JP3710355B2 - Pipe end anti-corrosion structure for pipe joints - Google Patents

Pipe end anti-corrosion structure for pipe joints Download PDF

Info

Publication number
JP3710355B2
JP3710355B2 JP2000094625A JP2000094625A JP3710355B2 JP 3710355 B2 JP3710355 B2 JP 3710355B2 JP 2000094625 A JP2000094625 A JP 2000094625A JP 2000094625 A JP2000094625 A JP 2000094625A JP 3710355 B2 JP3710355 B2 JP 3710355B2
Authority
JP
Japan
Prior art keywords
ring
anticorrosion
core
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000094625A
Other languages
Japanese (ja)
Other versions
JP2001280580A (en
Inventor
祥一 平田
康裕 池内
仁 猪尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Togawa Rubber Co Ltd
Original Assignee
Kurimoto Ltd
Togawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Togawa Rubber Co Ltd filed Critical Kurimoto Ltd
Priority to JP2000094625A priority Critical patent/JP3710355B2/en
Publication of JP2001280580A publication Critical patent/JP2001280580A/en
Application granted granted Critical
Publication of JP3710355B2 publication Critical patent/JP3710355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、一方の管受口に他方の挿し口を挿入した伸縮機能付き管継手における、前記挿し口の管端防食コアに関するものである。
【0002】
【従来の技術】
従来、ダクタイル鋳鉄管を地中に埋設して管路を形成するにあたり、その管路は管全体に亘って塗装やライニングによって防食を行い、図17に示すように、先行する管1の受口1aに実線から鎖線のごとく後続管2の挿し口2aを挿入して継合されるのが一般的である。図中、5はライニング層、7はパッキングである。
【0003】
この管路の布設は常に定寸法な管1、2による継合だけでは留まらず、工事現場で所定の長さになるように管2を切断して継合しなければならない場合がある。このように途中で管2を切断すると、切断面となる管端面は前記塗装が剥離し、防食機能が損なわれて赤水などの発生を招くことになる。そのため、切管後の端面に防食用塗料を再度塗布して防食を行うことが行われている。
【0004】
また近頃では、地震等によって管路に非定常的な外力が直撃したときでも、管継手において伸縮作用が可能で、外力を吸収緩和する耐震性が強く求められるようになり、その継手部に伸縮機能を持つものが増えてきた。図17はその代表的なNS形継手と呼ばれるもので、一方の管1の受口1aの内面全周に溝3aを形成し、その溝3aにロックリング3を嵌め、他方の管2の挿し口2a端の外面を先端に向かって下り勾配のテーパ状2bに形成するとともに、そのテーパ面2bの後方全周に溝4aを形成し、その溝4aに前記ロックリング3に係止する挿し口リング4を嵌め、前記一方の管1の受口1aに、前記他方の管2の挿し口2aを前記挿し口リング4を前記ロックリング3を乗り越えて挿し入れた構成である。
【0005】
この管継手においては、挿し口2a先端が受口1aの内壁1bに突き当たった位置から挿し口リング4がロックリング3に当たる位置まで挿し口2aを移動可能となり、その継合された継手部に地震等により大きな引き抜き力が作用した場合、挿し口リング4とロックリング3とが掛かり合うことにより離脱を阻止する。
【0006】
このNS形継手において、所定の長さになるように管2を切断して布設する場合、切管後の管端の外周面には上記テーパ面2b及び切管用挿し口リング4を嵌め込むための嵌合溝4aが別途に形成される。この溝4aと管端面及びテーパー面2bについても防食用塗料が剥がされた状態となるので再度防食用塗料を塗布して防食が行われる。
【0007】
しかし、切管後の端面に防食用塗料を塗布して再度防食を行う場合、寒冷時においては乾燥に時間がかかり、また、切替工事などの流水が完全に止まらない個所では、塗布しにくい等の作業しづらい、といった問題がある。また、耐震継手として用いられるNS形継手の特徴として、図17実線から鎖線のごとく、受口1aに挿し口2aを挿入する際に、挿し口リング4がロックリング3を押し広げながら挿入されるために、その挿入時のロックリング3との接触により、その再塗装した防食塗料が剥がれて十分な防食効果が得られないという問題がある。
【0008】
このため、切管後の端面に再度防食用塗料を塗布して管端を防食する以外の方法として、その切管端面に、ステンレスや合成樹脂などからなる薄肉状の防食リング(コア)をゴム系接着剤で接着したり(実開平7−22198号公報等)、図18に示すように、ゴムなどの弾性体で形成された防食キャップ(コア)6を取付けたりして(特開平7−253189号公報等)、防食塗料が剥離した部分を防食することが行われている。図中、8は防食キャップ6の固定用リングであり、周方向一つ割りの開き勝手のステンレス等の弾性材から成り(図3参照)、防食キャップ6の内面全周の溝9に嵌めて、その拡張力によって防食キャップ6を挿し口2aの管端に固定する。
【0009】
【発明が解決しようとする課題】
上記防食コア6による管端防食構造においては、防食コア6の外周縁は挿し口リング4の外面に至っている。このため、受口1aに挿し口2aを挿入する際の挿し口リング4がロックリング3を挿し広げて乗り越えるとき、その両者3、4の接触により、防食コア6が剥がれたり、破損したりする恐れがある。特に、そのロックリング3を押し広げる時に、一つ割り開き勝手のロックリング3の分割部付近に設けられた切欠個所に、防食コア6が挿入につれて接触すると、摩擦等によって損傷して完全な防食効果を満足することができなくなる場合がある。
【0010】
この発明は、上記実情に鑑み、防食コアの上記ロックリング3等との接触摩擦などによる剥がれ及び損傷をなくすことを課題とする。
【0011】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、上述の挿し口リングを嵌めた挿し口の防食コアによる管端防食構造において、その防食コアの外側端縁を挿し口リングとその溝間に介在して固定することにしたのである。このようにすれば、防食コアは、その外側端縁を挿し口リングで、内側端縁を固定リングでそれぞれ固定されるため、剥れにくくなる。また、挿し口リングがロックリングを押し広げて乗り越えていく管継手においては、挿し口リングは防食コアを介在せずにロックリングに直接に接触することとなるため、その接触による防食リングの剥がれおよび損傷は防止される。このとき、ロックリングに防食コアが仮に接触しても、その内外側端縁が固定されているため、剥がれにくい。
【0012】
【発明の実施の形態】
この発明の実施形態としては、一方の管の受口に他方の管の挿し口が挿入され、その他方の管の挿し口端の外面は先端に向かって下り勾配のテーパ状に形成されているとともに、そのテーパ面の後方全周に溝が形成され、その溝に挿し口リングが嵌められた管継手において、前記挿し口端全周に、前記挿し口リング用溝からテーパ面、挿し口端面を通って内面に至る防食コアを嵌め、この防食コアの外側端縁は挿し口リングとその溝間に介在されて固定されているとともに、防食コアの内側端縁はその全周に至る固定リングによって固定されている構成を採用し得る。
【0013】
この構成において、上記防食コアの外表面の摩耗し易い部分に耐摩耗層が形成されているものとすることが好ましい。このようにすれば、防食コアがロックリングなどの切欠個所と擦れても、摩損することがなく、損傷しない。耐摩耗層の形成は、耐摩耗材の貼布、塗布、一体成型などの種々の手段を採用する。より具体的には、防食コア本体をエチレンプロピレンゴムなどの弾性体とし、耐摩耗層を超高分子量ポリエチレン等とする。
【0014】
上記エチレンプロピレンゴム(EPR)と超高分子量ポリエチレンは同様な化学構成であり、EPRは、加硫(成形)温度が150℃で、例えばテクノール(大塚テクノ株式会社:商品名)などの超高分子量ポリエチレンの融点:136℃より高いため、EPRの加硫時に、超高分子量ポリエチレンは完全に溶融してEPRのエチレン分子、プロピレン分子に確実に溶着(接着)する。このため、超高分子量ポリエチレンによる耐摩耗層を有する防食コアは、例えば、超高分子量ポリエチレンフィルムを金型に入れ、その金型に未加硫のエチレンプロピレンゴムを入れて、一体加硫成形する。
【0015】
また、ゴムの場合、一般に金属管や鋳鉄管と同色の黒色表面のため、そのゴム製防食コアを挿し口に装着しても、その装着の有無が判別しにくい。このため、そのゴム(防食コア)か耐摩耗層(超高分子量ポリエチレン)の少なくとも一方を、金属管や鋳鉄管と異なる色に着色し、その着色でもって、防食コアの装着有無の判別を容易にして、継手接合時の防食コアの付け忘れの防止をすることが好ましい。耐摩耗層を形成していない場合は、防食コアを着色する。
【0016】
さらに、挿し口リング用溝も新たに形成した場合には、シールによって露出面をカバーして防食することが好ましい。
【0017】
【実施例】
一実施例を図1乃至図4に示し、この実施例も図17に示したNS型管継手に係り、その切管した挿し口2aは外面を先端に向かって下り勾配のテーパ状2bにするとともに、そのテーパ面2bの後方全周に溝4aが形成されて、その溝4aに一つ割りの挿し口リング4が嵌め込まれる。この構成の挿し口2aにEPR製の防食コア10が嵌め込まれ、この防食コア10の外側端縁10aは後方に伸びて挿し口リング4の下面に入り込み、そのリング4の縮径力によって挿し口2a外面に固定される。この端縁10aの入り込み長さは任意である。また、防食コア10の内側縁10bも後方に伸び、図3で示す一つ割り開き勝手の固定リング8によって固定される。図中、上述と同一符号は同一物を示す。
【0018】
この実施例は、図4aに示すように、防食コア10を嵌めて固定リング8で固定した後、同図bのごとく、挿し口リング4を嵌める。この状態で、図17に示すように受口1aに挿し込む。なお、切断面、すなわち、切断端面2c、テーパ面2b及び溝4aには防食塗料を施すことが好ましく、少なくとも溝4aには塗布する。
【0019】
図5に示す実施例は、その溝4aまで外側端縁10aを延長させて溝4aのシール部13を成したものである。このとき、図6(a)、(b)に示すように、そのシール部13は防食コア10と別ものとし得る。シール部13は防食コア10と同一のものでもよいが、他の弾性体、自己融着テープなどを採用し得る。
【0020】
図7に示す実施例は、防食コア10外面の耐摩耗性を向上させたものであり、コア10の全周、又は部分的に超高分子量(100万以上)ポリエチレンフィルム11を融着し耐摩耗層を形成してEPRの損傷を防ぐ。このとき、挿し口2aを受口1aに挿入する際に、ロックリング3を切管用挿し口リング4が押し広げながら挿入されるため、ロックリング3の分割部付近に設けられた切欠個所によってコア10のテーパー面10bが損傷する。また、挿し口リング4にはその一つ割り部分に結合ピースが取付けられるためにわずかな凹凸ができ、その凹凸によるロックリング3との接触によっても挿入時にコア10へ損傷を与える。このため、部分的な耐摩耗層11はその損傷を与える恐れのある個所とする。
【0021】
この超高分子量ポリエチレンフィルム11をEPRに融着して成形されている防食コア10は、超高分子量ポリエチレンとEPRが同様の化学構造を持っているために、一体加硫成形することにより両者が融着されて一体的に成形される。これは、EPRの加硫成形温度が150度で超高分子量ポリエチレンの融点より高いため、溶融した超高分子量ポリエチレンがEPRのエチレン分子、プロピレン分子に結合して強固に一体となる。使用される超高分子量ポリエチレンフィルムは低摩擦性、耐摩耗性に優れており、コア10を構成するEPR12は硬度がJIS K 6253の5.に規定されるデュロメータ硬さ試験による硬度でHA =40〜90程度が望ましい。
【0022】
図8は防食コア10の成形に使用する金型(下型)20を示しており、この金型20を用いた成形過程の要部断面を図9(a)〜(c)に示す。まず、同図(a)に示すように、黒色以外、例えば黄色に着色された超高分子量ポリエチレンフィルム11に曲げぐせをつけて金型20のコア10の外面形状をなすキャビティ21内にセットし、同図(b)に示すように未加硫のEPR12を同金型20のキャビティ21内にセットして、熱板温度150度のプレス22で金型面圧が約80kgf/cm2 となる成形圧力で15分程度加硫成形を行い、超高分子量ポリエチレンフィルム11とEPR12を熱融着させて、同図(c)に示すようにして管端防食コア10をその上面の仕上げ厚さ(図7:t)が0.3〜0.5mmとなるように一体成形する。
【0023】
ここで、超高分子量ポリエチレンフィルム11の曲げぐせ形状や寸法は成形する防食コア10によって如何ようにも設定できるし、図示ではNS形継手の挿し口2a用に製作した金型についてであるが、他の継手のどのような形状の挿し口2aであっても金型20(キャビティ21)をその形状に応じたものに変えることによって一体加硫成形できることは言うまでもない。また、プレス22側に超高分子量ポリエチレンフィルム11を固定しておき未加硫のEPR12に超高分子量ポリエチレンフィルム11を熱融着させて、コア10内面側にも超高分子量ポリエチレンフィルム11でライニングする方法も考えられる。さらに、成形された管端防食コア10の外周面管軸方向長さおよび外周部厚さは継手に許容される屈曲、伸縮を阻害しない範囲で任意に設定することができる。
【0024】
超高分子量ポリエチレンフィルム11の厚みは、0.05mm〜0.4mmの範囲で行うことが好ましい。前記フィルム11の厚みが薄すずぎるものを使用すると、金型20へセッティングした際に熱変形を生じ、曲げぐせが保持できなくなり、所定の個所に融着できなくなる。また、薄すぎると、融着した際に穴が空いてしまいEPR12を傷つけないという当初の目的が達成できなくなる。逆に厚すぎるものを使用した場合は、冷却後、ゴム12と超高分子量ポリエチレン11の収縮率の差により薄肉部分の形状が大きく変形してしまう。また、あまり厚いものに仕上げると、コア10と継手内面の凸部が強く接触して接合できないと言う問題が発生する。
【0025】
なお、ここで言う「大きく変形してしまう」とは、フィルム11が厚すぎると、プレスした際に融着しなくてもいい個所までフィルム11で覆ってしまったり、波打ってしまって水の浸入を完全には防げなくなることを含んでおり、また、フィルム11が厚すぎると、ゴム12との一体物でなく超高分子量ポリエチレンフィルム11のみの管端防食コア10となる恐れがあるということも言え、この場合、ゴム部分が減ると、接続管1、2の内外径許容差の吸収ができなくなるなど問題がある。
【0026】
上述のような方法でEPR12に超高分子量ポリエチレンフィルム11を部分的に融着させてEPR部分を残した(融着していない)防食コア10とすることで、EPR12が管の内外径許容量差を円滑に吸収する。因みに、コア10の全表面にフィルム11を溶着すると、すなわち、フィルム11でEPR12を包むと、その中のEPR12も変形しにくくなり、その吸収効果は劣化する。一方、超高分子量ポリエチレンフィルム11でライニングされた部分の引張応力はEPR12単体部分より約2倍となり、引き裂き強さが約1.5倍、滑り(摩耗性)等の物理特性が向上する。
【0027】
ここで、超高分子量ポリエチレンフィルム11とEPR12を単に挿し口2a内外面に覆うだけでは両者間を緊密にすることができずに、その間への水の浸入を防ぐことができないが、融着により成形したことで、EPR12と超高分子量ポリエチレンフィルム11の境目についても継ぎ目(溝、段差)のない表面に成形され、緊密にすることができ水の浸入を防ぐことができる。
【0028】
図10乃至図16には他の各実施例を示し、図10の実施例は超高分子量ポリエチレンフィルム11をEPR12の延長部(外側端縁)10a(シール部13)まで至らしたものである。図11、12はEPR12の延長部10aを止めて、その延長部を超高分子量ポリエチレンフィルム11のみで形成したものである。図13、14は、図11、12とは逆に、超高分子量ポリエチレンフィルム11をコア10の露出する部分のみとしたものである。図15(a)は超高分子量ポリエチレンフィルムをテーパ面10cのみとし、同図(b)は防食コア10の内面側表面、端面、及びテーパ面10cの全外表面に融着させたものである。図16(a)、(b)の実施例は、溝9に代えて、単に段部9aを形成して、固定リング8を位置決めするようにしている。この態様は図5乃至図7、図10乃至15のものにも採用し得る。なお、各実施例において、EPR12、フィルム11の形成厚みを変更することで、挿し口2a外周部の厚み(外径)を任意に設定し得る。
【0029】
なお、実施例はNS形継手の場合であったが、挿し口リング4を有する他の管継手においても、この発明は採用し得ることは勿論である。
【0030】
【発明の効果】
この発明は、以上のようにしたので、防食コアの剥離・損傷を有効に防止し得る。このため、防食機能を長期に亘って維持できる。
【図面の簡単な説明】
【図1】一実施例の要部斜視図
【図2】(a)は図1のA−A線断面図、(b)は(a)の要部拡大図
【図3】同実施例の固定リングの斜視図
【図4】同実施例の取付け作用図
【図5】他の実施例の要部断面図
【図6】他の各実施例の要部断面図
【図7】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図8】同実施例の製作用金型斜視図
【図9】同実施例の製作図
【図10】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図11】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図12】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図13】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図14】(a)は他の実施例の要部断面図、(b)は(a)の要部拡大図
【図15】他の各実施例の要部断面図
【図16】他の各実施例の要部断面図
【図17】管継手構造の一例の部分断面図
【図18】従来例の要部断面図
【符号の説明】
1、2 管
1a 受口
2a 挿し口
2b 挿し口テーパ面
3 ロックリング
3a ロックリング用溝
4 切管用挿し口リング
4a 挿し口リング用溝
5 ライニング
6、10 防食コア
8 固定リング
10a コア外側端縁
10b コア内側縁
10c コアテーパ面
11 耐摩耗層(超高分子量ポリエチレンフィルム)
12 EPR
13 シール部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tube end anticorrosion core of the insertion port in a pipe joint with an expansion / contraction function in which the other insertion port is inserted into one tube receiving port.
[0002]
[Prior art]
Conventionally, when a ductile cast iron pipe is buried in the ground to form a pipe line, the pipe line is subjected to anticorrosion by painting or lining over the entire pipe, and as shown in FIG. In general, the insertion port 2a of the succeeding tube 2 is inserted into 1a as shown by a chain line from the solid line and joined. In the figure, 5 is a lining layer, and 7 is a packing.
[0003]
The laying of the pipe line is not always limited only by joining with the fixed size pipes 1 and 2, and sometimes the pipe 2 must be cut and joined so as to have a predetermined length at the construction site. When the tube 2 is cut in this way, the coating is peeled off from the tube end surface serving as a cut surface, and the anticorrosion function is impaired, leading to generation of red water and the like. Therefore, anticorrosion is performed by re-applying the anticorrosive paint to the end face after the cut tube.
[0004]
Recently, even when an unsteady external force hits a pipeline directly due to an earthquake or the like, the pipe joint can be expanded and contracted, and the earthquake resistance that absorbs and relaxes the external force has been strongly demanded. The number of functions has increased. FIG. 17 shows a typical NS-type joint. A groove 3a is formed on the entire inner surface of the receiving port 1a of one pipe 1, and a lock ring 3 is fitted into the groove 3a, and the other pipe 2 is inserted. The outer surface of the end of the mouth 2a is formed into a tapered shape 2b having a downward slope toward the tip, and a groove 4a is formed in the entire rear periphery of the tapered surface 2b, and the slot 4a is engaged with the lock ring 3 The ring 4 is fitted, and the insertion port 2 a of the other tube 2 is inserted into the receiving port 1 a of the one tube 1 and the insertion ring 4 is inserted over the lock ring 3.
[0005]
In this pipe joint, the insertion port 2a can be moved from the position where the tip of the insertion port 2a hits the inner wall 1b of the receiving port 1a to the position where the insertion port ring 4 contacts the lock ring 3, and the joint is joined to the earthquake. When a large pulling force is applied due to, for example, the insertion ring 4 and the lock ring 3 are engaged with each other, detachment is prevented.
[0006]
In this NS type joint, when the pipe 2 is cut and laid so as to have a predetermined length, the tapered surface 2b and the cut ring insertion ring 4 are fitted into the outer peripheral surface of the pipe end after the cut pipe. The fitting groove 4a is formed separately. Since the anticorrosion paint is also peeled off from the groove 4a, the pipe end surface, and the tapered surface 2b, the anticorrosion paint is applied again to prevent corrosion.
[0007]
However, when anticorrosion paint is applied to the end face after the cut tube and corrosion prevention is performed again, it takes time to dry in cold weather, and it is difficult to apply in places where running water does not stop completely, such as switching work. There is a problem that it is difficult to work. Further, as a feature of the NS type joint used as an earthquake-resistant joint, when inserting the insertion port 2a into the receiving port 1a as shown by a chain line from FIG. 17, the insertion port ring 4 is inserted while expanding the lock ring 3. For this reason, there is a problem that due to the contact with the lock ring 3 at the time of insertion, the repainted anticorrosion paint is peeled off and a sufficient anticorrosion effect cannot be obtained.
[0008]
For this reason, a thin anticorrosion ring (core) made of stainless steel, synthetic resin, or the like is applied to the end surface of the cut tube as a method other than applying the anticorrosion paint again to the end surface after the cut tube to prevent the tube end Adhering with a system adhesive (Japanese Utility Model Laid-Open No. 7-22198) or the like, or attaching an anticorrosion cap (core) 6 formed of an elastic body such as rubber as shown in FIG. No. 253189, etc.), corrosion prevention is performed on the part where the anticorrosion paint is peeled off. In the figure, 8 is a ring for fixing the anticorrosion cap 6, which is made of an elastic material such as stainless steel that is split in the circumferential direction (see FIG. 3), and is fitted in the groove 9 around the inner surface of the anticorrosion cap 6. The anticorrosion cap 6 is inserted and fixed to the tube end of the opening 2a by the expansion force.
[0009]
[Problems to be solved by the invention]
In the pipe end anticorrosion structure using the anticorrosion core 6, the outer peripheral edge of the anticorrosion core 6 reaches the outer surface of the insertion ring 4. For this reason, when the insertion ring 4 when inserting the insertion opening 2a into the receiving opening 1a inserts and extends over the lock ring 3, the anticorrosion core 6 peels off or breaks due to the contact between both of them. There is a fear. In particular, when the lock ring 3 is expanded, if the anticorrosion core 6 comes into contact with the notch provided in the vicinity of the split part of the split ring 3 as it is inserted, it is damaged due to friction or the like, resulting in complete anticorrosion. The effect may not be satisfied.
[0010]
This invention makes it a subject to eliminate peeling and damage by contact friction etc. with the said lock ring 3 grade | etc., Of an anticorrosion core in view of the said situation.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a tube end anticorrosion structure with an anticorrosion core of an insertion opening fitted with the above insertion opening ring, and the outer end edge of the anticorrosion core is interposed between the insertion opening ring and the groove thereof. I decided to fix it. In this way, the anticorrosion core is difficult to peel off because its outer edge is inserted into the mouth ring and the inner edge is fixed to the fixing ring. In addition, in pipe joints where the insertion ring pushes over the lock ring and gets over it, the insertion ring is in direct contact with the lock ring without interposing the anticorrosion core. And damage is prevented. At this time, even if the anticorrosion core comes into contact with the lock ring, the inner and outer edges thereof are fixed, so that they are not easily peeled off.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, the insertion port of the other tube is inserted into the receiving port of one tube, and the outer surface of the insertion port end of the other tube is formed in a tapered shape with a downward slope toward the tip. In addition, in a pipe joint in which a groove is formed in the entire rear periphery of the tapered surface, and an insertion port ring is fitted in the groove, a taper surface and an insertion port end surface are formed from the insertion port ring groove to the entire periphery of the insertion port end. The anticorrosion core that passes through the inner surface of the anticorrosion core is inserted into the insertion ring and the groove, and the inner end edge of the anticorrosion core is fixed to the entire circumference. The structure fixed by can be adopted.
[0013]
In this configuration, it is preferable that a wear-resistant layer is formed on a portion where the outer surface of the anticorrosion core is easily worn. In this way, even if the anticorrosion core rubs against a notch such as a lock ring, it will not be worn and will not be damaged. The wear-resistant layer is formed by various means such as application, application, and integral molding of wear-resistant materials. More specifically, the anticorrosion core body is made of an elastic body such as ethylene propylene rubber, and the wear resistant layer is made of ultrahigh molecular weight polyethylene or the like.
[0014]
The ethylene propylene rubber (EPR) and the ultra high molecular weight polyethylene have the same chemical constitution, and the EPR has a vulcanization (molding) temperature of 150 ° C., for example, ultra high molecular weight such as technol (Otsuka Techno Co., Ltd .: trade name). Since the melting point of polyethylene is higher than 136 ° C., during the vulcanization of EPR, the ultrahigh molecular weight polyethylene is completely melted and reliably welded (adhered) to the ethylene molecules and propylene molecules of EPR. For this reason, an anticorrosion core having a wear-resistant layer made of ultrahigh molecular weight polyethylene is formed by, for example, placing an ultrahigh molecular weight polyethylene film in a mold and placing unvulcanized ethylene propylene rubber in the mold, and integrally vulcanizing and molding. .
[0015]
In the case of rubber, since it is generally a black surface having the same color as a metal tube or cast iron tube, it is difficult to determine whether or not the rubber anticorrosive core is attached to the insertion port. For this reason, at least one of the rubber (corrosion-proof core) or wear-resistant layer (ultra-high molecular weight polyethylene) is colored in a color different from that of metal pipes or cast iron pipes. Thus, it is preferable to prevent forgetting to attach the anticorrosion core during joint joining. When the wear resistant layer is not formed, the anticorrosion core is colored.
[0016]
Furthermore, when a groove for the insertion port ring is also newly formed, it is preferable to cover the exposed surface with a seal to prevent corrosion.
[0017]
【Example】
FIGS. 1 to 4 show an embodiment. This embodiment also relates to the NS type pipe joint shown in FIG. 17, and the cut-out insertion port 2a has a tapered surface 2b having a downward slope toward the tip. At the same time, a groove 4a is formed on the entire rearward circumference of the tapered surface 2b, and the split insertion ring 4 is fitted into the groove 4a. The EPR anticorrosion core 10 is fitted into the insertion opening 2 a having this configuration, and the outer end edge 10 a of the anticorrosion core 10 extends rearward and enters the lower surface of the insertion opening ring 4. 2a is fixed to the outer surface. The entering length of the end edge 10a is arbitrary. Moreover, the inner edge 10b of the anticorrosion core 10 also extends rearward and is fixed by a fixing ring 8 having a single split opening shown in FIG. In the figure, the same reference numerals as described above denote the same items.
[0018]
In this embodiment, as shown in FIG. 4a, after the anticorrosion core 10 is fitted and fixed by the fixing ring 8, the insertion ring 4 is fitted as shown in FIG. 4b. In this state, as shown in FIG. 17, it is inserted into the receptacle 1a. The cut surface, that is, the cut end surface 2c, the tapered surface 2b, and the groove 4a are preferably coated with anticorrosive paint, and applied to at least the groove 4a.
[0019]
In the embodiment shown in FIG. 5, the outer edge 10a is extended to the groove 4a to form the seal portion 13 of the groove 4a. At this time, as shown in FIGS. 6A and 6B, the seal portion 13 can be different from the anticorrosion core 10. The seal portion 13 may be the same as the anticorrosion core 10, but other elastic bodies, self-bonding tape, or the like can be adopted.
[0020]
In the embodiment shown in FIG. 7, the wear resistance of the outer surface of the anticorrosive core 10 is improved, and the ultrahigh molecular weight (1 million or more) polyethylene film 11 is fused around the entire core 10 or partially. A wear layer is formed to prevent EPR damage. At this time, when the insertion port 2a is inserted into the receiving port 1a, the lock ring 3 is inserted while the cutting tube insertion port ring 4 is expanded, so that the core is formed by a notch provided near the split portion of the lock ring 3. Ten tapered surfaces 10b are damaged. Moreover, since the connecting piece is attached to the split part of the insertion port ring 4, slight irregularities are formed, and the core 10 is damaged at the time of insertion by contact with the lock ring 3 due to the irregularities. For this reason, the partial wear-resistant layer 11 is a portion that may be damaged.
[0021]
The anticorrosion core 10 formed by fusing the ultrahigh molecular weight polyethylene film 11 to EPR has the same chemical structure as the ultrahigh molecular weight polyethylene and EPR. It is fused and formed integrally. This is because the vulcanization molding temperature of EPR is 150 ° C. and higher than the melting point of ultra high molecular weight polyethylene, so that the melted ultra high molecular weight polyethylene is bonded to the EPR ethylene molecules and propylene molecules to be firmly integrated. The ultra high molecular weight polyethylene film used is excellent in low friction and wear resistance, and the EPR 12 constituting the core 10 has a hardness of JIS K 6253. It is desirable that HA is about 40 to 90 in terms of hardness according to the durometer hardness test specified in 1.
[0022]
FIG. 8 shows a mold (lower mold) 20 used for molding the anticorrosion core 10, and main parts of the molding process using the mold 20 are shown in FIGS. 9 (a) to 9 (c). First, as shown in FIG. 3A, a bend is placed on an ultra-high molecular weight polyethylene film 11 colored other than black, for example, yellow, and set in a cavity 21 that forms the outer surface shape of the core 10 of the mold 20. As shown in FIG. 4B, the unvulcanized EPR 12 is set in the cavity 21 of the mold 20 and the mold surface pressure is about 80 kgf / cm 2 by the press 22 having a hot plate temperature of 150 degrees. Vulcanization molding is performed at molding pressure for about 15 minutes, and the ultrahigh molecular weight polyethylene film 11 and the EPR 12 are heat-sealed, and as shown in FIG. FIG. 7: integrally molded so that t) is 0.3 to 0.5 mm.
[0023]
Here, the bent shape and dimensions of the ultrahigh molecular weight polyethylene film 11 can be set in any way by the anticorrosion core 10 to be molded, and in the drawing, it is a mold manufactured for the NS type joint insertion port 2a. It goes without saying that any shape of the insertion opening 2a of another joint can be integrally vulcanized by changing the mold 20 (cavity 21) to a shape corresponding to the shape. Also, the ultra high molecular weight polyethylene film 11 is fixed to the press 22 side, the ultra high molecular weight polyethylene film 11 is heat-sealed to the unvulcanized EPR 12, and the core 10 inner surface side is also lined with the ultra high molecular weight polyethylene film 11. A way to do this is also conceivable. Furthermore, the outer circumferential surface tube axial length and the outer peripheral portion thickness of the molded tube end anticorrosion core 10 can be arbitrarily set within a range that does not inhibit the bending and expansion / contraction allowed for the joint.
[0024]
The thickness of the ultrahigh molecular weight polyethylene film 11 is preferably 0.05 mm to 0.4 mm. If the film 11 is too thin, the film 11 is thermally deformed when it is set on the mold 20, so that the bend cannot be held and cannot be fused at a predetermined location. On the other hand, if it is too thin, the original purpose of not damaging the EPR 12 due to the formation of a hole at the time of fusion cannot be achieved. On the other hand, when a too thick one is used, the shape of the thin portion is greatly deformed after cooling due to the difference in shrinkage between the rubber 12 and the ultrahigh molecular weight polyethylene 11. Moreover, if it finishes too thickly, the problem that the convex part of the core 10 and a joint inner surface will contact strongly and cannot join will generate | occur | produce.
[0025]
In this case, “deforms greatly” means that if the film 11 is too thick, it may be covered with the film 11 even if it does not need to be fused when pressed, This includes that the intrusion cannot be completely prevented, and that if the film 11 is too thick, there is a possibility that the tube end anticorrosion core 10 is made of only the ultrahigh molecular weight polyethylene film 11 instead of being integrated with the rubber 12. However, in this case, if the rubber part is reduced, there is a problem that the inner and outer diameter tolerances of the connecting pipes 1 and 2 cannot be absorbed.
[0026]
By the above-described method, the ultrahigh molecular weight polyethylene film 11 is partially fused to the EPR 12 to form the anticorrosion core 10 in which the EPR portion remains (not fused), so that the EPR 12 has an allowable inner and outer diameter of the pipe. Smoothly absorb the difference. Incidentally, when the film 11 is welded to the entire surface of the core 10, that is, when the EPR 12 is wrapped with the film 11, the EPR 12 therein is also hardly deformed, and the absorption effect is deteriorated. On the other hand, the tensile stress of the portion lined with the ultrahigh molecular weight polyethylene film 11 is about twice that of the EPR 12 alone, the tear strength is about 1.5 times, and physical properties such as sliding (wear) are improved.
[0027]
Here, simply covering the ultrahigh molecular weight polyethylene film 11 and the EPR 12 with the inner and outer surfaces of the insertion port 2a cannot make the two tight, and cannot prevent water from entering between them. By being molded, the boundary between the EPR 12 and the ultrahigh molecular weight polyethylene film 11 is also formed on a surface without a seam (groove, step), and can be tight and can prevent water from entering.
[0028]
10 to 16 show other embodiments, and the embodiment of FIG. 10 is obtained by extending the ultrahigh molecular weight polyethylene film 11 to the extended portion (outer edge) 10a (seal portion 13) of the EPR 12. 11 and 12, the extension portion 10a of the EPR 12 is stopped, and the extension portion is formed only by the ultrahigh molecular weight polyethylene film 11. FIG. In FIGS. 13 and 14, contrary to FIGS. 11 and 12, the ultrahigh molecular weight polyethylene film 11 is only the exposed portion of the core 10. FIG. 15A shows an ultra-high molecular weight polyethylene film having only a tapered surface 10c, and FIG. 15B shows a case where the anticorrosion core 10 is fused to the inner surface, the end surface, and the entire outer surface of the tapered surface 10c. . In the embodiment shown in FIGS. 16A and 16B, the fixing ring 8 is positioned by simply forming a step 9 a instead of the groove 9. This embodiment can also be adopted in those shown in FIGS. 5 to 7 and FIGS. In addition, in each Example, the thickness (outer diameter) of the outer peripheral part of the insertion port 2a can be arbitrarily set by changing the formation thickness of the EPR 12 and the film 11.
[0029]
In addition, although the Example was a case of NS type joint, of course, this invention can be employ | adopted also in the other pipe joint which has the insertion port ring 4. FIG.
[0030]
【The invention's effect】
Since this invention was carried out as described above, peeling and damage of the anticorrosion core can be effectively prevented. For this reason, the anticorrosion function can be maintained over a long period of time.
[Brief description of the drawings]
1 is a perspective view of an essential part of one embodiment. FIG. 2A is a cross-sectional view taken along line AA in FIG. 1, and FIG. 1B is an enlarged view of an essential part of FIG. Fig. 4 is a perspective view of a fixing ring. Fig. 4 is a view showing the operation of the same embodiment. Fig. 5 is a cross-sectional view of an essential part of another embodiment. FIG. 8 is a sectional view of the main part of another embodiment, FIG. 8B is an enlarged view of the main part of FIG. 8A and FIG. (A) is a cross-sectional view of the main part of another embodiment, (b) is an enlarged view of the main part of (a). FIG. 11 (a) is a cross-sectional view of the main part of another embodiment, (b) is ( FIG. 12A is a cross-sectional view of a main part of another embodiment. FIG. 13B is an enlarged view of a main part of FIG. 13A. FIG. Cross-sectional view of main parts, (b) is an enlarged view of main parts of (a). [FIG. 14] (a) is a cross-sectional view of main parts of another embodiment, (b) FIG. 15 is a cross-sectional view of main parts of other examples. FIG. 16 is a cross-sectional view of main parts of other examples. FIG. 17 is a partial cross-sectional view of an example of a pipe joint structure. 18] Cross section of the main part of the conventional example [Explanation of symbols]
1, 2 Tube 1a Receiving port 2a Inserting port 2b Inserting port tapered surface 3 Lock ring 3a Locking ring groove 4 Cutting tube insertion ring 4a Inserting ring groove 5 Lining 6, 10 Corrosion-proof core 8 Fixing ring 10a Core outer edge 10b Core inner edge 10c Core taper surface 11 Wear resistant layer (ultra high molecular weight polyethylene film)
12 EPR
13 Sealing part

Claims (2)

一方の管1の受口1aに他方の管2の挿し口2aが挿入され、その他方の管2の挿し口端の外面は先端に向かって下り勾配のテーパ状に形成されているとともに、そのテーパ面2bの後方全周に溝4aが形成されて、その溝4aに挿し口リング4が嵌められた管継手において、
上記挿し口端全周に、上記挿し口リング用溝4aからテーパ面2b、挿し口端面を通って内面に至る防食コア10を嵌め、この防食コア10の外側端縁は挿し口リング4の下面にその挿し口リング4先端から入り込んで挿し口リング4と挿し口2a外面間に介在されてその挿し口リング4の縮径力によって固定されているとともに、防食コア10の内側端縁はその全周に亘る固定リング8によって固定されていることを特徴とする管継手における管端防食構造。
The insertion port 2a of the other tube 2 is inserted into the receiving port 1a of the one tube 1, and the outer surface of the insertion port end of the other tube 2 is formed in a tapered shape with a downward slope toward the tip. In the pipe joint in which the groove 4a is formed in the entire rear periphery of the tapered surface 2b and the insertion ring 4 is fitted in the groove 4a,
The anticorrosion core 10 extending from the insertion opening ring groove 4a to the inner surface through the insertion opening end face is fitted to the entire circumference of the insertion opening end, and the outer edge of the anticorrosion core 10 is the lower surface of the insertion opening ring 4 The insertion ring 4 is inserted from the tip of the insertion ring 4 and is interposed between the insertion ring 4 and the outer surface of the insertion opening 2a and fixed by the diameter reducing force of the insertion opening ring 4, and the inner edge of the anticorrosion core 10 is all A pipe end anticorrosion structure in a pipe joint, wherein the pipe end is fixed by a fixing ring 8 over the circumference.
上記防食コア10の本体がエチレンプロピレンゴム12から成り、その外表面の摩耗し易い部分に超高分子ポリエチレンから成る耐摩耗層11が形成されていることを特徴とする請求項1に記載の管継手における管端防食構造。  2. The pipe according to claim 1, wherein the main body of the anticorrosion core 10 is made of ethylene propylene rubber 12, and a wear resistant layer 11 made of ultrahigh molecular weight polyethylene is formed on a portion of the outer surface of the core which is easily worn. Pipe end anticorrosion structure for joints.
JP2000094625A 2000-03-30 2000-03-30 Pipe end anti-corrosion structure for pipe joints Expired - Lifetime JP3710355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094625A JP3710355B2 (en) 2000-03-30 2000-03-30 Pipe end anti-corrosion structure for pipe joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094625A JP3710355B2 (en) 2000-03-30 2000-03-30 Pipe end anti-corrosion structure for pipe joints

Publications (2)

Publication Number Publication Date
JP2001280580A JP2001280580A (en) 2001-10-10
JP3710355B2 true JP3710355B2 (en) 2005-10-26

Family

ID=18609651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094625A Expired - Lifetime JP3710355B2 (en) 2000-03-30 2000-03-30 Pipe end anti-corrosion structure for pipe joints

Country Status (1)

Country Link
JP (1) JP3710355B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248971A (en) * 2004-03-01 2005-09-15 Kubota Corp Corrosion-preventive structure of pipe-end face
JP4566763B2 (en) * 2005-01-27 2010-10-20 株式会社キッツ Pipe fitting
CN108102505B (en) * 2017-12-05 2021-05-28 上海森琅建设工程有限公司 Pipeline inner wall coating, preparation method thereof and application thereof in underground pipe network
JP7339748B2 (en) * 2019-03-15 2023-09-06 株式会社栗本鐵工所 CAST IRON PIPE HAVING JOINT PORTION AND METHOD FOR CAST IRON PIPE JOINT CORROSION PREVENTION

Also Published As

Publication number Publication date
JP2001280580A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
KR101561031B1 (en) Device for protecting and sealing of pipe connecting part, sealing method of pipe connecting part
JP3710355B2 (en) Pipe end anti-corrosion structure for pipe joints
JP3710354B2 (en) Pipe end anticorrosion core and method of manufacturing the same
JPH08312876A (en) Pipe end corrosion-preventive structure for inner and outer surface resin coated metal pipe
JP3706434B2 (en) Manhole joint structure
US9551449B2 (en) Method for creating a seal between pipe liners
JPH08320095A (en) Polyethylene pipe connecting method and polyethylene pipe
JP3856893B2 (en) Pipe terminal processing structure and processing method
JP2004293746A (en) Corrosion-proof pipe end structure, and corrosion-proof core fitting method
JP3121573B2 (en) Corrosion protection structure at pipe end in pipe joint and its corrosion protection core
JP3341386B2 (en) Hose connection structure
JP2000266250A (en) Coming-off preventive connecting structure between fiber reinforced resin pipe and socket
JP3319503B2 (en) Corrosion protection structure at the end of the pipe joint for earthquake resistance
JP3689011B2 (en) Pipe end anti-corrosion structure for pipe joints
JP3691424B2 (en) Fixing structure of pipe end anticorrosion core, fixing ring used therefor, and pipe joint method
JP4458934B2 (en) Anti-corrosion structure of pipe end face
JPH1144387A (en) Corrosion-proof pipe joint
JP2005256957A (en) Pipe end corrosion-proof structure
JP5456350B2 (en) Cast iron joint for drain pipe
JP2003322292A (en) Pipe end corrosion-resistant structure
JPH1122879A (en) Slip-on type antiseismic pipe fitting and its fitting method
JP2003254478A (en) Anti-corrosive member for cut pipe end surface
JPS582591Y2 (en) Composite pipe connection
JPH10299970A (en) Branch pipe joint and piping branching method
JP3628568B2 (en) Fixing structure of pipe end anticorrosion core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3710355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term