JP3710939B2 - Painting method - Google Patents

Painting method Download PDF

Info

Publication number
JP3710939B2
JP3710939B2 JP23179698A JP23179698A JP3710939B2 JP 3710939 B2 JP3710939 B2 JP 3710939B2 JP 23179698 A JP23179698 A JP 23179698A JP 23179698 A JP23179698 A JP 23179698A JP 3710939 B2 JP3710939 B2 JP 3710939B2
Authority
JP
Japan
Prior art keywords
coating
paint
visible light
resin paint
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23179698A
Other languages
Japanese (ja)
Other versions
JP2000061389A (en
Inventor
雅彦 安孫子
昌司 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP23179698A priority Critical patent/JP3710939B2/en
Publication of JP2000061389A publication Critical patent/JP2000061389A/en
Application granted granted Critical
Publication of JP3710939B2 publication Critical patent/JP3710939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば木材や合板などの素材に塗装を施す際に、光重合とラジカル重合を併用して塗膜を比較的、短時間で硬化させる塗装方法に関する。
【0002】
【従来の技術】
従来、この種の塗装方法として、特公平1−56834号公報に記載されたものが知られている。この塗装方法では、まず、メチルエチルケトンペルオキシドおよび溶剤をポリウレタン樹脂塗料(主剤、硬化剤)に混合して下塗り塗料とし、これを素材に下塗りする。次に、ナフテン酸コバルト、光増感剤および溶剤をポリエステル樹脂の黒色エナメル塗料に混合して上塗り塗料とし、これを下塗り塗膜に上塗りしてから、紫外線を塗装面に照射する。この場合、下塗り塗膜に上塗り塗料を塗装すると、レドックス反応により、下塗りと上塗りの界面付近から常温硬化が始まる。すなわち、上塗り塗料中の促進剤であるナフテン酸コバルトが、下塗り塗料中の重合開始剤(触媒)であるメチルエチルケトンペルオキシドを分解し、ラジカルを発生させることによって、上塗りのポリエステル樹脂は、下塗りとの界面付近よりラジカル重合し、硬化する。
【0003】
また、紫外線の照射によって、上塗り塗料内の光増感剤(光重合開始剤)が分解され、ラジカルを発生することにより、上塗り塗料は、その表層部から光増感重合し、硬化する。以上のように、従来の塗装方法では、ラジカル重合と紫外線による光増感重合とを併用することにより、ラジカル重合のみの場合と比べて、塗膜を短時間で硬化・乾燥させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の塗装方法によれば、ラジカル重合と紫外線照射による光増感重合とを併用して上塗り塗膜を短時間で硬化させているため、以下のような問題がある。すなわち紫外線は、その波長が短く光の散乱や吸収を生じやすいために塗料に対する透過性が低いので、厚い塗膜(例えば、300μm以上の塗膜)や、黒色のエナメル塗装などのように濃く着色された塗膜に紫外線を照射した場合、紫外線は、塗膜深層部には透過せず、塗膜の表面に比較的近い表層部のみを透過する。このため、光増感重合による硬化は、塗膜の表層部のみで急激に進む。
【0005】
一方、ラジカル重合による上塗り塗膜の硬化は、塗膜深層部の下塗りと上塗りの界面付近から始まり、塗膜表層部側に向かって、光増感重合による表層部の塗膜硬化よりも緩やかな硬化速度で進行する。このため、塗膜表層部と塗膜深層部とこれらの間の中層部とで硬化度合の差(ばらつき)が生じ、特に中層部がなかなか硬化しない状態になる。このような塗膜の部分的な硬化度合の差により大きな塗膜応力が発生し、これによって、塗膜の素材への密着不良が生じたり、上塗り塗膜表面にしわが発生するなどの塗装面の仕上がりの低下を生じたり、素材が曲げ剛性の低い木材等である場合に反りが生じたりするという問題がある。また、紫外線照射時には、塗膜表面の温度が一時的に70〜100℃まで上昇することによって、素材の変形や変色を招くこともある。
【0006】
さらに、紫外線照射装置は、紫外線漏れを厳重に防止するためのハウジングや、発熱による温度上昇を抑えるための冷却装置などが必要になることによって、装置自体が大がかりかつ高価になるとともに、電力消費量が大きくランニングコストが高くなることによって、塗装コストの増加を招くという問題がある。
【0007】
本発明は、上記課題を解決するためになされたもので、素材に濃色塗料や比較的厚い塗膜厚さで塗装する場合でも、塗膜が硬化する時間を従来と同等の短時間に維持しながら、素材に対する密着性、塗装面の仕上がりおよび素材の形状安定性を向上させることができ、かつ低コストで塗装することができる塗装方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の塗装方法は、第1の樹脂塗料を素材に下塗りし、可視光硬化性を有するとともに、第1の樹脂塗料との化学反応によって硬化する第2の樹脂塗料を第1の樹脂塗料の塗膜に上塗りし、可視光線照射装置により、この上塗りした第2の樹脂塗料の塗膜に可視光線を1〜3分間、照射し、第1の樹脂塗料は、ポリウレタン樹脂塗料およびポリエステル樹脂塗料の一方に重合開始剤を添加した塗料であり、第2の樹脂塗料は、ポリエステル樹脂塗料およびアクリレート樹脂塗料の一方に、重合開始剤を分解するための促進剤と光増感剤を添加した塗料であることを特徴とする。
【0009】
この塗装方法によれば、素材に下塗りした第1の樹脂塗料(ポリエステル樹脂塗料およびアクリレート樹脂をベースとする塗料の一方に重合開始剤を添加した塗料)の塗膜に、第2の樹脂塗料(ポリウレタン樹脂塗料およびポリエステル樹脂塗料の一方に、重合開始剤を分解するための促進剤と光増感剤を添加した塗料)を上塗りすると、2つの樹脂塗膜の界面付近において、上塗り樹脂塗料に添加された促進剤が、下塗り樹脂塗料に添加された重合開始剤を分解し、ラジカルを発生させることによって、上塗り樹脂塗料はラジカル重合し、常温硬化するとともに、硬化が塗膜表層部側に向かって進む。このラジカル重合による上塗り樹脂塗料の硬化速度は、重合開始剤および促進剤の添加割合やこれらの種類を変えることによって、ある程度の範囲で任意に調整することができる。
【0010】
また、可視光線照射装置により、上塗した第2樹脂塗料の塗膜に可視光線を1〜3分間、照射すると、可視光線により上塗り樹脂塗料中の光増感剤が分解され、ラジカルが発生することによって、上塗り樹脂塗料が光増感重合し、硬化する。この光増感重合による硬化速度も、光増感剤の添加割合やその種類を変えることによって、ある程度の範囲で任意に調整することができる。したがって、ラジカル重合による上塗り樹脂塗料の硬化速度と、光増感重合による上塗り樹脂塗料の硬化開始タイミングおよび硬化速度とを適切に設定すれば、上塗り塗膜を、表層部と深層部(界面付近)とこれらの間の中層部との硬化度合の差が極めて少ない状態で硬化させることができ、塗膜応力の発生をより一層、良好に抑制できる。また、光増感重合により塗膜の硬化時間を短縮でき、かつ上塗り樹脂塗料が、厚塗りが可能な上記材質のような無溶剤型の高い粘性を有するものであるので、塗膜厚さを厚くすることができる。さらに、上記の上塗り樹脂塗料および下塗り樹脂塗料は、それ自体、比較的入手が容易で安価なものであるから、塗装コストをさらに削減することができる。
【0011】
さらに、可視光線は、塗膜に対する透過性が紫外線よりも一般的に高いので、上塗り塗膜の厚さが厚い場合や上塗り塗膜が濃色である場合でも、上塗り塗膜の表層部から深層部側に向かって紫外線よりも深く透過し、上塗り塗膜の表層部および中層部を硬化させることができる。したがって、従来の紫外線照射の場合と比べて、上塗り塗膜の表層部と深層部とこれらの間の中層部における硬化度合の差を小さくすることができ、塗膜応力の発生を良好に抑制できる。これによって、上塗り塗膜の素材への密着性と塗装面の仕上がりとを向上させることができ、素材が曲げ剛性の低い木材等である場合には、反りの発生を抑制できる。また、可視光線照射装置は、熱線の同時発生が一般的に少ないので、可視光線を照射したときの上塗り塗膜の表面温度は、紫外線を照射したときと比べて上昇度合が小さく、常温範囲内に維持されることによって、素材の変形や変色を生じにくい。以上によって、素材の形状安定性を向上させることができる。
【0012】
また、可視光線の照射による上塗り塗膜の硬化速度は、紫外線照射による硬化速度とほぼ同等であるので、上塗り塗膜が硬化する時間を、従来と同等の比較的短い時間に維持できる。また、従来と異なり、可視光線を照射できればよいので、可視光線を効率よく照射可能な蛍光灯などの簡易かつ安価な可視光線照射装置を設けるだけでよく、ハウジングや冷却装置を備えた大がかりかつ高価な紫外線照射装置を用いる従来の塗装方法と比べて、塗装コストを大幅に削減することができる。
【0015】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明の一実施形態に係る塗装方法について説明する。図1は、本実施形態に係る塗装方法の作業工程を示す説明図であり、この塗装方法では、以下に述べる(a)〜(c)の工程によって、塗膜厚さの厚い黒色のエナメル塗装が、化粧貼りを施した木質材である素材1の表面に施される。
【0016】
(a)下塗り工程; まず、フローコーターを用いて、素材1の塗装面に、下塗り塗料(第1の樹脂塗料)2を50〜150g/m の塗布量で塗布する。この下塗り塗料2は、ポリウレタン樹脂塗料100部(重量部)に、重合開始剤としてのメチルエチルケトンペルオキシド55%溶液5〜10部と、溶剤としてのシンナー10〜50部とを混合して形成したものである。その後、3〜10分間、常態で放置することによって、下塗り塗料2を均一に乾燥させ、厚さ10〜20μmの下塗り塗膜2aを形成する。この場合、ポリウレタン樹脂塗料は、速乾性および素材1への密着性の点からオンライン塗装に最適なものである。
【0017】
(b)上塗り工程; 次に、フローコーターを用いて、下塗り塗膜2aの上に、上塗り塗料3を150〜400g/m の塗布量で塗布する。この上塗り塗料3は、光増感剤としての2,4,6−トリメチルベンゾイルジフェニフルフォスフィンオキシド0.5〜5部を予め配合したポリエステル樹脂の黒色エナメル塗料100部に、促進剤としてのナフテン酸コバルト6%溶液1〜5部と、粘度調整用のスチレンモノマー5〜20部とを混合して形成したものである。このように上塗り塗料3を下塗り塗膜2aの上に塗布すると、下塗り塗膜2aと上塗り塗料3の界面付近において、上塗り塗料3中のナフテン酸コバルトが、下塗り塗膜2a内のメチルエチルケトンペルオキシドを分解し、ラジカルを発生させる。これにより、上塗り塗膜3aは、下塗り塗膜2aとの界面付近から表層部に向かって常温硬化する。上塗り後、3〜5分間、常態で放置し、厚さ300〜400μmの上塗り塗膜3aを形成する。この場合、上塗り塗料3は、厚塗りが可能なポリエステル樹脂塗料のような無溶剤型の高い粘性を有するものをベースとしているので、上記のように塗膜厚さを300〜400μmに厚くすることができる。
【0018】
(c)可視光線照射工程; この後、上塗り塗膜3aの上に、例えば蛍光灯などの可視光線照射装置4により、可視光線4a(波長:400〜800nm)を1〜3分間、照射する。これによって、上塗り塗膜3a中の2,4,6−トリメチルベンゾイルジフェニフルフォスフィンオキシドが分解され、ラジカルを発生することにより、上塗り塗膜3aは、表層部側から深層部側に向かって光増感重合し、硬化する。この場合、上塗り塗膜3aは、光増感重合による表層部からの硬化度合と、ラジカル重合による深層部(界面付近)からの硬化度合との差が少ない状態で、中層部まで硬化する。以上の3つの工程によって、素材1に塗膜厚さが300〜400μm程度のポリエステル樹脂の黒いエナメル塗装3aを施すことができる。
【0019】
以上のように実施される本実施形態の塗装方法によれば、上記(b)の上塗り工程において、上塗り塗膜3aは、従来と同様にラジカル重合により、下塗りとの界面付近からその表層部側に向かって硬化する。一方、上記(c)の可視光線照射工程において、上塗り塗膜3aに照射した可視光線4aは、上塗り塗膜3aに対する透過性が紫外線よりも一般的に高いので、上塗り塗膜3aの厚さが300〜400μmと厚く、かつ黒色のエナメル塗装であっても、上塗り塗膜3aの表層部から深層部側に向かって紫外線よりも深く透過し、上塗り塗膜3aの表層部および中層部を硬化させる。
【0020】
したがって、従来の紫外線照射の場合と比べて、上塗り塗膜3aの表層部と深層部(界面付近)とこれらの間の中層部とにおける硬化度合の差を小さくすることができる。特に、本実施形態では、上記のように重合開始剤、促進剤および光増感剤の添加割合やその種類を適切に選択するとともに、可視光線の照射タイミングを上記のように設定することによって、上塗り塗膜3aの表層部と深層部(界面付近)とこれらの間の中層部とにおける硬化度合の差を極めて小さくすることができ、塗膜応力の発生をより一層、良好に抑制できる。これによって、上塗り塗膜3aの素材1への密着性と塗装面の仕上がりとを向上させることができ、木質材である素材1における反りの発生を抑制できる。また、可視光線4aを照射したときの上塗り塗膜3aの表面温度は、紫外線を照射したときと比べて上昇度合が小さく、常温範囲内に維持されるので、素材1の変形や変色を生じにくい。以上によって、素材1の形状安定性を向上させることができる。
【0021】
さらに、可視光線4aの照射による上塗り塗膜3aの光増感重合の硬化速度は、紫外線照射による光増感重合の硬化速度とほぼ同等であるので、上塗り塗膜3aが硬化する時間を従来と同様の比較的短い時間に維持できる。また、従来と異なり、可視光線4aを照射できればよいので、蛍光灯などの簡易かつ安価な可視光線照射装置4を設けたり、太陽光線を塗膜3aに当てたりするだけでよく、ハウジングや冷却装置を必要とする大がかりかつ高価な紫外線照射装置を用いる従来の塗装方法と比べて、塗装コストを大幅に削減することができる。また、可視光線照射により塗膜3aを短時間で乾燥させることができ、かつ上塗り塗料3は、厚塗りが可能な、ポリエステル樹脂塗料のような無溶剤型の高い粘性を有するものをベースとしているので、塗膜厚さを厚くすることができる。さらに、上記の上塗り塗料3および下塗り塗料2は、それ自体、比較的入手が容易で安価なポリエステル樹脂塗料およびポリウレタン樹脂塗料をベースとしているので、塗装コストを削減することができる。
【0022】
なお、上記実施形態においては、上塗り塗料3を下塗り塗料2に上塗りすることにより、上塗り塗料3がラジカル重合によって硬化する構成としたが、これに限らず、上塗り塗料3が下塗り塗料2と化学反応によって硬化する構成であればよい。
【0023】
また、上記実施形態においては、下塗り塗料2としてポリウレタン樹脂塗料をベースとするものを用いたが、下塗り塗料2はこれに限らず、ポリエステル樹脂樹脂塗料をベースとするものなど、重合開始剤を添加可能でかつ上塗り塗料3のラジカル重合を生じさせるものであればよい。さらに、上塗り塗料3としてポリエステル樹脂塗料をベースとするものを用いたが、上塗り塗料3はこれに限らず、各種アクリレート樹脂塗料をベースとするものなど、光増感剤を添加することにより可視光線による光増感重合を生じるものであればよい。
【0024】
さらに、上記実施形態においては、重合開始剤(触媒)としてメチルエチルケトンペルオキシドを用いたが、重合開始剤はこれに限らず、クメンヒドロペルオキシドなどの過酸化物触媒など、促進剤によって分解されラジカルを発生するものであればよい。また、促進剤として、ナフテン酸コバルトを用いたが、促進剤はこれに限らず、コバルトの有機酸塩、芳香族3級アミンおよびバナジウム塩など、重合開始剤を分解してラジカルを発生するものであればよい。
【0025】
一方、上記実施形態においては、光増感剤として2,4,6−トリメチルベンゾイルジフェニフルフォスフィンオキシドを用いたが、光増感剤はこれに限らず、可視光の波長域(400〜800nm)を吸収域とするものや365nmを中心とする吸収域をもつものなど、可視光線によってラジカルを生じるものであればよい。なお、可視光の波長域を吸収域とする光増感剤には、ベンゾフェノン、ビス(2,4,6−トリメチルベンゾイル)−フェニフルフォスフィンオキシドおよびビス(η −2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムなどがあり、これらを単独または組み合わせて用いればよい。また、365nmを中心とする吸収域をもつ光増感剤には、ペンジルジメチルケタールや2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンなどがあり、これらを単独または組み合わせて用いればよい。
【0026】
また、上塗り塗膜3aを可視光線照射による光増感重合によって硬化させるようにしたが、塗膜応力の発生を抑制可能であれば、上塗り塗膜3aが可視光線照射によってある程度まで、常温硬化した後、紫外線を照射したり、紫外線および可視光線を両方同時または交互に照射したりすることによって、上塗り塗膜3aを硬化させるようにしてもよい。さらに、可視光線照射装置4は、蛍光灯に限らず、メタルハライドランプやハロゲンランプなど可視光線を効率よく照射できるランプを備えていればよく、あるいは可視光線照射装置4に代えて、太陽光線で上塗り塗膜3aを硬化させればなおよい。
【0027】
さらに、本発明を適用して塗装する場合、光増感重合による硬化速度が短時間であるとともに、前記上塗り塗料3が、厚塗りが可能なポリエステル樹脂塗料のような無溶剤型の高い粘性を有するものをベースとしているので、その塗膜厚さは、300〜400μmに限らず、数千μmとすることも可能である。この場合でも、前述した塗膜応力の発生の抑制などの作用効果を維持しながら塗装可能である。また、その塗装方法もフローコーティングに限らず、スプレーによる吹き付け塗装やポッティングと呼ばれる厚膜塗装方法などでもよい。さらに、上塗り塗料3は、エナメル塗料に限らず、カラークリア塗料やクリア塗料でもよい。
【0028】
なお、塗装を施す素材1として木質材を用いたが、これに限らず、パーティクルボードおよびMDFボードなどのエンジニアリングボード類、金属および合成樹脂類を用いてもよい。
【0029】
【発明の効果】
以上のように、本発明の塗装方法によれば、素材に濃色塗料や比較的厚い塗膜厚さで塗装する場合でも、塗膜が硬化する時間を従来と同等の短時間に維持しながら、素材に対する密着性、塗装面の仕上がりおよび素材の形状安定性を向上させることができ、かつ低コストで塗装することができる
【図面の簡単な説明】
【図1】本発明の一実施形態に係る塗装方法の作業工程を示す説明図である。
【符号の説明】
1 素材
2 下塗り塗料(第1の樹脂塗料)
2a 下塗り塗膜
3 上塗り塗料(第2の樹脂塗料)
3a 上塗り塗膜
4 可視光線照射装置
4a 可視光線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating method for curing a coating film in a relatively short time by using both photopolymerization and radical polymerization when coating a material such as wood or plywood.
[0002]
[Prior art]
Conventionally, as this kind of coating method, the one described in Japanese Patent Publication No. 1-56834 is known. In this coating method, first, methyl ethyl ketone peroxide and a solvent are mixed with a polyurethane resin paint (main agent, curing agent) to form an undercoat paint, which is then undercoated on the material. Next, cobalt naphthenate, a photosensitizer, and a solvent are mixed with a black enamel paint of a polyester resin to form a top coat, which is overcoated on the undercoat and then irradiated with ultraviolet rays. In this case, when a top coat is applied to the undercoat film, normal temperature curing starts from the vicinity of the interface between the undercoat and the top coat due to a redox reaction. That is, cobalt naphthenate, which is an accelerator in the top coat, decomposes methyl ethyl ketone peroxide, which is a polymerization initiator (catalyst) in the base coat, and generates radicals. It is radically polymerized and cured from the vicinity.
[0003]
Further, the photosensitizer (photopolymerization initiator) in the top coat is decomposed by irradiation with ultraviolet rays, and radicals are generated, whereby the top coat is photosensitized and cured from the surface layer portion thereof. As described above, in the conventional coating method, the coating is cured and dried in a short time by using radical polymerization and photosensitization polymerization by ultraviolet rays in combination as compared with the case of radical polymerization alone.
[0004]
[Problems to be solved by the invention]
However, according to the above conventional coating method, since the top coating film is cured in a short time by using radical polymerization and photosensitization polymerization by ultraviolet irradiation, there are the following problems. In other words, ultraviolet rays have a short wavelength and are likely to cause light scattering and absorption, and therefore have low permeability to paints. Therefore, they are darkly colored such as thick paint films (for example, paint films of 300 μm or more) and black enamel paints. When the coated film is irradiated with ultraviolet rays, the ultraviolet rays are not transmitted through the deep layer portion of the coating film, but only through the surface layer portion relatively close to the surface of the coating film. For this reason, hardening by photosensitized polymerization proceeds rapidly only at the surface layer portion of the coating film.
[0005]
On the other hand, the curing of the top coat film by radical polymerization starts near the interface between the undercoat and the top coat of the deep part of the paint film, and is more gradual than the paint film cure of the surface layer part by photosensitizing polymerization toward the paint film surface layer side. Progress at cure speed. For this reason, a difference (variation) in the degree of curing occurs between the coating film surface layer portion, the coating film deep layer portion, and the middle layer portion therebetween, and the middle layer portion is particularly difficult to cure. Due to the difference in the degree of partial curing of the coating film, a large coating film stress is generated, which results in poor adhesion of the coating film to the material or wrinkles on the top coating film surface. There is a problem that the finish is lowered or warping occurs when the material is wood or the like having low bending rigidity. Moreover, at the time of ultraviolet irradiation, the temperature of the coating film surface temporarily rises to 70 to 100 ° C., which may cause deformation or discoloration of the material.
[0006]
Furthermore, the ultraviolet irradiation device requires a housing for strictly preventing leakage of ultraviolet rays and a cooling device for suppressing a temperature rise due to heat generation, so that the device itself becomes large and expensive, and also consumes power. However, there is a problem that the coating cost increases due to the large running cost.
[0007]
The present invention has been made to solve the above-mentioned problems. Even when the material is coated with a dark paint or a relatively thick coating thickness, the time for curing the coating is maintained in the same short time as before. It is an object of the present invention to provide a coating method that can improve the adhesion to the material, the finish of the painted surface, and the shape stability of the material, and can be applied at low cost.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a first resin paint comprising: applying a first resin paint to a material as a first resin paint; the first resin paint has a visible light curability and is cured by a chemical reaction with the first resin paint; The coated film of the second resin paint is irradiated with visible light for 1 to 3 minutes by a visible light irradiation device , and the first resin paint is a polyurethane resin paint and a polyester resin paint. The second resin paint is a paint in which an accelerator for decomposing the polymerization initiator and a photosensitizer are added to one of the polyester resin paint and the acrylate resin paint. It is characterized by being.
[0009]
According to this coating method, a second resin paint (a coating material obtained by adding a polymerization initiator to one of a polyester resin paint and an acrylate resin-based paint) is applied to the material. When one of the polyurethane resin paint and the polyester resin paint is overcoated with an accelerator for decomposing a polymerization initiator and a photosensitizer, it is added to the top resin paint near the interface between the two resin coatings. The generated accelerator decomposes the polymerization initiator added to the undercoat resin paint and generates radicals, so that the top coat resin paint undergoes radical polymerization and cures at room temperature, and curing proceeds toward the coating surface layer side. move on. The curing rate of the top coat resin coating by radical polymerization can be arbitrarily adjusted within a certain range by changing the addition ratio of the polymerization initiator and the accelerator and the kind thereof.
[0010]
In addition, when visible light is applied to the coated film of the second resin coating by the visible light irradiation device for 1 to 3 minutes, the photosensitizer in the top coating resin coating is decomposed by visible light and radicals are generated. As a result, the overcoat resin coating is photosensitized and cured. The curing rate by this photosensitizing polymerization can also be arbitrarily adjusted within a certain range by changing the addition ratio and the type of the photosensitizer. Therefore, if the curing rate of the top coating resin coating by radical polymerization and the curing start timing and curing speed of the top coating resin coating by photosensitizing polymerization are appropriately set, the top coating film can be applied to the surface layer portion and the deep layer portion (near the interface). And the middle layer portion between them can be cured with a very small difference in the degree of curing, and the occurrence of coating film stress can be more satisfactorily suppressed. In addition, the photosensitizing polymerization can shorten the curing time of the coating film, and the top-coated resin paint has a high viscosity of a solventless type like the above-mentioned material that can be thickly coated. Can be thicker. Furthermore, since the above-mentioned top coat resin paint and undercoat resin paint are themselves relatively easily available and inexpensive, the coating cost can be further reduced.
[0011]
Furthermore, visible light generally has a higher permeability to the coating film than ultraviolet rays, so even if the thickness of the top coating film is thick or the top coating film is dark, the surface layer of the top coating film is deep from the surface layer. It penetrates deeper than ultraviolet rays toward the part side, and the surface layer part and middle layer part of the top coat film can be cured. Therefore, compared with the case of conventional ultraviolet irradiation, the difference in the degree of curing in the surface layer portion and deep layer portion of the top coat film and the middle layer portion between them can be reduced, and the occurrence of coating film stress can be suppressed well. . As a result, the adhesion of the top coat film to the material and the finish of the painted surface can be improved, and the occurrence of warpage can be suppressed when the material is wood having low bending rigidity. In addition, since visible light irradiation devices generally do not generate heat rays at the same time, the surface temperature of the top coating film when irradiated with visible light is smaller than that when irradiated with ultraviolet light and is within the normal temperature range. Therefore, the material is hardly deformed or discolored. As described above, the shape stability of the material can be improved.
[0012]
Further, the curing rate of the top coating film by irradiation with visible light is substantially the same as the curing rate by ultraviolet irradiation, so that the time for curing the top coating film can be maintained in a relatively short time as before. Also, unlike conventional ones, it is only necessary to irradiate visible light, so it is only necessary to provide a simple and inexpensive visible light irradiation device such as a fluorescent lamp that can efficiently irradiate visible light, and a large and expensive housing and cooling device are provided. Compared with a conventional coating method using a simple ultraviolet irradiation device, the coating cost can be greatly reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a coating method according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an explanatory view showing a work process of a coating method according to this embodiment. In this coating method, a black enamel coating having a thick coating film is formed by the processes (a) to (c) described below. However, it is given to the surface of the raw material 1 which is a wood material to which makeup is applied.
[0016]
(A) Undercoat process; First, the undercoat paint (first resin paint) 2 is applied to the coated surface of the material 1 at a coating amount of 50 to 150 g / m 2 using a flow coater. This undercoat paint 2 is formed by mixing 5 to 10 parts of a 55% solution of methyl ethyl ketone peroxide as a polymerization initiator and 10 to 50 parts of thinner as a solvent in 100 parts (parts by weight) of a polyurethane resin paint. is there. Thereafter, the undercoat paint 2 is uniformly dried by leaving it in a normal state for 3 to 10 minutes to form an undercoat paint film 2a having a thickness of 10 to 20 μm. In this case, the polyurethane resin paint is optimal for on-line coating from the viewpoint of quick drying and adhesion to the material 1.
[0017]
(B) Top coating process; Next, the top coating material 3 is apply | coated by the application amount of 150-400 g / m < 2 > on the undercoat coating film 2a using a flow coater. This top coat paint 3 is used as an accelerator to 100 parts of a black enamel polyester resin pre-blended with 0.5 to 5 parts of 2,4,6-trimethylbenzoyldiphenyfluphosphine oxide as a photosensitizer. It is formed by mixing 1 to 5 parts of a cobalt naphthenate 6% solution and 5 to 20 parts of a styrene monomer for viscosity adjustment. When the top coat 3 is applied onto the undercoat 2a in this way, cobalt naphthenate in the topcoat 3 decomposes methyl ethyl ketone peroxide in the undercoat 2a in the vicinity of the interface between the undercoat 2a and the top coat 3. And generate radicals. Thereby, the top coat film 3a is cured at room temperature from the vicinity of the interface with the undercoat film 2a toward the surface layer portion. After the top coating, it is left in a normal state for 3 to 5 minutes to form a top coating film 3a having a thickness of 300 to 400 μm. In this case, since the top coating material 3 is based on a solvent-free high-viscosity material such as a polyester resin coating material that can be thickly coated, the coating thickness should be increased to 300 to 400 μm as described above. Can do.
[0018]
(C) Visible light irradiation step; Thereafter, the visible light 4a (wavelength: 400 to 800 nm) is irradiated on the top coat film 3a by a visible light irradiation device 4 such as a fluorescent lamp for 1 to 3 minutes. As a result, 2,4,6-trimethylbenzoyldiphenyfluphosphine oxide in the top coat film 3a is decomposed and radicals are generated, so that the top coat film 3a is directed from the surface layer side to the deep layer side. Photosensitized and cured. In this case, the top coat film 3a is cured to the middle layer portion with a small difference between the degree of curing from the surface layer portion by photosensitized polymerization and the degree of curing from the deep layer portion (near the interface) due to radical polymerization. The black enamel coating 3a of the polyester resin whose coating film thickness is about 300-400 micrometers can be given to the raw material 1 by the above three processes.
[0019]
According to the coating method of the present embodiment carried out as described above, in the top coating step (b), the top coating film 3a is subjected to radical polymerization as in the prior art from the vicinity of the interface with the base coating on the surface layer side. Hardens toward. On the other hand, in the visible light irradiation step (c), the visible light 4a irradiated to the top coating film 3a is generally higher in transmittance with respect to the top coating film 3a than the ultraviolet light. Even if it is 300-400 micrometers thick and black enamel coating, it penetrates deeper than ultraviolet rays from the surface layer part of the top coat film 3a toward the deep layer part side, and the surface layer part and the middle layer part of the top coat film 3a are cured. .
[0020]
Therefore, compared with the case of the conventional ultraviolet irradiation, the difference of the curing degree in the surface layer part and deep layer part (near interface) of top coat film 3a, and the middle layer part between these can be made small. In particular, in the present embodiment, by appropriately selecting the addition ratio and type of the polymerization initiator, accelerator and photosensitizer as described above, and setting the irradiation timing of visible light as described above, The difference in the degree of cure between the surface layer portion and the deep layer portion (near the interface) of the top coat film 3a and the middle layer portion between them can be made extremely small, and the generation of the coating film stress can be further satisfactorily suppressed. Thereby, the adhesiveness to the raw material 1 of the top coat film 3a and the finish of the coating surface can be improved, and generation | occurrence | production of the curvature in the raw material 1 which is a wooden material can be suppressed. Further, the surface temperature of the top coat film 3a when irradiated with visible light 4a has a lower degree of increase than that when irradiated with ultraviolet rays and is maintained within a normal temperature range, so that deformation or discoloration of the material 1 is unlikely to occur. . As described above, the shape stability of the material 1 can be improved.
[0021]
Furthermore, since the curing rate of the photosensitized polymerization of the top coating film 3a by irradiation with visible light 4a is substantially equal to the curing rate of the photosensitized polymerization by ultraviolet irradiation, the time for curing the top coating film 3a is conventionally set. A similar relatively short time can be maintained. Also, unlike the conventional case, it is only necessary to irradiate visible light 4a, so it is only necessary to provide a simple and inexpensive visible light irradiating device 4 such as a fluorescent lamp, or to apply sunlight to the coating film 3a. Compared with the conventional coating method using a large-scale and expensive ultraviolet irradiation device that requires a coating, the coating cost can be greatly reduced. Moreover, the coating film 3a can be dried in a short time by irradiation with visible light, and the top coating material 3 is based on a solvent-free high viscosity material such as a polyester resin coating material that can be thickly coated. Therefore, the coating thickness can be increased. Furthermore, since the above-mentioned top coat 3 and undercoat 2 are based on polyester resin paint and polyurethane resin paint which are relatively easily available and inexpensive, the coating cost can be reduced.
[0022]
In the above embodiment, the top coating 3 is cured by radical polymerization by overcoating the top coating 3 on the undercoating 2. However, the present invention is not limited to this, and the top coating 3 chemically reacts with the undercoating 2. As long as the structure is cured by the above method.
[0023]
In the above embodiment, the undercoat paint 2 is based on a polyurethane resin paint. However, the undercoat paint 2 is not limited to this, and a polymerization initiator such as a polyester resin resin paint base is added. Any material capable of causing radical polymerization of the top coating material 3 may be used. Further, the top coating material 3 is based on a polyester resin paint, but the top coating material 3 is not limited to this, and visible light can be added by adding a photosensitizer such as those based on various acrylate resin paints. Any photopolymerization-sensitive polymerization may be used.
[0024]
Furthermore, in the above embodiment, methyl ethyl ketone peroxide is used as the polymerization initiator (catalyst). However, the polymerization initiator is not limited to this, and a radical is generated by being decomposed by an accelerator such as a peroxide catalyst such as cumene hydroperoxide. Anything to do. Moreover, although cobalt naphthenate was used as an accelerator, the accelerator is not limited to this, and an organic acid salt of cobalt, an aromatic tertiary amine, a vanadium salt, or the like that decomposes a polymerization initiator to generate a radical. If it is.
[0025]
On the other hand, in the above embodiment, 2,4,6-trimethylbenzoyldiphenifluphosphine oxide was used as the photosensitizer, but the photosensitizer is not limited to this, and the visible light wavelength range (400 to 400- Any material that generates a radical by visible light, such as one having an absorption region of 800 nm) or one having an absorption region centered on 365 nm, may be used. Photosensitizers having an absorption region in the visible light wavelength range include benzophenone, bis (2,4,6-trimethylbenzoyl) -phenyfluphosphine oxide, and bis (η 5 -2,4-cyclopentadiene. -1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like may be used alone or in combination. Photosensitizers having an absorption region centered at 365 nm include pendyl dimethyl ketal and 2-hydroxy-2-methyl-1-phenylpropan-1-one, which can be used alone or in combination. That's fine.
[0026]
In addition, the top coating film 3a was cured by photosensitization polymerization by irradiation with visible light, but if the generation of coating film stress could be suppressed, the top coating film 3a was cured at room temperature to some extent by irradiation with visible light. Then, you may make it harden the top coat film 3a by irradiating an ultraviolet-ray, or irradiating both an ultraviolet-ray and visible light simultaneously or alternately. Furthermore, the visible light irradiation device 4 is not limited to a fluorescent lamp, but may be provided with a lamp that can efficiently irradiate visible light such as a metal halide lamp or a halogen lamp. Alternatively, the visible light irradiation device 4 may be overcoated with sunlight. More preferably, the coating film 3a is cured.
[0027]
Furthermore, when applying by applying the present invention, the curing rate by photosensitized polymerization is short, and the top coating 3 has a high solventless viscosity such as a polyester resin coating that can be thickly applied. Since it is based on what it has, the coating-film thickness is not restricted to 300-400 micrometers, It is also possible to set it as several thousand micrometers. Even in this case, the coating can be performed while maintaining the effects such as the suppression of the occurrence of the coating film stress described above. Also, the coating method is not limited to flow coating, and may be spray coating by spraying or a thick film coating method called potting. Furthermore, the top coat 3 is not limited to enamel paint, but may be a color clear paint or a clear paint.
[0028]
In addition, although the wooden material was used as the raw material 1 to be painted, the present invention is not limited thereto, and engineering boards such as particle boards and MDF boards, metals, and synthetic resins may be used.
[0029]
【The invention's effect】
As described above, according to the coating method of the present invention, even when the material is coated with a dark paint or a relatively thick coating thickness, the time for curing the coating is maintained in a short time equivalent to the conventional one. Can improve the adhesion to the material, the finish of the painted surface and the shape stability of the material, and can be painted at low cost [Brief description of the drawings]
FIG. 1 is an explanatory view showing a work process of a coating method according to an embodiment of the present invention.
[Explanation of symbols]
1 Material 2 Undercoat paint (first resin paint)
2a Undercoat film 3 Topcoat paint (second resin paint)
3a Top coat 4 Visible light irradiation device 4a Visible light

Claims (1)

第1の樹脂塗料を素材に下塗りし、
可視光硬化性を有するとともに、前記第1の樹脂塗料との化学反応によって硬化する第2の樹脂塗料を前記第1の樹脂塗料の塗膜に上塗りし、
可視光線照射装置により、この上塗りした前記第2の樹脂塗料の塗膜に可視光線を1〜3分間、照射し、
前記第1の樹脂塗料は、ポリウレタン樹脂塗料およびポリエステル樹脂塗料の一方に重合開始剤を添加した塗料であり、
前記第2の樹脂塗料は、ポリエステル樹脂塗料およびアクリレート樹脂塗料の一方に、前記重合開始剤を分解するための促進剤と光増感剤を添加した塗料であることを特徴とする塗装方法。
Undercoat the first resin paint on the material,
A second resin paint having a visible light curable property and cured by a chemical reaction with the first resin paint is overcoated on the coating film of the first resin paint,
The visible light irradiation device is used to irradiate the coated film of the second resin coating with the visible light for 1 to 3 minutes ,
The first resin paint is a paint obtained by adding a polymerization initiator to one of a polyurethane resin paint and a polyester resin paint,
The coating method, wherein the second resin paint is a paint obtained by adding an accelerator and a photosensitizer for decomposing the polymerization initiator to one of a polyester resin paint and an acrylate resin paint .
JP23179698A 1998-08-18 1998-08-18 Painting method Expired - Lifetime JP3710939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23179698A JP3710939B2 (en) 1998-08-18 1998-08-18 Painting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23179698A JP3710939B2 (en) 1998-08-18 1998-08-18 Painting method

Publications (2)

Publication Number Publication Date
JP2000061389A JP2000061389A (en) 2000-02-29
JP3710939B2 true JP3710939B2 (en) 2005-10-26

Family

ID=16929165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23179698A Expired - Lifetime JP3710939B2 (en) 1998-08-18 1998-08-18 Painting method

Country Status (1)

Country Link
JP (1) JP3710939B2 (en)

Also Published As

Publication number Publication date
JP2000061389A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3282881B2 (en) Method for producing overcoat lacquer coating
JP5133481B2 (en) Repair painting method
JP4832309B2 (en) Active energy ray-curable coating composition and coating film forming method
JP2007536405A (en) Radiation curable coatings for plastic substrates from polyfunctional acrylate oligomers
JPH1085660A (en) Formation of repair coating
JP3710939B2 (en) Painting method
US9616460B2 (en) Terminate-on-demand cationic polymerization method for forming a two-dimensional coating
JPH0235777B2 (en)
JPH0368475A (en) Formation of coating film
JPH0671217A (en) Coating method
JP4601977B2 (en) Method for curing coating film comprising photocurable coating composition, coating film formed by the method, and substrate coated with the coating film
JPH02129213A (en) Coating composition
US9274429B2 (en) Method for producing layered materials using long-lived photo-induced active centers
JPH10426A (en) Repairing coating method
JP2000107688A (en) Inorganic ceramic decorative board
JP3354122B2 (en) How to paint hard plastic surface
JPH0952068A (en) Method for curing paint film
JPH05161869A (en) Method for forming paint film
JP3247267B2 (en) Matte coating formation method
JPH10109064A (en) Repairing coating method
WO2023075619A1 (en) A multilayer varnished surface, a method of producing a multilayer varnished surface and a furniture product containing such a surface
JPS6291274A (en) Method for thickly painting non-metal material
JPH09299870A (en) Formation of shielding coating using photo curable coating material
JPS61115970A (en) Paint composition for two-piece can and manufacture of coated two-piece can
JP3794271B2 (en) Decorative painting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term