JP3709922B2 - A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber. - Google Patents

A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber. Download PDF

Info

Publication number
JP3709922B2
JP3709922B2 JP2001115822A JP2001115822A JP3709922B2 JP 3709922 B2 JP3709922 B2 JP 3709922B2 JP 2001115822 A JP2001115822 A JP 2001115822A JP 2001115822 A JP2001115822 A JP 2001115822A JP 3709922 B2 JP3709922 B2 JP 3709922B2
Authority
JP
Japan
Prior art keywords
ptfe
producing
fiber
ptfe fiber
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115822A
Other languages
Japanese (ja)
Other versions
JP2002309478A (en
Inventor
正純 清水
康彰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001115822A priority Critical patent/JP3709922B2/en
Publication of JP2002309478A publication Critical patent/JP2002309478A/en
Application granted granted Critical
Publication of JP3709922B2 publication Critical patent/JP3709922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は架橋PTFE(ポリテトラフルオロエチレン)繊維の製造方法および架橋PTFE繊維を加工して得られる成形品に関し、特に、耐摩耗性に優れた架橋PTFE繊維の製造方法、および耐摩耗性に優れた、架橋PTFE繊維を加工して得られる成形品に関する。
【0002】
【従来の技術】
架橋PTFE繊維は結晶性が低く、ゴム特性を有するだけでなく、耐摩耗性が極めて優れており、架橋によりPTFE繊維の比摩耗量は約1万分の一に減少するので、摺動材料として有用である。架橋PTFE繊維を製造するには、米国特許第5444103号に記載されているように、未架橋のPTFE繊維に低い酸素分圧の下で融点(約340℃)付近の温度で放射線を照射して、分子を架橋させる。
【0003】
【発明が解決しようとする課題】
しかし、PTFE繊維の放射線による架橋のためには、温度をPTFEの融点の上下20℃以内の範囲に入るよう、精密に制御しながら放射線を照射する設備が必要で、多大の投資を要する。それ故、架橋PTFE繊維は高価であった。
【0004】
従来の架橋PTFE繊維を用いた成形品は、優れた耐摩耗性を有するが、架橋PTFE繊維が高価であるため、価格が高かった。
【0005】
成形品の価格を低く抑えるためには、架橋PTFE繊維の粉体に他の合成樹脂の粉体を混和して成形品を構成することが必要であった。混和物による成形品で十分な耐摩耗性を得るには、架橋PTFE繊維の粉体の粒度を細かくすることが必要である。架橋PTFE繊維の粉砕のためのコストは、混和物による成形品での新たな問題となる。細かく粉砕することを避けようとすれば、架橋PTFE繊維の粉体の含有率を高く保つほかなく、成形品の高価格は解決できない。
【0006】
本発明の目的は、価格が安く耐摩耗性が高い成形品を得ることができる、架橋PTFE繊維の製造方法を実現することにある。
【0007】
本発明の他の目的は、成形品を混和物で構成する場合に、粉砕のためのコストを低減できる、架橋PTFE繊維の製造方法を実現することにある。
【0008】
本発明の別の目的は、放射線架橋PTFE繊維の粉体から成る、価格が安く耐摩耗性が高い成形品を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達するため、本発明の架橋PTFE繊維の製造方法は、5倍以上に延伸された未架橋のPTFE繊維に、自由に収縮できる状態で移動させながら、100torr以下の酸素分圧の下に融点の上下20℃の範囲の温度で放射線を照射して、PTFE分子を架橋させる
【0010】
また、上記目的を達成するため、本発明の成形体の製造方法は、5倍以上に延伸された未架橋のPTFE繊維に、自由に収縮できる状態で移動させながら、100torr以下の酸素分圧の下に融点の上下20℃の範囲の温度で放射線を照射することによって架橋PTFE繊維を製造し、前記架橋PTFE繊維を粉砕してPTFE粉体とし、このPTFE粉体と他のモールディングパウダとを混合して混合体とし、この混合体を圧縮成形する各工程から成る。
【0011】
【発明の実施の形態】
放射線を照射する際には、ふっ素樹脂の温度が融点の上下20℃の範囲内になるように、好ましくは上下5℃の範囲内に、雰囲気の温度を調整することが望ましい。ふっ素樹脂の温度の検出、検出温度に基づく温度の制御は、公知の通常の手段により行なえばよい。
【0012】
ふっ素樹脂を架橋させる雰囲気は、酸素分圧の低い、窒素等の不活性ガスが好ましく、その酸素分圧は100torr以下が好ましい。
【0013】
放射線(電離放射線)としては、ベータ線、ガンマ線、X線、電子線、アルファ線、陽子線等を用いることができるが、工業的には電子線が便利である。照射される放射線量は、通常、1kGyないし10MGyの範囲から選ばれる。
【0015】
未架橋の超延伸されたPTFE繊維を、自由に収縮できる状態で移動させながら、放射線を照射するには、例えば炭素繊維(カーボンファイバー)の製造の場合と同様な工程を用いることができる。超延伸されたPTFE繊維に、収縮を許さない状態で放射線を照射すると、収縮により繊維は破断してしまう。
【0016】
【実施例】
以下に本発明の実施例を示す。
[実施例1ないし5]
ファインパウダー型PTFE粉体(ダイキン工業社、商品名ポリフロンF−104)をペースト押し出しした後、温度350℃で1.5時間、焼結し、直径約400マイクロメートルのモノフィラメントとした。
【0017】
このモノフィラメントを通常の方法により、実施例1では380℃で5倍に、実施例2では10倍、実施例3では20倍、実施例4では50倍、実施例5では100倍に、それぞれ超延伸して、直径約10マイクロメートルの超延伸PTFE繊維を得た。
【0018】
この超延伸PTFE繊維を、0.1torr以下の真空下に、温度340℃で、自由収縮を許すように連続走行させながら、線量100kGyの電子線を照射した。照射後の繊維を、ジェットミルで粉砕した。得られた改質PTFE粉体の平均粒子径を、通常の方法で測定した。
【0019】
粉砕した改質PTFE粉体を、平均粒子径40マイクロメートルのPTFEモールディングパウダ(旭ガラス社G−163)に、重量比で20%混合し(実施例1ないし5共通)、圧力30MPaで1時間、圧縮成形し、縦50mm、横50mm、厚さ10mmのブロックとした。
【0020】
このブロックについて、比摩耗量を測定した。測定結果を、改質PTFE粉体の平均粒子径とともに、表1に示した。
【0021】
[比較例]
比較のため、実施例1で用いたPTFEモールディングパウダに、実施例1と同じ照射条件で放射線を照射した後、平均粒子径が20マイクロメートルになるように、ジェットミルで粉砕した。得られたPTFE粉体の平均粒子径を、通常の方法で測定した。
【0022】
照射済みの(改質)PTFE粉体を、元のPTFEモールディングパウダに対し重量比で20%混合した。この混合物を実施例1と同じ条件で圧縮成形し、実施例1と同様にブロックとした。
【0023】
このブロックについて比摩耗量を測定した。測定結果を、平均粒子径、実施例1ないし5の比摩耗量および粉体の平均粒子径とともに、表1に示した。
【0024】
【表1】

Figure 0003709922
【0025】
表1に示す通り、実施例1ないし5の比摩耗量は、比較例の比摩耗量よりいずれも小さい。延伸比20の場合に最も小さくなった。
【0026】
実施例1ないし5の平均粒子径は、比較例の平均粒子径よりも若干小さい。実施例1ないし3の間では、平均粒子径が変わっていないに拘らず、比摩耗量は減少している。
【0027】
実施例3ないし5の間では、平均粒子径が延伸比の増大とともに大きくなっている。これは、超延伸PTFE繊維の延伸比が大きいほど、繊維の外径が、放射線照射の下で収縮率が大きいためであろう。
【0028】
実施例1ないし3の間で、平均粒子径が変わっていないのに比摩耗量が減少する理由は不明であるが、延伸比が大きいほど繊維の有する異方性が残るためではないかと思われる。
【0029】
【発明の効果】
本発明の架橋PTFE繊維の製造方法によると、価格が安く耐摩耗性が高い架橋PTFE成形品を得ることができる。これは、放射線による架橋のような、温度をPTFEの融点付近に精密に制御しながら放射線を照射する設備を、必要としないためである。
【0030】
本発明によると、成形品を架橋PTFE繊維の混和物で構成する場合に、PTFE粉体の混合比を低くできるので、粉砕のためのコストを低減できる。
【0031】
また本発明により、放射線架橋PTFE繊維から成る、価格が安く耐摩耗性が高い成形品を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a crosslinked PTFE ( polytetrafluoroethylene ) fiber and a molded product obtained by processing the crosslinked PTFE fiber, and in particular, a method for producing a crosslinked PTFE fiber excellent in abrasion resistance and an excellent abrasion resistance. The present invention also relates to a molded product obtained by processing cross-linked PTFE fiber.
[0002]
[Prior art]
Cross-linked PTFE fiber has low crystallinity, not only has rubber properties, but also extremely excellent wear resistance, and the specific wear amount of PTFE fiber is reduced to about 1 / 10,000 by cross-linking, so it is useful as a sliding material It is. To produce crosslinked PTFE fibers, as described in US Pat. No. 5,444,103, uncrosslinked PTFE fibers are irradiated with radiation at a temperature near the melting point (about 340 ° C.) under a low oxygen partial pressure. , Crosslink the molecule.
[0003]
[Problems to be solved by the invention]
However, in order to cross-link PTFE fibers by radiation, it is necessary to provide equipment for irradiating radiation while precisely controlling the temperature so that it falls within the range of 20 ° C. above and below the melting point of PTFE, which requires a great investment. Therefore, crosslinked PTFE fiber was expensive.
[0004]
Although the molded article using the conventional cross-linked PTFE fiber has excellent wear resistance, the price is high because the cross-linked PTFE fiber is expensive.
[0005]
In order to keep the price of the molded product low, it was necessary to mix the powder of the cross-linked PTFE fiber with another synthetic resin powder to form the molded product. In order to obtain sufficient wear resistance in a molded product of the blend, it is necessary to make the particle size of the crosslinked PTFE fiber powder fine. The cost for pulverization of the crosslinked PTFE fibers is a new problem in molded articles with blends. If it is attempted to avoid fine pulverization, the content of the crosslinked PTFE fiber powder must be kept high, and the high price of the molded product cannot be solved.
[0006]
An object of the present invention is to realize a method for producing a crosslinked PTFE fiber, which can obtain a molded article having a low price and high wear resistance.
[0007]
Another object of the present invention is to realize a method for producing a crosslinked PTFE fiber, which can reduce the cost for pulverization when the molded article is composed of an admixture.
[0008]
Another object of the present invention is to provide a molded article which is made of radiation-crosslinked PTFE fiber powder and is inexpensive and has high wear resistance.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a crosslinked PTFE fiber according to the present invention is performed under an oxygen partial pressure of 100 torr or less while moving the uncrosslinked PTFE fiber stretched 5 times or more in a freely contractible state. Radiation is irradiated at a temperature in the range of 20 ° C. above and below the melting point to crosslink PTFE molecules .
[0010]
Further, in order to achieve the above object, the method for producing a molded article of the present invention has an oxygen partial pressure of 100 torr or less while moving the uncrosslinked PTFE fiber stretched 5 times or more in a freely contractible state. A cross-linked PTFE fiber is produced by irradiating with radiation at a temperature in the range of 20 ° C. above and below the melting point, and the cross-linked PTFE fiber is pulverized into a PTFE powder, and this PTFE powder and other molding powder are mixed. Thus, a mixture is formed, and the mixture is compression molded.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
When irradiating with radiation, it is desirable to adjust the temperature of the atmosphere so that the temperature of the fluororesin is within the range of 20 ° C. above and below the melting point, preferably within the range of 5 ° C. above and below. The detection of the temperature of the fluororesin and the control of the temperature based on the detected temperature may be performed by a known ordinary means.
[0012]
The atmosphere for crosslinking the fluororesin is preferably an inert gas such as nitrogen having a low oxygen partial pressure, and the oxygen partial pressure is preferably 100 torr or less.
[0013]
As the radiation (ionizing radiation), beta rays, gamma rays, X-rays, electron beams, alpha rays, proton rays, and the like can be used. Industrially, electron beams are convenient. The radiation dose to be irradiated is usually selected from the range of 1 kGy to 10 MGy.
[0015]
In order to irradiate the radiation while moving the uncrosslinked super-stretched PTFE fiber in a freely shrinkable state, for example, a process similar to that in the case of producing carbon fiber (carbon fiber) can be used. When the ultra-stretched PTFE fiber is irradiated with radiation in a state that does not allow shrinkage, the fiber breaks due to shrinkage.
[0016]
【Example】
Examples of the present invention are shown below.
[Examples 1 to 5]
Fine powder type PTFE powder (Daikin Kogyo Co., Ltd., trade name Polyflon F-104) was extruded and then sintered at a temperature of 350 ° C. for 1.5 hours to obtain a monofilament having a diameter of about 400 micrometers.
[0017]
The monofilaments were increased in the usual manner by 5 times at 380 ° C. in Example 1, 10 times in Example 2, 20 times in Example 3, 50 times in Example 4, and 100 times in Example 5. Drawing was performed to obtain ultra-drawn PTFE fibers having a diameter of about 10 micrometers.
[0018]
This ultra-stretched PTFE fiber was irradiated with an electron beam with a dose of 100 kGy while continuously running at a temperature of 340 ° C. under a vacuum of 0.1 torr or less to allow free shrinkage. The irradiated fiber was pulverized with a jet mill. The average particle diameter of the obtained modified PTFE powder was measured by a usual method.
[0019]
The pulverized modified PTFE powder was mixed with PTFE molding powder (Asahi Glass Co., Ltd. G-163) having an average particle diameter of 40 micrometers at a weight ratio of 20% (common to Examples 1 to 5), and the pressure was 30 MPa for 1 hour. Compressed and formed into a block having a length of 50 mm, a width of 50 mm, and a thickness of 10 mm.
[0020]
The specific wear amount of this block was measured. The measurement results are shown in Table 1 together with the average particle diameter of the modified PTFE powder.
[0021]
[Comparative example]
For comparison, the PTFE molding powder used in Example 1 was irradiated with radiation under the same irradiation conditions as in Example 1, and then pulverized with a jet mill so that the average particle size was 20 micrometers. The average particle diameter of the obtained PTFE powder was measured by a usual method.
[0022]
The irradiated (modified) PTFE powder was mixed with the original PTFE molding powder by 20% by weight. This mixture was compression-molded under the same conditions as in Example 1 and made into a block as in Example 1.
[0023]
The specific wear amount of this block was measured. The measurement results are shown in Table 1 together with the average particle diameter, the specific wear amount of Examples 1 to 5 and the average particle diameter of the powder.
[0024]
[Table 1]
Figure 0003709922
[0025]
As shown in Table 1, the specific wear amount of Examples 1 to 5 is smaller than the specific wear amount of the comparative example. When the draw ratio was 20, it was the smallest.
[0026]
The average particle size of Examples 1 to 5 is slightly smaller than the average particle size of the comparative example. Between Examples 1 to 3, the specific wear amount is decreased despite the fact that the average particle diameter is not changed.
[0027]
Between Examples 3 to 5, the average particle size increases with increasing draw ratio. This is probably because the larger the draw ratio of the super-drawn PTFE fiber, the greater the outer diameter of the fiber and the greater the shrinkage rate under irradiation with radiation.
[0028]
The reason why the specific wear amount decreases although the average particle diameter is not changed between Examples 1 to 3 is unclear, but it seems that the anisotropy of the fiber remains as the draw ratio increases. .
[0029]
【The invention's effect】
According to the method for producing a crosslinked PTFE fiber of the present invention, a crosslinked PTFE molded product having a low price and high wear resistance can be obtained. This is because a facility for irradiating radiation while precisely controlling the temperature near the melting point of PTFE, such as crosslinking by radiation, is not required.
[0030]
According to the present invention, when the molded product is composed of a mixture of cross-linked PTFE fibers, the mixing ratio of the PTFE powder can be lowered, so that the cost for pulverization can be reduced.
[0031]
Further, according to the present invention, it is possible to provide a molded article made of radiation-crosslinked PTFE fiber, which is inexpensive and has high wear resistance.

Claims (7)

5倍以上に延伸された未架橋のPTFE(ポリテトラフルオロエチレン)繊維に、自由に収縮できる状態で移動させながら、100torr以下の酸素分圧の下に融点の上下20℃の範囲の温度で放射線を照射して、PTFE分子を架橋させることを特徴とする、架橋PTFE繊維の製造方法。Radiation at a temperature in the range of 20 ° C above and below the melting point under an oxygen partial pressure of 100 torr or less while moving to uncrosslinked PTFE (polytetrafluoroethylene) fiber stretched 5 times or more in a freely contractible state A method for producing a crosslinked PTFE fiber, characterized in that the PTFE molecule is crosslinked by irradiating. 前記未架橋のPTFE繊維が連続的に移動される、請求項1の架橋PTFE繊維の製造方法。  The method for producing a crosslinked PTFE fiber according to claim 1, wherein the uncrosslinked PTFE fiber is continuously moved. 前記5倍以上に延伸された未架橋のPTFE繊維が、融点の上下5℃の範囲の温度で放射線を照射される、請求項1または2の架橋PTFE繊維の製造方法。The method for producing a crosslinked PTFE fiber according to claim 1 or 2, wherein the uncrosslinked PTFE fiber stretched 5 times or more is irradiated with radiation at a temperature in the range of 5 ° C above and below the melting point. 5倍以上に延伸された未架橋のPTFE繊維に、自由に収縮できる状態で移動させながら、100torr以下の酸素分圧の下に融点の上下20℃の範囲の温度で放射線を照射することによって架橋PTFE繊維を製造し、
前記架橋PTFE繊維を粉砕してPTFE粉体とし、前記PTFE粉体と他のモールディングパウダとを混合して混合体とし、前期混合体を圧縮成形して成形体とすることを特徴とする成形体の製造方法。
Crosslink by irradiating the uncrosslinked PTFE fiber stretched 5 times or more in a state where it can be freely contracted while irradiating with radiation at a temperature in the range of 20 ° C above and below the melting point under an oxygen partial pressure of 100 torr or less. Producing PTFE fiber,
A molded body characterized by pulverizing the crosslinked PTFE fiber to form a PTFE powder, mixing the PTFE powder with another molding powder to form a mixture, and compression-molding the previous mixture to form a molded body. Manufacturing method.
前記架橋PTFE繊維を粉砕する工程は、前記PTFE粉体を20マイクロメートル未満の平均粒子径にする、請求項4の成形体の製造方法。  5. The method for producing a molded article according to claim 4, wherein the step of pulverizing the crosslinked PTFE fiber sets the PTFE powder to an average particle diameter of less than 20 micrometers. 前記混合体とする工程は、25重量%未満の前記PTFE粉体を混合する、請求項4の成形体の製造方法。  The method for producing a molded article according to claim 4, wherein the step of preparing the mixture comprises mixing less than 25 wt% of the PTFE powder. 前記混合体とする工程は、前記PTFE粉体と他のPTFEモールディングパウダとを混合して混合体とする、請求項4の成形体の製造方法。  The method for producing a molded body according to claim 4, wherein the step of forming the mixture comprises mixing the PTFE powder and another PTFE molding powder to form a mixture.
JP2001115822A 2001-04-13 2001-04-13 A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber. Expired - Fee Related JP3709922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115822A JP3709922B2 (en) 2001-04-13 2001-04-13 A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115822A JP3709922B2 (en) 2001-04-13 2001-04-13 A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber.

Publications (2)

Publication Number Publication Date
JP2002309478A JP2002309478A (en) 2002-10-23
JP3709922B2 true JP3709922B2 (en) 2005-10-26

Family

ID=18966659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115822A Expired - Fee Related JP3709922B2 (en) 2001-04-13 2001-04-13 A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber.

Country Status (1)

Country Link
JP (1) JP3709922B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422642B2 (en) * 2013-07-29 2016-08-23 Toray Fluorofibers (America), Inc. Wear polytetrafluoroethylene (PTFE) fiber and method of making same
WO2021246218A1 (en) * 2020-06-05 2021-12-09 株式会社バルカー Fluorine rubber fibers, fluorine rubber nonwoven fabric and method for producing fluorine rubber fibers

Also Published As

Publication number Publication date
JP2002309478A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
Lunkwitz et al. Modification of fluoropolymers by means of electron beam irradiation
JP5860521B2 (en) Polytetrafluoroethylene resin that can be molded, applied products, and manufacturing method thereof
US3090770A (en) Blended polyethylene compositions of improved clarity and method of making same
JP3709922B2 (en) A method for producing a crosslinked PTFE fiber and a molded article comprising the crosslinked PTFE fiber.
CN111286116A (en) UVC irradiation-resistant polypropylene/polyethylene weather-resistant composite material and preparation method thereof
JP4846496B2 (en) Cross-linked polytetrafluoroethylene resin and method for producing the same
US3838030A (en) Process for preparing of polytetrafluoroethylene resin wax
JP3730533B2 (en)   Modification method of fluororesin
CN110050038A (en) Crosslinked resin formed body, sliding component, gear and bearing
JP2004263038A (en) Fluororubber molding and method for producing the same
JP3948313B2 (en) Sliding member
JP4044725B2 (en) Method for producing modified engineering plastics
CN114292387B (en) Ultraviolet-resistant PBAT-based composite material and preparation method and application thereof
JP2000026614A (en) Ultrafine powdery crosslinked polytetrafluoroethylene resin and preparation thereof
US2959563A (en) Resinous 1-monoolefinic hydrocarbon compositions stabilized with silicon monoxide
CN113956528A (en) High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof
JP3750569B2 (en) Method for modifying fluorine resin and wear-resistant fluorine resin powder
US3379673A (en) Pigmented compositions and method of manufacture
RU2810570C2 (en) Method of thermoradiation treatment of fluoropolymers
CN107955346B (en) Preparation method of polylactic acid plasticized compound
Kovačević et al. Properties of adhesive polymer compositions in ageing conditions
CN116731492A (en) Hard conductive foam and preparation process thereof
CN109206819B (en) High crosslinking degree sensitizer applied to fluorine-containing polymer
JP4512770B2 (en) Method for producing a novel fiber-reinforced fluororesin composite material
CN112341736B (en) Fluororesin composition for 3D printing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3709922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees