記圧縮機で圧縮され液体となった作動流体の熱を利用するハイブリット型太陽熱温度変換装置であって、
上記太陽熱集熱器は、その入口及び出口に夫々逆止弁が付設されており、
上記太陽熱集熱器の出口側にバイパス管を設け、このバイパス管の開閉により上記閉じられた系内の体積を変えることによって、上記逆止弁により区切られた上記太陽熱集熱器内の内圧を外気温度より低い温度の飽和蒸気圧になるように調節することにより、気温の変化に応じて太陽吸収面の温度を調節可能とすることを特徴とするハイブリット型太陽熱温度変換装置。
A hybrid solar temperature converter comprising a solar heat collector, a compressor, a heat exchanger, and an evaporator provided in a closed system in which a working fluid circulates, wherein the solar heat collector has a solar cell on its outer surface. And the heated solar cell is cooled by passing the working fluid that has become vapor in the evaporator, and the steam heat exchanger is heated in the solar heat collector, Furthermore, a hybrid solar temperature converter using the heat of the working fluid compressed into the liquid by the compressor ,
The solar heat collector is provided with check valves at its inlet and outlet, respectively.
By providing a bypass pipe on the outlet side of the solar heat collector and changing the volume in the closed system by opening and closing the bypass pipe, the internal pressure in the solar heat collector delimited by the check valve is reduced. A hybrid type solar thermal temperature conversion device characterized in that the temperature of the solar absorption surface can be adjusted according to a change in air temperature by adjusting the saturated vapor pressure to a temperature lower than the outside air temperature .
JP2001194207A 2001-06-27 2001-06-27 Hybrid solar temperature converter Expired - Lifetime JP3711382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194207A JP3711382B2 (en) 2001-06-27 2001-06-27 Hybrid solar temperature converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194207A JP3711382B2 (en) 2001-06-27 2001-06-27 Hybrid solar temperature converter

Publications (2)

Publication Number Publication Date
JP2003014316A JP2003014316A (en) 2003-01-15
JP3711382B2 true JP3711382B2 (en) 2005-11-02

Family

ID=19032380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194207A Expired - Lifetime JP3711382B2 (en) 2001-06-27 2001-06-27 Hybrid solar temperature converter

Country Status (1)

Country Link
JP (1) JP3711382B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876753B1 (en) * 2004-10-15 2007-01-26 Eads Space Transp Sa Sa ELECTROTHERMIC THRUSTER
KR100760011B1 (en) 2006-04-12 2007-09-19 현대건설주식회사 Ventilation system
CN102084391A (en) 2008-03-05 2011-06-01 电子湾有限公司 Method and apparatus for image recognition services
US9495386B2 (en) 2008-03-05 2016-11-15 Ebay Inc. Identification of items depicted in images
JP2010223439A (en) * 2009-03-19 2010-10-07 Tokyo Gas Co Ltd Solar heat utilizing steam generating system and solar heat utilizing absorption refrigerating machine using the same
TW201104174A (en) * 2009-07-10 2011-02-01 Ihi Corp Steam supply apparatus
US10846766B2 (en) 2012-06-29 2020-11-24 Ebay Inc. Contextual menus based on image recognition
CN112833588A (en) * 2021-02-08 2021-05-25 深圳市励科机电科技工程有限公司 Building multi-joint supply system based on green energy utilization and control method thereof

Also Published As

Publication number Publication date
JP2003014316A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
CN109114804B (en) Photovoltaic and photothermal integrated double-source heat pump hot water system driven by solar photovoltaic and mains supply in combined mode and operation method thereof
CN108731303B (en) Heat-pump-type replaces energy storage for power supply method and device
CN106958963A (en) Solar cold co-generation unit based on organic Rankine bottoming cycle and lithium bromide refrigerating
CN108625913A (en) It is a kind of to be electrically connected for system based on optically focused frequency division photovoltaic photo-thermal and the distributed cold and heat of duplex conjunction Rankine cycle technology
CN107940789A (en) A kind of new cool and thermal power combined generating system based on movable solar energy heat collector
CN105485906A (en) Water heating system through electricity generation of photovoltaic solar heat pump
JP3711382B2 (en) Hybrid solar temperature converter
CN112762424A (en) Solar thermoelectric coupling system based on combination of heat storage and compression heat pump and operation method thereof
CN205232149U (en) Cogeneration system
CN208734388U (en) It is a kind of to be electrically connected based on optically focused frequency division photovoltaic photo-thermal and the distributed cold and heat of duplex conjunction Rankine cycle technology for system
CN108930996A (en) A kind of provide multiple forms of energy to complement each other heating system and the heat supply method of cascaded utilization of energy
CN114135398A (en) Gas turbine combined cycle power generation system and method under distributed energy environment
CN113775492A (en) CO of sharing equipment2Brayton and heat pump combined cycle system and operation method
CN116658267A (en) Solar-assisted cogeneration system and operation method
CN206739403U (en) A kind of heating system of providing multiple forms of energy to complement each other of cascaded utilization of energy
CN110513759A (en) A kind of extremely frigid zones solar heat pump energy storage heating system and the method for operation
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
CN106895604B (en) Coupling type cold and heat combined supply intelligent micro-grid system
CN114738069B (en) Energy storage power generation system and energy storage power generation method
CN218717008U (en) Solar low-temperature double-tank power generation system
CN219318530U (en) Energy storage system combining PVT (PVT) with heat exchange circulation module
CN219283670U (en) Power generation and refrigeration combined system based on supercritical carbon dioxide
CN215376176U (en) Temperature control device of externally-hung nitrogen cylinder
CN219955446U (en) Photovoltaic photo-thermal integrated assembly and air source heat pump heating system
CN210463654U (en) Energy-saving photovoltaic photo-thermal heat pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3711382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term