JP3710022B2 - Cu-based sputtering target for electrode film formation and manufacturing method thereof - Google Patents
Cu-based sputtering target for electrode film formation and manufacturing method thereof Download PDFInfo
- Publication number
- JP3710022B2 JP3710022B2 JP21705297A JP21705297A JP3710022B2 JP 3710022 B2 JP3710022 B2 JP 3710022B2 JP 21705297 A JP21705297 A JP 21705297A JP 21705297 A JP21705297 A JP 21705297A JP 3710022 B2 JP3710022 B2 JP 3710022B2
- Authority
- JP
- Japan
- Prior art keywords
- transition metal
- target
- electrode film
- metal element
- sputtering target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体、液晶、PDP(プラズマディスプレイ)等に用いられる電極膜を形成するために用いられる電極膜形成用Cu系スパッタリングターゲットおよびその製造方法に関するものである。
【0002】
【従来の技術】
現在の様々なデバイスの電極材について製品別に見ると、TFT(Thin Film Transistor)液晶の電極形成用材料としては純Cr、Mo、W、Ta単体かこれらの合金が採用されている。また、LSI等の電極膜形成にはAlまたはAl合金が採用されている。また、PDP(Plasma Display)の配線材料にはCu、Alが採用されている。
最近では、TFT液晶は画素の高精細化に伴い配線幅の縮小が不可避となりつつあり、前記高融点金属系の配線材料からAl系やCu系の配線材料の採用が検討されている。また、半導体デバイスでは回路の高集積化に伴い、Cu合金配線を採用することが検討されている。
【0003】
AlまたはAl合金配線ではエレクトロマイグレーション、ストレスマイグレーションによる断線の問題があり、加熱工程においてヒロックと呼ばれる突起が膜表面に発生し、積層した配線が導通する等の問題がある。一方、Cu配線にはこの様な問題点が少なく、しかもAl配線に比べて電気抵抗率が低いという特徴を有するため有効と考えられている。
しかしながら、Cu電極膜は耐酸化性に劣り、加熱工程において酸化が進行し抵抗値が増加するという問題点がありこの点の改善が要望されている。
その一つの解決方法として、Cu電極膜の耐酸化性を改善するために添加元素を加えて合金化することにより改善する方法が提案されている。
【0004】
たとえばスパッタリングにより形成されたCu−Ti合金薄膜層を窒素含有雰囲気中で熱処理し、配線膜表面に薄いTiN層を形成し、耐酸化性を向上させようという提案がなされている。(1988年秋季第49回応用物理学会学術講演会講演予稿集第2分冊第434頁)
また、特開平3−196619号ではスパッタリング法により形成されたCu−Zr合金膜を窒素またはNH3含有雰囲気で熱処理を施すことによりCu配線膜表面にZr窒化層を形成することにより耐酸化性を向上させる方法が提案されている。
また、同様に窒化層を形成する方法として、特開平3−196620号では同じくスパッタリング法により形成されたCu−B膜を窒素またはNH3含有雰囲気で熱処理を施すことによりCu配線膜表面にB窒化層を形成する事により耐酸化性を向上させる方法の提案がなされている。
【0005】
また、Cu、Crを別々の蒸発源から同時に蒸着する方法によりCu−Cr合金膜を形成した後、10マイナス6乗Torr以下の真空雰囲気において熱処理を施し、Cu配線膜表面にCr酸化物層を形成することにより耐酸化性を向上させる方法が提案されている。
この方法は、成膜ままではCuに固溶しているCrが熱処理により析出してCu層とCr層に分離する作用を有するため、Cuに固溶する元素を添加して耐食性を向上する手法と異なり、Cuの持つ低抵抗性を保ったまま、耐食性に優れた酸化物層を形成できるという利点がある。
【0006】
【発明が解決しようとする課題】
上述したように、Cu−Crの合金膜を使用する方法は、Cuの持つ低抵抗性を保ったまま、耐食性に優れた酸化物層を形成できるという利点がある。
本発明者がこの手法を検討したところ、上述した方法のように、蒸発源から同時に蒸着する方法では、CuがCrに対して融点が著しく低い(Cu:1083℃、Cr:1857℃)ことから、蒸気圧が大きく違うことになり、これら2元素をそれぞれ別個に制御する必要があるため組成の制御が難しく製品の大量生産を行う上で大きな問題となることが判明した。
【0007】
一方、薄膜を形成する方法として、ターゲットを使用するスパッタリング法があるが、Cu−Crのように金属同士であってもほとんど固溶せず、しかも融点に大きな差がある組成系の薄膜を形成するターゲットは開発されていないのが現状である。
本発明の目的は、上述した問題点に鑑み、優れた耐食性と低い抵抗率を有する電極膜を再現性良く製造することができるCu系スパッタリングターゲットおよびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、Cu−Crに代表される金属同士であってもお互いに固溶しにくい系を利用する電極膜の形成に適するターゲットを検討した。
その結果、Cu相をマトリックスとして、Cuに非固溶な遷移金属元素相を分散したミクロ組織を有するターゲットであれば膜組成が安定し、再現性のよい薄膜を得られることを見いだし、本発明に到達した。
【0009】
すなわち、本発明は、(Cr、Co、Mo、W、Fe、Nb、V)から選ばれる1種または2種以上の遷移金属元素を2〜20at%含有するCu系スパッタリングターゲットであって、Cuを主体とするマトリックスに、該マトリックスに非固溶な前記遷移金属元素の単体または合金相でなる遷移金属元素相が分散している電極膜形成用Cu系スパッタリングターゲット。
【0011】
上述した本発明のターゲットは、たとえば(Cr、Co、Mo、W、Fe、Nb、V)から選ばれる1種または2種以上のCuに非固溶な遷移金属元素粉末と、Cu粉末とを遷移金属元素粉末の原子比率を2〜20%として混合し、加圧焼結することによって得ることができる。
上述したターゲットを用いて、薄膜を形成した後、熱処理を施すことにより、Cuマトリックスに、Cuに非固溶な遷移金属元素が析出した低抵抗のCu系電極膜を得ることができる。
【0012】
【発明の実施の形態】
上述したように、本発明の重要な特徴は、Cu相をマトリックスとして、Cuに非固溶な遷移金属元素相を分散したミクロ組織を有するターゲットとしたことである。
上述したCu−Cr系に代表されるほとんど固溶しない組成系を溶解法により作製する場合、固溶域をほとんど持たず、CuとCuに非固溶な遷移金属元素との凝固温度に著しい差があるために、鋳型の温度分布により極端な偏析を生じ易く、実用に耐え得るターゲットを製造することは困難であった。
【0013】
また、Cuターゲット上に添加元素のペレットを置き成膜を行う複合ターゲットを使用する方法も検討したが、この方法では、選択的にペレットが消耗することによる組成のずれが発生しやすく再現性に乏しいという問題点があった。
このような方法に対して、本発明では粉末焼結法を適用し、Cuを主体としてCuに非固溶な遷移金属元素相をミクロ組織的に分散することにより、金属同士であってもお互いに固溶しにくく、さらにお互いの融点に大きな差がある組成系であっても安定した膜組成を得ることができたものである。
【0014】
本発明の電極膜として使用できる非固溶な遷移金属元素相を構成する元素としては、具体的には、たとえばCr、Mo、W、Co、Fe、Nb、Vがある。
これらの元素は、Cuとほとんど固溶せず、Cuマトリックスから析出させることができ、かつ電極膜に耐食性を付与することができる元素である。
本発明において添加される非固溶な遷移金属元素量は、比抵抗と耐食性を考慮して設定する必要があるが、2〜20at%であることが好ましい。
【0015】
本発明の製造方法における特徴は、粉末の加圧焼結である。加圧焼結によれば、非固溶の粉末同士を一体化することができ、粉末を混合することでCuに非固溶な遷移金属元素で均一に分散した組織を得ることができる。
具体的には、加圧焼結法としては、Cuが溶融しない温度での焼結が必要であり、高圧を発生することが可能な、熱間静水圧プレス法の適用が望ましい。
【0016】
好ましい焼結温度は、600℃から1050℃であり、さらに、好ましくは800℃から1000℃である。焼結圧力は高いほど望ましく、100MPa以上、実用的には200MPa以下の圧力とすることが望ましい。
上述した加圧焼結条件を適用することにより、ターゲット中にCuと添加元素が単独で存在すると仮定して計算された理論密度に対して、99%以上の高い相対密度を得ることが可能である。
【0017】
また、使用する原料粉末の大きさは、均一な分散性を確保するために、500μm以下、さらに好ましくは、200μm以下に分級したものが好ましい。
本発明においては、Cuと非固溶の遷移金属元素が、Cuマトリックスにほとんど拡散しないため、原料粒子の粒径とターゲット組織中に分散する相の大きさがほぼ一致するものとなる。
本発明のターゲットをスパッタすることによって得た薄膜を熱処理し、Cuに非固溶な元素を析出させることで、比抵抗の小さい電極膜を得ることができる。
【0018】
【実施例】
以下本発明の一実施例について説明する。
粒径100μm以下のCu粉末と粒径200μm以下の添加元素X粉末(X:Cr,Fe,Nb)とをロッキングミキサーにて混合し、充填寸法φ133mm×25mmの鉄製の缶に充填し、10マイナス6乗Pa以下に排気を行いながら400℃で1時間保持し脱気を行った。
次にこれを950℃、123MPaでHIP(熱間静水圧プレス)を行った後、機械加工によりφ100mm×5mmのCu−10at%X焼結ターゲットを得た。
また、電解法によって製造された平均粒径10μmのCu粉末と還元法によって製造された添加元素粉末X(X:Mo,W)とを用いて同様にCu−10at%X焼結ターゲットを得た。
【0019】
図1〜5に本発明の試料1〜5に対応するX=Cr,Mo,W,Fe,Nbを添加元素とした場合のターゲット組織の典型的な金属ミクロ組織写真を示す。
図1〜5に示すように、本発明のターゲットはCuマトリックスに、元素Xでなる相がが均一に分散した組織になっていることがわかる。
【0020】
比較例1として、φ100mm×5mmのCuターゲット上に5mm×5mm×1mmのCrペレットを12ヶ配置した複合ターゲットを用意した。
これらのターゲットをDCマグネトロンスパッタ装置に装着し、1.0×10マイナス6乗Pa以下に排気を行ない、ついでArガスを0.3Paまで導入し投入電力300Wで30分間プレスパッタを行った後、洗浄済みのガラス基板上に投入電力500Wで膜厚1μmの膜を形成した。
スパッタリング終了後、チャンバーをN2ガスで置換して基板を取り出した。この作業をそれぞれのターゲットについて5回行い、それぞれについてバッチの異なる5枚の試料を用意した。これらの膜の組成をICP(誘導結合プラズマ発光分光分析法)により分析した。(試料6)
【0021】
また、比較例2として2元蒸着装置に2つの蒸発源にそれぞれCu、Crの原料を投入し、1.0×10マイナス6乗Pa以下に排気を行った後、洗浄済みのガラス基板上に投入電力500Wで膜厚1μmの膜を形成したのち、チャンバーをN2ガスで置換して基板を取り出した。
この作業を5回行い、それぞれについてバッチの異なる5枚の試料を用意した。これらの膜の組成をICPにより分析した。(試料7)
以上の結果を表1に示す。
また、本発明のターゲットの密度を水中置換法により測定した。測定して得られた密度の実測値と理論密度で計算される相対密度を表2に示す。
【0022】
【表1】
【0023】
【表2】
【0024】
表1に示すように、本発明のスパッタリングターゲットにより成膜した膜の目標組成に対するバッチ間の組成変動は±5%以内に収まっており、比較例1および2の試料と比べて極めて組成変動が少なく、再現性の高い電極膜が得られたことがわかる。
また、表2に示すように、本発明のターゲットの密度は、相対密度99%以上の高い密度であり、スパッタリング時の異常放電等の原因となる空隙の少ないターゲットとなっていることがわかる。
【0025】
【発明の効果】
本発明によれば優れた耐食性と低い抵抗率を有する電極膜を再現性良く製造することができるCu系スパッタリングターゲットを提供することができるため、低比抵抗電極を必要とする各種デバイスの実用化にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】本発明のCrを添加したターゲットの一例を示す金属ミクロ組織写真である。
【図2】本発明のMoを添加したターゲットの一例を示す金属ミクロ組織写真である。
【図3】本発明のWを添加したターゲットの一例を示す金属ミクロ組織写真である。
【図4】本発明のFeを添加したターゲットの一例を示す金属ミクロ組織写真である。
【図5】本発明のNbを添加したターゲットの一例を示す金属ミクロ組織写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor, liquid crystal, it relates to a PDP (plasma display) Cu-based sputtering target and its manufacturing how electrode film used for forming the electrode film used for such.
[0002]
[Prior art]
Looking at the electrode materials of various current devices by product, pure Cr, Mo, W, Ta alone or alloys thereof are used as the electrode forming material for TFT (Thin Film Transistor) liquid crystal. In addition, Al or an Al alloy is used for forming an electrode film such as an LSI. Further, Cu and Al are adopted as a wiring material for PDP (Plasma Display).
Recently, the TFT liquid crystal is inevitable to reduce the wiring width as the pixel becomes higher in definition, and the use of Al-based or Cu-based wiring materials from the refractory metal-based wiring materials has been studied. In addition, with the integration of circuits in semiconductor devices, it has been studied to adopt Cu alloy wiring.
[0003]
In Al or Al alloy wiring, there is a problem of disconnection due to electromigration or stress migration, and there is a problem that protrusions called hillocks are generated on the film surface in the heating process, and the laminated wiring is conducted. On the other hand, Cu wiring has few such problems and is considered to be effective because it has the characteristics of lower electrical resistivity than Al wiring.
However, the Cu electrode film is inferior in oxidation resistance, and there is a problem that the oxidation proceeds in the heating process and the resistance value increases, and improvement of this point is desired.
As one of the solutions, there has been proposed a method of improving by adding an additive element and alloying in order to improve the oxidation resistance of the Cu electrode film.
[0004]
For example a Cu-Ti alloy thin film layer formed by sputtering and heat treated in a nitrogen-containing atmosphere to form a thin TiN layer on the wiring film surface, suggestion attempt to improve the oxidation resistance have been made. (2nd volume, page 434, 2nd volume of the 1988 Autumn Meeting of the Japan Society of Applied Physics)
In JP-A-3-196619, a Cu—Zr alloy film formed by sputtering is heat treated in an atmosphere containing nitrogen or NH 3 to form an oxidation resistance by forming a Zr nitride layer on the surface of the Cu wiring film. A way to improve it has been proposed.
Further, as a method for forming the same nitrided layer, B nitrided Cu-B film formed similarly by the sputtering method in JP-A-3-196620 in Cu wiring film surface by heat treatment in nitrogen or NH 3 containing atmosphere Proposals have been made for methods for improving oxidation resistance by forming layers.
[0005]
In addition, after forming a Cu-Cr alloy film by a method in which Cu and Cr are vapor-deposited simultaneously from different evaporation sources, heat treatment is performed in a vacuum atmosphere of 10 minus 6 Torr or less to form a Cr oxide layer on the surface of the Cu wiring film. There has been proposed a method for improving oxidation resistance by forming.
In this method, since Cr has a function of separating into a Cu layer and a Cr layer by heat treatment by depositing Cr in the form of a film as it is, a method for improving corrosion resistance by adding an element dissolved in Cu. Unlike this, there is an advantage that an oxide layer excellent in corrosion resistance can be formed while maintaining the low resistance of Cu.
[0006]
[Problems to be solved by the invention]
As described above, the method using the Cu—Cr alloy film has an advantage that an oxide layer having excellent corrosion resistance can be formed while maintaining the low resistance of Cu.
As a result of studying this technique, the present inventor has found that Cu has a remarkably low melting point with respect to Cr (Cu: 1083 ° C., Cr: 1857 ° C.) in the method of simultaneous vapor deposition from the evaporation source as in the above-described method. It has been found that the vapor pressures are greatly different, and it is necessary to control each of these two elements separately, which makes it difficult to control the composition and causes a large problem in mass production of products.
[0007]
On the other hand, as a method of forming a thin film, there is a sputtering method using a target, but a thin film with a composition system that hardly dissolves even between metals and has a large difference in melting point, such as Cu-Cr. Currently, no target has been developed.
SUMMARY OF THE INVENTION In view of the above problems, is to provide an excellent corrosion resistance and Cu-based sputtering target and its manufacturing how the electrode film can be reproducibly manufactured with low resistivity.
[0008]
[Means for Solving the Problems]
This inventor examined the target suitable for formation of the electrode film | membrane using the system which is hard to mutually dissolve even if it is metals represented by Cu-Cr.
As a result, it has been found that if the target has a microstructure in which the transition metal element phase insoluble in Cu is dispersed using the Cu phase as a matrix, the film composition is stable and a reproducible thin film can be obtained. Reached.
[0009]
That is, the present invention is a Cu-based sputtering target containing 2 to 20 at% of one or more transition metal elements selected from (Cr, Co, Mo, W, Fe, Nb, V), the matrix mainly undissolved of the transition element or the electrode film forming Cu based sputtering target transition metal element phase is dispersed consisting of an alloy phase of a metal element to the matrix.
[0011]
The target of the present invention described above includes, for example , a transition metal element powder insoluble in one or more kinds of Cu selected from (Cr, Co, Mo, W, Fe, Nb, V) , and Cu powder. The transition metal element powder can be obtained by mixing at an atomic ratio of 2 to 20% and pressure sintering.
A low resistance Cu-based electrode film in which a transition metal element insoluble in Cu is deposited on a Cu matrix can be obtained by performing a heat treatment after forming a thin film using the target described above.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, an important feature of the present invention is that a target having a microstructure in which a Cu metal phase is used as a matrix and a transition metal element phase insoluble in Cu is dispersed.
When a composition system that hardly dissolves, represented by the above-described Cu-Cr system, is prepared by the dissolution method, there is almost no solid solution region, and there is a significant difference in the solidification temperature between the transition metal element that is insoluble in Cu and Cu. Therefore, extreme segregation is likely to occur due to the temperature distribution of the mold, and it has been difficult to produce a target that can withstand practical use.
[0013]
In addition, a method of using a composite target in which a pellet of an additive element is placed on a Cu target to form a film was also examined. However, in this method, compositional deviation due to selective consumption of the pellet is likely to occur and reproducibility is improved. There was a problem of being scarce.
In contrast to such a method, in the present invention, a powder sintering method is applied, and a transition metal element phase that is insoluble in Cu is microscopically dispersed with Cu as a main component. It is possible to obtain a stable film composition even in a composition system in which the melting point of the composition is difficult to be dissolved and the melting point of the composition is greatly different.
[0014]
Specific examples of elements constituting the non-solid transition metal element phase that can be used as the electrode film of the present invention include Cr, Mo, W, Co, Fe, Nb, and V.
These elements are elements that hardly dissolve with Cu, can be precipitated from the Cu matrix, and can impart corrosion resistance to the electrode film.
The amount of non-solid transition metal element added in the present invention needs to be set in consideration of specific resistance and corrosion resistance, but is preferably 2 to 20 at%.
[0015]
A feature of the production method of the present invention is pressure sintering of powder. According to the pressure sintering, non-solid powders can be integrated with each other, and by mixing the powders, a structure uniformly dispersed with a transition metal element insoluble in Cu can be obtained.
Specifically, as the pressure sintering method, it is desirable to apply a hot isostatic pressing method that requires sintering at a temperature at which Cu does not melt and can generate a high pressure.
[0016]
A preferable sintering temperature is 600 ° C to 1050 ° C, and more preferably 800 ° C to 1000 ° C. The higher the sintering pressure, the more desirable, and it is desirable that the pressure be 100 MPa or more, and practically 200 MPa or less.
By applying the above-mentioned pressure sintering conditions, it is possible to obtain a high relative density of 99% or more with respect to the theoretical density calculated on the assumption that Cu and an additive element exist alone in the target. is there.
[0017]
Further, the size of the raw material powder used is preferably 500 μm or less, more preferably 200 μm or less in order to ensure uniform dispersibility.
In the present invention, since the transition metal element insoluble in Cu and Cu hardly diffuses into the Cu matrix, the particle size of the raw material particles and the size of the phase dispersed in the target structure are almost the same.
An electrode film having a small specific resistance can be obtained by heat-treating a thin film obtained by sputtering the target of the present invention and precipitating an insoluble element in Cu.
[0018]
【Example】
An embodiment of the present invention will be described below.
Cu powder having a particle size of 100 μm or less and additive element X powder (X: Cr, Fe, Nb) having a particle size of 200 μm or less are mixed in a rocking mixer and filled into an iron can having a filling size φ133 mm × 25 mm, and 10 minus While evacuating to the sixth power Pa or lower, degassing was performed by holding at 400 ° C. for 1 hour.
Next, this was subjected to HIP (hot isostatic pressing) at 950 ° C. and 123 MPa, and then a Cu-10 at% X sintered target of φ100 mm × 5 mm was obtained by machining.
In addition, a Cu-10 at% X sintered target was obtained in the same manner using Cu powder having an average particle diameter of 10 μm manufactured by the electrolytic method and additive element powder X (X: Mo, W) manufactured by the reduction method. .
[0019]
1 to 5 show typical metal microstructure photographs of the target structure when X = Cr, Mo, W, Fe, and Nb corresponding to Samples 1 to 5 of the present invention are used as additive elements.
As shown in FIGS. 1 to 5, it can be seen that the target of the present invention has a structure in which the phase composed of the element X is uniformly dispersed in the Cu matrix.
[0020]
As Comparative Example 1, a composite target in which 12 pieces of 5 mm × 5 mm × 1 mm Cr pellets were arranged on a φ100 mm × 5 mm Cu target was prepared.
After mounting these targets on a DC magnetron sputtering apparatus, exhausting to 1.0 × 10 minus 6 Pa or less, then introducing Ar gas to 0.3 Pa and performing pre-sputtering at an input power of 300 W for 30 minutes, A film having a thickness of 1 μm was formed on a cleaned glass substrate with an input power of 500 W.
After sputtering, the chamber was replaced with N 2 gas and the substrate was taken out. This operation was performed five times for each target, and five samples with different batches were prepared for each target. The composition of these films was analyzed by ICP (Inductively Coupled Plasma Atomic Emission Spectroscopy). (Sample 6)
[0021]
Further, as Comparative Example 2, Cu and Cr raw materials were put into two evaporation sources in a binary vapor deposition apparatus, exhausted to 1.0 × 10 minus 6 Pa or less, and then on a cleaned glass substrate. After forming a film having a thickness of 1 μm with an input power of 500 W, the chamber was replaced with N 2 gas and the substrate was taken out.
This operation was performed five times, and five samples with different batches were prepared for each. The composition of these films was analyzed by ICP. (Sample 7)
The results are shown in Table 1.
Further, the density of the target of the present invention was measured by an underwater substitution method. Table 2 shows the actual density obtained by the measurement and the relative density calculated from the theoretical density.
[0022]
[Table 1]
[0023]
[Table 2]
[0024]
As shown in Table 1, the composition variation between batches with respect to the target composition of the film formed by the sputtering target of the present invention is within ± 5%, and the composition variation is extremely large compared to the samples of Comparative Examples 1 and 2. It can be seen that an electrode film with little and high reproducibility was obtained.
Further, as shown in Table 2, it can be seen that the density of the target of the present invention is a high density of 99% or more relative density, and the target has few voids that cause abnormal discharge during sputtering.
[0025]
【The invention's effect】
According to the present invention, since it is possible to provide a Cu-based sputtering target capable of producing an electrode film having excellent corrosion resistance and low resistivity with good reproducibility, practical application of various devices requiring a low specific resistance electrode It will be an indispensable technology for us.
[Brief description of the drawings]
FIG. 1 is a metal microstructure photograph showing an example of a target to which Cr of the present invention is added.
FIG. 2 is a metal microstructure photograph showing an example of a target to which Mo of the present invention is added.
FIG. 3 is a metal microstructure photograph showing an example of a target to which W of the present invention is added.
FIG. 4 is a metal microstructure photograph showing an example of a target to which Fe of the present invention is added.
FIG. 5 is a metal microstructure photograph showing an example of a target to which Nb of the present invention is added.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21705297A JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21705297A JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1150242A JPH1150242A (en) | 1999-02-23 |
JP3710022B2 true JP3710022B2 (en) | 2005-10-26 |
Family
ID=16698083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21705297A Expired - Lifetime JP3710022B2 (en) | 1997-07-28 | 1997-07-28 | Cu-based sputtering target for electrode film formation and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3710022B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132857A1 (en) | 2013-03-01 | 2014-09-04 | Jx日鉱日石金属株式会社 | High-purity copper-cobalt alloy sputtering target |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6299831B1 (en) * | 1999-07-14 | 2001-10-09 | Praxair S.T. Technology, Inc. | High performance Cu/Cr sputter targets for semiconductor application |
AT7491U1 (en) * | 2004-07-15 | 2005-04-25 | Plansee Ag | MATERIAL FOR CONCRETE ALLOY COPPER ALLOY |
KR100787883B1 (en) | 2006-02-17 | 2007-12-27 | 데프트 가부시키가이샤 | Metallic material for electronic part and method of working metallic material |
KR100788266B1 (en) * | 2007-08-06 | 2007-12-27 | 데프트 가부시키가이샤 | Electronic part, electronic equipment, process for producing electronic part and electronic optical part |
CN102747333A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
CN102747332A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
CN102747326A (en) * | 2011-04-21 | 2012-10-24 | 鸿富锦精密工业(深圳)有限公司 | Preparation method of coated article and coated article prepared by it |
WO2012147998A1 (en) * | 2011-04-27 | 2012-11-01 | 東邦チタニウム株式会社 | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME |
JP2013133489A (en) * | 2011-12-26 | 2013-07-08 | Sumitomo Metal Mining Co Ltd | Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM |
US10297429B2 (en) | 2012-01-25 | 2019-05-21 | Jx Nippon Mining & Metals Corporation | High-purity copper-chromium alloy sputtering target |
JP6380057B2 (en) * | 2014-11-28 | 2018-08-29 | 住友金属鉱山株式会社 | Conductive substrate and method for manufacturing the same |
CN114058897B (en) * | 2021-11-25 | 2022-05-17 | 江苏科技大学 | Copper alloy film, protective layer based on copper alloy film after service and preparation method |
-
1997
- 1997-07-28 JP JP21705297A patent/JP3710022B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132857A1 (en) | 2013-03-01 | 2014-09-04 | Jx日鉱日石金属株式会社 | High-purity copper-cobalt alloy sputtering target |
KR20160002673A (en) | 2013-03-01 | 2016-01-08 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | High-purity copper-cobalt alloy sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JPH1150242A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5376952B2 (en) | Method for manufacturing molybdenum-titanium sputtering plate and target | |
JP3710022B2 (en) | Cu-based sputtering target for electrode film formation and manufacturing method thereof | |
JP5006030B2 (en) | Powder metallurgy sputtering target and manufacturing method thereof | |
JP6479788B2 (en) | Sputtering target and manufacturing method thereof | |
JP4432015B2 (en) | Sputtering target for thin film wiring formation | |
JP2007297654A (en) | Sputtering target, joint type sputtering target and method for producing the same | |
JP2011504547A (en) | Sputtering target doped with refractory metal | |
JPH08120445A (en) | Production of titanium-aluminum alloy target material | |
CN110714142A (en) | Al-Sc-X multi-element alloy target and preparation method thereof | |
JP6037211B2 (en) | Manufacturing method of MoTi target material | |
JP2000294556A (en) | Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation | |
JP2901049B2 (en) | Al-Ti alloy target material for arc ion plating | |
TW478043B (en) | High performance Cu/Cr sputter targets for semiconductor application | |
JP4921653B2 (en) | Sputtering target and manufacturing method thereof | |
JPH05222525A (en) | Production of tungsten target for semiconductor | |
JP2000328242A (en) | Ti-al alloy sputtering target and its production | |
TWI674325B (en) | MoNb target | |
JP2000355761A (en) | Ta TARGET FOR FILM-FORMING BARRIER MATERIAL AND ITS PRODUCTION | |
JPH05214520A (en) | Sputtering target for titanium | |
JP2002194536A (en) | Sputtering target with low oxygen content | |
JPH03173705A (en) | Production of high density sintered body | |
JP2000063971A (en) | Sputtering target | |
CN114888279A (en) | Tantalum powder for powder metallurgy tantalum target and tantalum target | |
JPH0551732A (en) | Target for sputtering and production thereof | |
CN116334563A (en) | Sputtering target and method for manufacturing sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050804 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |