JP3709036B2 - Mounting method for weak heat-resistant electronic components - Google Patents

Mounting method for weak heat-resistant electronic components Download PDF

Info

Publication number
JP3709036B2
JP3709036B2 JP01657397A JP1657397A JP3709036B2 JP 3709036 B2 JP3709036 B2 JP 3709036B2 JP 01657397 A JP01657397 A JP 01657397A JP 1657397 A JP1657397 A JP 1657397A JP 3709036 B2 JP3709036 B2 JP 3709036B2
Authority
JP
Japan
Prior art keywords
solder
electronic component
weak heat
heating tool
resistant electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01657397A
Other languages
Japanese (ja)
Other versions
JPH10215064A (en
Inventor
治人 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01657397A priority Critical patent/JP3709036B2/en
Publication of JPH10215064A publication Critical patent/JPH10215064A/en
Application granted granted Critical
Publication of JP3709036B2 publication Critical patent/JP3709036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱限界が一般的なはんだの融点より低い弱耐熱性電子部品をはんだ付けにより回路基板上に実装する方法に関するものである。
【0002】
【従来の技術】
一般に、回路基板上へ種々の電子部品を実装するに際しては、回路基板における所定の基板電極上にクリームはんだをスクリーン印刷法などにより印刷し、そのクリームはんだ上に所要の電子部品をそれぞれ装着し、この各種の電子部品が装着された回路基板をリフロー炉に搬入して加熱することによってはんだを溶融させ、そののちに、固化させたはんだにより各電子部品をそれぞれ基板電極にはんだ付けする手順で行われる。
【0003】
回路基板には種々の電子部品が実装されるが、それら電子部品のなかには、その性能や構造などによって耐熱限界が160℃程度と比較的低い弱耐熱性電子部品が存在することがある。ところが、上述のリフロー炉に搬入したときの電子部品の温度は通常200℃以上まで上昇するので、弱耐熱性電子部品は、他の一般的な電子部品と共にリフロー炉に搬入してはんだ付けすると、熱により破壊されて電子部品としての所期の機能を消失してしまう。したがって、弱耐熱性電子部品を他の一般的な電子部品と共に回路基板上に混載する場合には、弱耐熱性電子部品のみをリフロー炉に搬入しない特殊な手段ではんだ付けする必要がある。さらに、弱耐熱性電子部品のなかには、図11および図12に示すように、実装面積の縮小を目的としてリード端子1bを部品本体1aに対し内方へ折り曲げた形態の弱耐熱性電子部品1も存在し、このような弱耐熱性電子部品1の実装に際しては、上記の熱的な制約条件に加えて、はんだ付け作業が困難となる制約がある。
【0004】
従来では、上記の内曲げリード端子1bを有する弱耐熱性電子部品1の実装に際して、一般的な電子部品を予めリフロー炉によるはんだ付けにより実装したのちに、図11に示すように、糸はんだ2とはんだごて3を用いて手作業によりはんだ付けする後付け工法や、図12に示すように、Bi(ビスマス)などの低融点はんだ合金を含有した、いわゆる低温はんだ4に弱耐熱性電子部品1を装着して比較的低い温度のリフロー炉7に搬入するはんだ付け工法が採用されていた。
【0005】
【発明が解決しようとする課題】
しかしながら、図11の後付け工法では、弱耐熱性電子部品1の複数のリード端子1bに対し一つずつ手作業によるはんだ付けを行わなければならないので、そのはんだ付けに要する作業時間が長くなって生産タクトに悪影響を及ぼす問題がある。一方、低温はんだ4によるはんだ付け工法では、この低温はんだ4が物理的に脆弱なものであるために、熱サイクルや振動などによって回路基板8にストレスが加わったときの低温はんだ4の耐久性が低く、はんだ付け部分にクラックが発生し易いことから、信頼性が低い欠点がある。
【0006】
そこで本発明は、リード端子が内曲げとなった弱耐熱性電子部品であっても、短時間で効率的に実装しながらも高い信頼性を確保することのできる弱耐熱性電子部品の実装方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、回路基板における弱耐熱性電子部品の両側に配設されたリード端子を取付ける電極上にはんだを印刷する工程と、前記はんだを溶融させ固化させ予備はんだを形成する工程と、前記予備はんだ上に弱耐熱性電子部品のリード端子を装着する工程と、前記弱耐熱性電子部品の両側のリード端子より外方側の予備はんだの各部分に加熱ツールを同時に接触させて前記弱耐熱性電子部品の両側の予備はんだを同時に溶融させる工程とからなることを特徴としている。
【0008】
上記の弱耐熱性電子部品の実装方法では、弱耐熱性電子部品のはんだ付けを、一般電子部品に用いるのと同様のクリームはんだを用いて行えるので、従来の低温はんだを用いてはんだ付けした場合のようなクラックが発生するおそれがなく、高い信頼性を確保できる。また、クリームはんだを一旦溶融して固化した予備はんだの再溶融は、リフロー炉に搬入せずに、加熱ツールを接触させることにより行うので、弱耐熱性電子部品が熱の影響を受けて破壊するといったことが生じず、しかも予備はんだに加熱ツールを単に接触させることにより弱耐熱性電子部品のはんだ付けを行えることにより、従来の糸はんだとはんだごてを用いた手作業によるはんだ付けに比較してはんだ付けに要する時間を大幅に短縮できる。
【0010】
さらに、部品本体の両側のリード端子の全てを、加熱ツールの1回の作動によって同時にはんだ付けすることができ、生産タクトをより一層短縮できる効果を奏する。
【0011】
また、本発明の一態様では、弱耐熱性電子部品の両側に配設されたリード端子を取付ける電極を含む回路基板の電極上にはんだを印刷する工程と、弱耐熱性電子部品以外の部品を前記回路基板に実装する工程と、前記はんだを溶融させ固化させ予備はんだを形成する工程と、前記予備はんだ上に弱耐熱性電子部品のリード端子を装着する工程と、前記弱耐熱性電子部品の両側のリード端子より外方側の予備はんだの各部分に加熱ツールを同時に接触させて前記弱耐熱性電子部品の両側の予備はんだを同時に溶融させる工程とからなることを特徴としている。
【0012】
これによれば、全ての基板電極上にはんだを一括して印刷し、一般的な電子部品を装着した回路基板をリフロー炉に搬入して、リフロー炉で一般電子部品を回路基板にはんだ付けするとともに予備はんだを形成し、その後弱耐熱性電子部品を装着し予備はんだに加熱ツールを接触させてはんだ付けするので、回路基板上に弱耐熱性電子部品と一般的な電子部品を混載している回路基板を短時間に効率的に実装することができる。
【0013】
また、前記予備はんだを再溶融させるときに、前記加熱ツールの前記予備はんだに対する接触面が回路基板の表面に対し所定間隙を越えて近接しないように前記加熱ツールを作動制御することが好ましい。それにより、加熱ツールが予備はんだを押し潰さないので、加熱ツールの外側にはみ出て分離した予備はんだによるはんだボールの発生を確実に防止することができる。
【0014】
また、前記加熱ツールに前記接触面から突出する突出部を設け、前記予備はんだを再溶融させるときに、前記突出部が回路基板に当接するように前記加熱ツールを作動制御し、前記接触面が前記回路基板の表面に対し前記突出部の高さ寸法を越えて近接しないようすることが好ましい。
【0015】
それにより、加熱ツールが予備はんだを押し潰すことによるはんだボールの発生を確実に防止することができるとともに、その目的を達成するための加熱ツールの作動を簡単な制御機構によりコントロールすることができる利点がある。
【0016】
また、前記接触面の長手方向の両端に所定高さの突部状の一対の突出部を設け、前記予備はんだを再溶融させるときに、前記一対の突出部が回路基板における複数の予備はんだの配列の両端近傍箇所に当接するように前記加熱ツールを作動制御することが好ましい。それにより、生産タクトをより一層短縮できる効果に加えて、はんだボールの発生を防止するための加熱ツールの作動制御を簡単な構成によりコントロールできる。
【0017】
また、前記接触面の外方側の側縁部に長手方向に沿って小さな片状の突出部を設け、前記予備はんだを再溶融させるときに、突出部が回路基板における予備はんだの配列の外方側の近傍箇所に当接するように前記加熱ツールを作動制御することが好ましい。
【0018】
それにより、生産タクトをより一層短縮でき、はんだボールの発生を防止するための加熱ツールの作動制御を簡単な構成により達成できるのに加えて、加熱ツールの接触により溶融した予備はんだが電子部品に対し外方側へ漏れ出るのを突出部により確実に防止できる利点がある。
【0019】
また、前記加熱ツールの前記接触面を前記電子部品に近接する側に向かって前記回路基板との間隙が大きくなるよう傾斜した傾斜接触面に形成し、前記予備はんだを再溶融させるときに、前記傾斜接触面の外方側の側縁部が回路基板における予備はんだの配列の外方側の近傍箇所に当接するように前記加熱ツールを作動制御することが好ましい。
【0020】
それにより、生産タクトをより一層短縮でき、はんだボールの発生を防止するための加熱ツールの作動制御を簡単な構成により達成でき、溶融した予備はんだが電子部品に対し外方側へ漏れ出るのを確実に防止できるのに加えて、溶融した予備はんだがリード端子に沿って濡れ上がるのを円滑に且つ効果的に促進できる利点がある。
【0021】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しつつ詳細に説明する。図1は本発明に係る弱耐熱性電子部品1の実装方法の基本的な工程図を示すもので、回路基板8に一般的な電子部品9とリード端子1bが内曲げとなった弱耐熱性電子部品1とを混載して実装する場合の工程を示している。先ず、(a)に示すように、回路基板8の所定の基板電極(図示せず)上にクリームはんだ10をスクリーン印刷法によりコーティングする。ここで、クリームはんだ10は、一般電子部品9および弱耐熱性電子部品1の両はんだ付け用として共に同じものが用いられ、例えば、62Sn36Pb2Ag または63Sn37Pbなどのはんだ合金のはんだ粉末を含有し通常の合金組成のものであって、融点は約180℃である。
【0022】
つぎに、(b)に示すように、弱耐熱性電子部品1を除く実装すべき全ての一般電子部品9を所定箇所のクリームはんだ10上に既存の装着機(図示せず)により装着し、この一般電子部品9を装着した回路基板8を公知のリフロー炉に搬入して、リフロー炉内の温度をクリームはんだ10の融点以上に上昇させる。それにより、(c)に示すように、クリームはんだ10が溶融し、そののちに固化してフィレット11が形成され、一般電子部品9のはんだ付けが完了する。このとき、弱耐熱性電子部品1用のクリームはんだ10は、他のクリームはんだ10と同様に同時に溶融し、そののちに固化して、回路基板8上にはんだの固まりとなって、いわゆる予備はんだ12が形成される。
【0023】
続いて、予備はんだ12の表面に、はんだ付け品質の向上を図る目的でフラックス(図示せず)を塗布したのちに、(d)に示すように、内曲げリード端子1bを有する弱耐熱性電子部品1を予備はんだ12上に装着する。なお、図示していないが、実用化に際しては、認識機能付き装着機を用いて弱耐熱性電子部品1を予備はんだ12に対し正確に位置合わせして装着するとともに、位置決めした弱耐熱性電子部品1が横方向へずれるのを治具により防止し、且つその弱耐熱性電子部品1の位置規制をはんだ付けが完了するまで継続することが好ましい。弱耐熱性電子部品1が予備はんだ12に装着されると、押圧棒13が下降して弱耐熱性電子部品1を予備はんだ12に押し付ける。この状態において、400℃程度に加熱された一対の加熱ツール14が、弱耐熱性電子部品1の部品本体1aの両側の内曲げリード端子1bがそれぞれ装着されている予備はんだ12に対し上方で位置決めされたのちに、矢印で示すように降下する。
【0024】
(e)に示すように、降下する各加熱ツール14の先端が予備はんだ12に接触すると同時に予備はんだ12が再溶融するので、リード端子1bは、弱耐熱性電子部品1の自重と押圧棒13による押圧力により予備はんだ12内に沈み込んで回路基板8の基板電極に接触するとともに、溶融した予備はんだ12がリード端子1bに沿って濡れ上がる。そののちに、(f)に示すように、押圧棒13および加熱ツール14が矢印で示すように上昇すると、溶融した予備はんだ12が固化してフィレット11が形成され、弱耐熱性電子部品1のはんだ付けが完了する。
【0025】
上記の弱耐熱性電子部品1の実装工程では、一般電子部品9と同様に通常の合金組成を有するクリームはんだ10を用いてはんだ付けするので、従来の低温はんだ4を用いる場合と異なり回路基板8にストレスが加わったときの耐久性に優れ、クラックが発生するおそれがないことから高い信頼性を確保できる。また、クリームはんだ10を一旦溶融して固化した予備はんだ12の再溶融は、加熱ツール14を接触させることにより行う。このとき、加熱ツール14は部品本体1aおよびリード端子1bに対し接触することなくその近傍を移動して予備はんだ12のみに接触するとともに、リフロー炉に搬入しないことから、弱耐熱性電子部品1の部品本体1aは熱の影響を受けて破壊することがない。
【0026】
しかも、弱耐熱性電子部品1のはんだ付け用のクリームはんだ10は一般電子部品9のはんだ付け用のクリームはんだ10と共に一括して回路基板8に設けておき(本実施の形態では同一のクリームはんだを用いているが、一般電子部品9用のものと、弱耐熱性電子部品1用のものとを別種のはんだとしてもよく、スクリーン印刷を2工程で行ってもよい。)、一般電子部品9のはんだ付けのためにリフロー炉に搬入したときに クリームはんだ10が溶融し、そののちに固化して予備はんだ12となり、この予備はんだ12上に弱耐熱性電子部品1を一般電子部品9と同様の手段で装着し、この予備はんだ12に加熱ツール14を単に接触させることにより弱耐熱性電子部品1のはんだ付けを行うので、従来の糸はんだ2とはんだごて3を用いた手作業によるはんだ付けに比較してはんだ付けに要する時間を大幅に短縮できる。
【0027】
つぎに、本発明の第1ないし第4の実施の形態について以下に説明するが、その何れの実施の形態においても、基本的な工程は図1で説明した通りであって、一部の具体的な手段が各々異なるだけであり、図1と同様の効果を得ることができるものである。図2は第1の実施の形態に用いる一対の加熱ツール14A,14Aを示す下方から見た斜視図である。この加熱ツール14Aは、予備はんだ12への接触面17が一様な平坦面になっており、回路基板8に対し接触面17が平行となるよう位置決めして図示しないはんだ付け装置に取り付けられる。
【0028】
図3は上記加熱ツール14Aを用いた第1の実施の形態における要部の工程を示し、同図の(a)〜(c)は図1における(d)〜(f)の工程に対応し、同図の(d)〜(f)はそれぞれ同図の(a)〜(c)の右側面図である。回路基板8には、(a)に明示するように、内曲げリード端子1bを有する弱耐熱性電子部品1用を取り付けるための基板電極18が、リード端子1bの取付位置から外方へ延びる形状に形成されており、この基板電極18の全面に予備はんだ12が設けられる。したがって、予備はんだ12は、これの上面部に装着されたリード端子1bよりも外方へ張り出した状態に設けられており、加熱ツール14Aは、その接触面17がリード端子1bから僅かに離間して予備はんだ12の上記外方へ張り出した部分に対向し、且つ回路基板8に平行になるよう回路基板8との相対位置を位置決めしてはんだ付け装置に取り付けられている。この点については、後述する第2ないし第4の実施の形態においても同様である。
【0029】
また、この実施の形態では、(d)に示すように、部品本体1aの両側にそれぞれ6本のリード端子1bを備えた弱耐熱性電子部品1を実装する場合を例示してあり、それに伴って各加熱ツール14Aは、それぞれ6箇所の予備はんだ12に同時に接触できる長さの接触面17を有している。
【0030】
加熱ツール14Aは、(a)に矢印で示すように、上記の位置決めされた状態から真っ直ぐに降下されて、(b)および(e)に示すように、その接触面17が全ての予備はんだ12に同時に接触し、各予備はんだ12は接触面17が接触した瞬間に溶融し、リード端子1bは溶融した予備はんだ12に沈み込んで基板電極18に接触する。それと同時に、溶融した予備はんだ12がリード端子1bに沿って濡れ上がり、この予備はんだ12が固化してフィット11が形成されると、(c)および(f)に示すように、弱耐熱性電子部品1のはんだ付けが完了する。
【0031】
上記はんだ付け工程において、加熱ツール14Aの作動ストロークは装置に設けた制御ユニット(図示せず)により制御される。すなわち、加熱ツール14Aは、(b)および(e)に示すように、その接触面17が回路基板8の表面に対し所定間隙Dとなる最下点まで下降して2〜3秒停止したのちに上昇するよう制御される。これにより、加熱ツール14Aの接触面17が予備はんだ12を完全に押し潰さないので、後述するはんだボールの発生を防止できる。なお、上記の所定間隙Dは、0.03mm以上で0.1 mm以下に設定するのが好ましく、それにより、はんだボールの発生を防止しながら溶融した予備はんだ12をリード端子1bに効率良く濡れ上がらせることができる。また、上記の所定間隙Dは、実際には接触面17と基板電極18との間の距離であるが、基板電極18は、同図において誇張して図示してあるが、無視できる厚さである。したがって、所定間隙Dは接触面17と回路基板8の表面との間隙と見做して差し支えない。
【0032】
このはんだ付け工程では、各加熱ツール14Aの接触面17がそれぞれ一列6箇所の全ての予備はんだ12に同時に接触してこれを溶融させるので、はんだ付けに要する時間は、従来の糸はんだ2とはんだごて3を用いてリード端子bを一つずつはんだ付けする場合に比較して1/10以下に短縮でき、約2〜3秒という極めて短時間で一個の弱耐熱性電子部品1のはんだ付けを完了することができる。
【0033】
また、(b)に明示しているように、加熱ツール14Aは、基板電極18を上記のように外方へ張り出す形状としたことによってリード端子1bに接触することなく予備はんだ12に接触するので、弱耐熱性電子部品1は高温の加熱ツール14Aからの熱伝導を殆ど受けることがなく、その電子部品としての機能に何ら悪影響を及ぼさない。
【0034】
図4は、上記第1の実施の形態において、加熱ツール14Aをその接触面17が回路基板8に直接接触するまで下降させたと仮定した場合の不都合の発生を説明する工程図である。加熱ツール14Aの接触面17が回路基板8に接触する際に、溶融した予備はんだ12は、押し潰されて、その一部がボール状となって加熱ツール14Aの外側にはみ出て分離される。この分離された予備はんだ12の一部は、加熱ツール14Aが上昇したときに、そのボール形状のままフィレット11から離間した位置に付着して残留し、所謂はんだボール19となる。このはんだボール19は、回路基板8の表面から離脱して回路基板8上を転がると、電子部品1,9における隣接するリード端子間を電気的に短絡するといった不都合が発生するおそれがある。そのため、上記の第1の実施の形態では、加熱ツール14Aの最下点をその接触面17と回路基板8の表面とが所定間隙Dとなる位置に設定して、はんだボール19の発生を効果的に防止している。
【0035】
図5は第2の実施の形態に用いる一対の加熱ツール14B,14Bを示す下方から見た斜視図である。この加熱ツール14Bは、予備はんだ12への接触面17が一様な平坦面になっているのは第1の実施の形態のものと同様であるが、その接触面17の長手方向の両側に突部20がそれぞれ形成されている。上記突部20の接触面17からの高さDは、第1の実施の形態における所定間隙Dと同一に、つまり0.03mm以上で0.1 mm以下に設定されている。この加熱ツール14Bは、第1の実施の形態と同様に、回路基板8に対し接触面17が平行となるよう位置決めしてはんだ付け装置に取り付けられる。
【0036】
図6は上記加熱ツール14Bを用いた第2の実施の形態における要部の工程を示し、同図の(a)〜(c)は図1における(d)〜(f)の工程に対応し、同図の(d)〜(f)はそれぞれ同図の(a)〜(c)の右側面図である。加熱ツール14Bは、(a)および(d)に示すように、第1の実施の形態で説明したと同様に位置決めされたのち、その状態を保ったまま真っ直ぐに下降して、(b),(e)に示すように両側の突部20が回路基板8の表面における予備はんだ12の近傍箇所に接触して2〜3秒の間停止したのちに、(c)および(f)に示すように上昇する。加熱ツール14Bが予備はんだ12に接触してこれを溶融させるときに、加熱ツール14Bの接触面17と回路基板8の表面との間には、突部20の高さD分だけの間隙が生じ、この間隙は第1の実施の形態における所定間隙Dと同一であるから、第1の実施の形態と同様に、はんだボール19の発生を防止しながら溶融した予備はんだ12をリード端子1bに沿って効率的に濡れ上がらせることができる。
【0037】
また、この実施の形態においても、弱耐熱性電子部品1の複数本(この実施の形態では12本)のリード端子1bのはんだ付けを2〜3秒の短時間で同時に行える。しかも、この実施の形態では、加熱ツール14Bをその接触面17が回路基板8の表面に当接するまで下降させればよいので、第1の実施の形態のように加熱ツール14Aの作動ストロークを制御ユニットにより精密に制御する場合に比較して加熱ツール14Bの制御機構を簡素化できる利点がある。
【0038】
図7は第3の実施の形態に用いる一対の加熱ツール14C,14Cを示す下方から見た斜視図である。この加熱ツール14Cは、予備はんだ12への接触面17が一様な平坦面になっているのは第1の実施の形態のものと同様であるが、その接触面17における長手方向の外方側の一辺に沿って突出小片21が形成されている。上記突出小片21の接触面17からの高さDは、第2の実施の形態の加熱ツール14Bの突部20の高さDと同一に、つまり0.03mm以上で0.1 mm以下に設定されている。この加熱ツール14Cは、第1の実施の形態と同様に、予備はんだ12に装着された弱耐熱性電子部品1のリード端子1bから僅かに外方へ離間し、且つ回路基板8に対し接触面17が平行となるよう位置決めしてはんだ付け装置に取り付けられる。
【0039】
図8は上記加熱ツール14Cを用いた第3の実施の形態における要部の工程を示し、同図の(a)〜(c)は図1における(d)〜(f)の工程に対応し、同図の(d)〜(f)はそれぞれ同図の(a)〜(c)の右側面図である。加熱ツール14Cは、(a)および(d)に示すように、第1の実施の形態で説明したと同様に位置決めされ、且つその状態を保ったまま真っ直ぐに下降して、(b),(e)に示すように突出小片21が回路基板8の表面における予備はんだ12の外方側の近傍箇所に接触して2〜3秒の間停止したのちに、(c)および(f)に示すように上昇する。加熱ツール14Cが予備はんだ12に接触してこれを溶融させるときに、加熱ツール14Bの接触面17と回路基板8の表面との間には、突出小片21の高さD分だけの間隙が生じ、この間隙Dは第1の実施の形態の所定間隙Dと同一であるから、第1の実施の形態と同様に、はんだボール19の発生を防止しながら溶融した予備はんだ12をリード端子1bに沿って効率的に濡れ上がらせることができる。
【0040】
この実施の形態においても、弱耐熱性電子部品1の複数本のリード端子1bのはんだ付けを2〜3秒の短時間で同時に行えるとともに、加熱ツール14Cをその接触面17が回路基板8の表面に当接するまで下降させればよいので、第2の実施の形態と同様に、加熱ツール14Bの制御機構を簡素化できる利点がある。
【0041】
それに加えて、溶融した予備はんだ12が接触面17により押圧されて基板電極18から外方へ向けはみ出ようとしても、これを突出小片21により確実に阻止できる効果がある。
【0042】
図9は第4の実施の形態に用いる一対の加熱ツール14D,14Dを示す下方から見た斜視図である。この加熱ツール14Dは、下端面に内側から外側に向かって下り勾配に傾斜した傾斜接触面22が加熱ツール14Dの長手方向に沿って形成され、この傾斜接触面22の外側に沿って当接面23が形成されている。上記傾斜接触面22の上端と当接面23との間の鉛直方向の距離Dは、第2の実施の形態の加熱ツール14Bの突部20の高さDと同一に、つまり0.03mm以上で0.1 mm以下に設定されている。この加熱ツール14Dは、予備はんだ12に装着された弱耐熱性電子部品1のリード端子1bから僅かに外方へ離間し、且つ回路基板8に対し当接面23が平行となるよう位置決めしてはんだ付け装置に取り付けられる。
【0043】
図10は上記加熱ツール14Dを用いた第4の実施の形態における要部の工程を示し、同図の(a)〜(c)は図1における(d)〜(f)の工程に対応し、同図の(d)〜(f)はそれぞれ同図の(a)〜(c)の右側面図である。加熱ツール14Dは、(a)および(d)に示すように、第1の実施の形態で説明したと同様に位置決めされ、且つその状態を保ったまま真っ直ぐに下降して、(b),(e)に示すように当接面23が回路基板8の表面における予備はんだ12の外方側の近傍箇所に接触して2〜3秒の間停止したのちに、(c)および(f)に示すように上昇する。加熱ツール14Dの当接面23が回路基板8に当接したときに、予備はんだ12に接触してこれを溶融させる傾斜接触面22と回路基板8の表面との間には、傾斜接触面22の勾配に応じて内方へ向かい順次大きくなる間隙が生じ、この間隙の最大値は第1の実施の形態の所定間隙Dと同一であるから、第1の実施の形態と同様に、はんだボール19の発生を防止できる。
【0044】
また、この実施の形態においても、(d)〜(f)から明らかなように、弱耐熱性電子部品1の複数本のリード端子1bのはんだ付けを2〜3秒の短時間で同時に行え、さらに、加熱ツール14Dをその当接面23が回路基板8の表面に当接するまで下降させればよいので、第2および第3の実施の形態と同様に、加熱ツール14Dの制御機構を簡素化できる利点がある。それに加えて、回路基板8の表面に密着する当接面23によって溶融した予備はんだ12が基板電極18の外方へ向かいはみ出ようとするのをより確実に阻止することができるとともに、内方へ向かい上がり勾配となった傾斜接触面22により、溶融した予備はんだ12がリード端子1bに沿って濡れ上がるのを円滑に且つ効果的に促進することができる効果がある。
【0045】
【発明の効果】
以上のように本発明の弱耐熱性電子部品の実装方法によれば、弱耐熱性電子部品のはんだ付けを、一般電子部品と同様にクリームはんだを用いて行うので、従来の低温はんだを用いてはんだ付けした場合のようなクラックが発生するおそれがなく、高い信頼性を確保できる。また、クリームはんだを一旦溶融して固化した予備はんだの再溶融は、リフロー炉に搬入せずに、加熱ツールを接触させることにより行うので、弱耐熱性電子部品が熱の影響を受けて破壊するといったことが生じず、しかも予備はんだに加熱ツールを単に接触させることにより弱耐熱性電子部品のはんだ付けを行えることとにより、従来の糸はんだとはんだごてを用いた手作業によるはんだ付けに比較して、はんだ付けに要する時間を大幅に短縮でき、生産タクトを短縮できる。さらに、部品本体の両側のリード端子の全てを、加熱ツールの1回の作動によって同時にはんだ付けすることができ、生産タクトをより一層短縮できる効果を奏する。
【図面の簡単な説明】
【図1】本発明の弱耐熱性電子部品の実装方法に係る基本工程を順に示す工程図。
【図2】本発明の第1の実施の形態に係る弱耐熱性電子部品の実装方法に用いる加熱ツールを示す斜視図。
【図3】(a)〜(c)は上記加熱ツールを用いた本発明の第1の実施の形態の要部工程を示す工程図、(d)〜(f)は(a)〜(c)の右側面図。
【図4】上記の要部工程を用いないと仮定した場合の不都合の発生を説明するための工程図。
【図5】本発明の第2の実施の形態に係る弱耐熱性電子部品の実装方法に用いる加熱ツールを示す斜視図。
【図6】(a)〜(c)は上記加熱ツールを用いた本発明の第2の実施の形態の要部工程を示す工程図、(d)〜(f)は(a)〜(c)の右側面図。
【図7】本発明の第3の実施の形態に係る弱耐熱性電子部品の実装方法に用いる加熱ツールを示す斜視図。
【図8】(a)〜(c)は上記加熱ツールを用いた本発明の第3の実施の形態の要部工程を示す工程図、(d)〜(f)は(a)〜(c)の右側面図。
【図9】本発明の第4の実施の形態に係る弱耐熱性電子部品の実装方法に用いる加熱ツールを示す斜視図。
【図10】(a)〜(c)は上記加熱ツールを用いた本発明の第4の実施の形態の要部工程を示す工程図、(d)〜(f)は(a)〜(c)の右側面図。
【図11】従来の弱耐熱性電子部品の実装方法を示す斜視図。
【図12】従来の他の弱耐熱性電子部品の実装方法を示す一部工程図。
【符号の説明】
1 弱耐熱性電子部品
1a 部品本体
1b リード端子
8 回路基板
9 一般電子部品
10 クリームはんだ
12 予備はんだ
14,14A〜14D 加熱ツール
17 接触面
18 基板電極
20 突部(突出部)
21 突出小片(突出部)
22 傾斜接触面
23 当接面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for mounting a weak heat resistant electronic component having a heat resistance limit lower than the melting point of general solder on a circuit board by soldering.
[0002]
[Prior art]
In general, when mounting various electronic components on a circuit board, cream solder is printed on a predetermined substrate electrode on the circuit board by a screen printing method or the like, and the required electronic components are respectively mounted on the cream solder, The circuit board on which these various electronic components are mounted is carried into a reflow furnace and heated to melt the solder, and then the electronic components are soldered to the substrate electrodes with the solidified solder. Is called.
[0003]
Various electronic components are mounted on the circuit board. Among these electronic components, there may be a weak heat-resistant electronic component having a relatively low heat resistance limit of about 160 ° C. depending on its performance and structure. However, since the temperature of the electronic component when it is carried into the above-described reflow furnace usually rises to 200 ° C. or higher, the weak heat-resistant electronic component is carried into the reflow furnace together with other general electronic components and soldered. It is destroyed by heat and loses its expected function as an electronic component. Therefore, when a weak heat-resistant electronic component is mixedly mounted on a circuit board together with other general electronic components, it is necessary to solder only the weak heat-resistant electronic component by a special means that does not carry it into the reflow furnace. Further, among the weak heat resistant electronic components, as shown in FIGS. 11 and 12, there is also a weak heat resistant electronic component 1 in a form in which the lead terminal 1b is bent inward with respect to the component main body 1a for the purpose of reducing the mounting area. In mounting such a weak heat-resistant electronic component 1, in addition to the above thermal constraint conditions, there are limitations that make the soldering operation difficult.
[0004]
Conventionally, when mounting the weak heat-resistant electronic component 1 having the inner bending lead terminal 1b, a general electronic component is mounted in advance by soldering in a reflow furnace, and then, as shown in FIG. A low heat resistant electronic component 1 to a so-called low-temperature solder 4 containing a low melting point solder alloy such as Bi (bismuth) as shown in FIG. And a soldering method for carrying it into a reflow furnace 7 having a relatively low temperature.
[0005]
[Problems to be solved by the invention]
However, in the post-installation method shown in FIG. 11, since it is necessary to perform soldering one by one on the plurality of lead terminals 1b of the weak heat-resistant electronic component 1, the work time required for the soldering becomes longer and the production is increased. There is a problem that adversely affects tact. On the other hand, in the soldering method using the low-temperature solder 4, since the low-temperature solder 4 is physically fragile, the durability of the low-temperature solder 4 when the circuit board 8 is stressed due to a thermal cycle or vibration is high. Since it is low and cracks are likely to occur in the soldered part, there is a drawback of low reliability.
[0006]
Accordingly, the present invention provides a mounting method for a weak heat-resistant electronic component that can ensure high reliability while being efficiently mounted in a short time even if the lead terminal is a weak heat-resistant electronic component that is bent inward. Is intended to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides: Attach the lead terminals on both sides of the weak heat-resistant electronic components on the circuit board. A step of printing solder on the electrodes, a step of melting and solidifying the solder to form a preliminary solder, a step of mounting a lead terminal of a weak heat-resistant electronic component on the preliminary solder, At each part of the spare solder outside the lead terminals on both sides of the weak heat-resistant electronic component Heating tool Of the weak heat-resistant electronic component It is characterized by comprising a step of simultaneously melting the preliminary solder on both sides.
[0008]
In the above weak heat-resistant electronic component mounting method, weak heat-resistant electronic components can be soldered using the same cream solder as used for general electronic components, so when using conventional low-temperature soldering Thus, there is no risk of cracks occurring and high reliability can be ensured. In addition, remelting of pre-solder once melted and solidified by cream solder is performed by bringing the heating tool into contact without bringing it into the reflow furnace, so that the weak heat-resistant electronic components are destroyed by the influence of heat. In addition, the weak heat-resistant electronic components can be soldered by simply bringing the heating tool into contact with the pre-solder, which is compared to the conventional manual soldering using thread solder and a soldering iron. The time required for soldering can be greatly reduced.
[0010]
Furthermore, all the lead terminals on both sides of the component main body can be soldered simultaneously by one operation of the heating tool, and the production tact can be further shortened.
[0011]
In one embodiment of the present invention, Includes electrodes for mounting lead terminals on both sides of weak heat-resistant electronic components The process of printing solder on the circuit board electrodes and weak heat resistance Sex electron A step of mounting a component other than a component on the circuit board, a step of melting and solidifying the solder to form a preliminary solder, a step of mounting a lead terminal of a weak heat-resistant electronic component on the preliminary solder, At each part of the spare solder outside the lead terminals on both sides of the weak heat-resistant electronic component Heating tool Of the weak heat-resistant electronic component It is characterized by comprising a step of simultaneously melting the preliminary solder on both sides.
[0012]
According to this, solder is printed on all the substrate electrodes at once, a circuit board on which general electronic components are mounted is carried into a reflow furnace, and the general electronic components are soldered to the circuit board in the reflow furnace. At the same time, pre-solder is formed, and then a weak heat-resistant electronic component is mounted, and a heating tool is brought into contact with the pre-solder and soldered, so a weak heat-resistant electronic component and a general electronic component are mixedly mounted on the circuit board. The circuit board can be efficiently mounted in a short time.
[0013]
In addition, when the preliminary solder is remelted, it is preferable to control the operation of the heating tool so that the contact surface of the heating tool with the preliminary solder does not approach the surface of the circuit board beyond a predetermined gap. Thereby, since the heating tool does not crush the preliminary solder, it is possible to reliably prevent the generation of solder balls due to the preliminary solder that protrudes outside the heating tool and is separated.
[0014]
Further, the heating tool is provided with a protruding portion that protrudes from the contact surface, and when the preliminary solder is remelted, the heating tool is controlled to operate so that the protruding portion contacts the circuit board. It is preferable not to approach the surface of the circuit board beyond the height dimension of the protrusion.
[0015]
As a result, it is possible to reliably prevent the generation of solder balls due to the heating tool crushing the preliminary solder, and the advantage that the operation of the heating tool for achieving the purpose can be controlled by a simple control mechanism. There is.
[0016]
Further, a pair of protrusions having a predetermined height are provided at both ends in the longitudinal direction of the contact surface, and when the preliminary solder is remelted, the pair of protrusions are formed of a plurality of preliminary solders on the circuit board. It is preferable to control the operation of the heating tool so as to come into contact with the vicinity of both ends of the array. Thereby, in addition to the effect that production tact can be further shortened, the operation control of the heating tool for preventing the generation of solder balls can be controlled with a simple configuration.
[0017]
In addition, a small piece-like protruding portion is provided along the longitudinal direction on the outer side edge portion of the contact surface, and when the preliminary solder is remelted, the protruding portion is outside the arrangement of the preliminary solder on the circuit board. It is preferable to control the operation of the heating tool so as to come into contact with the vicinity of the side.
[0018]
As a result, the production tact can be further shortened, and the operation control of the heating tool for preventing the generation of solder balls can be achieved with a simple configuration, and the pre-solder melted by the contact of the heating tool is applied to the electronic component. On the other hand, there is an advantage that leakage from the outside can be surely prevented by the protruding portion.
[0019]
Further, the contact surface of the heating tool is formed on an inclined contact surface inclined so that a gap with the circuit board is increased toward a side close to the electronic component, and when the preliminary solder is remelted, It is preferable to control the operation of the heating tool so that the outer side edge portion of the inclined contact surface is in contact with a position near the outer side of the preliminary solder array on the circuit board.
[0020]
As a result, the production tact can be further shortened, the operation control of the heating tool to prevent the generation of solder balls can be achieved with a simple configuration, and the molten pre-solder can be leaked outward from the electronic components. In addition to being able to prevent it reliably, there is an advantage that the molten pre-solder can be smoothly and effectively promoted to get wet along the lead terminals.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a basic process diagram of a method for mounting a weak heat-resistant electronic component 1 according to the present invention. A weak heat resistance in which a general electronic component 9 and a lead terminal 1b are bent inward on a circuit board 8. FIG. The process in the case of mounting the electronic component 1 together is shown. First, as shown in (a), a cream solder 10 is coated on a predetermined substrate electrode (not shown) of the circuit board 8 by a screen printing method. Here, the cream solder 10 is the same for both the general electronic component 9 and the weak heat-resistant electronic component 1 for soldering. For example, the cream solder 10 contains a solder powder of a solder alloy such as 62Sn36Pb2Ag or 63Sn37Pb and contains a normal alloy. The composition has a melting point of about 180 ° C.
[0022]
Next, as shown in (b), all the general electronic components 9 to be mounted except the weak heat-resistant electronic component 1 are mounted on the cream solder 10 at a predetermined location by an existing mounting machine (not shown), The circuit board 8 on which the general electronic component 9 is mounted is carried into a known reflow furnace, and the temperature in the reflow furnace is raised to the melting point of the cream solder 10 or higher. Thereby, as shown in (c), the cream solder 10 is melted and then solidified to form the fillet 11, and the soldering of the general electronic component 9 is completed. At this time, the cream solder 10 for the weak heat-resistant electronic component 1 is melted at the same time as the other cream solders 10, and then solidifies to become a solder mass on the circuit board 8, so-called preliminary solder. 12 is formed.
[0023]
Subsequently, a flux (not shown) is applied to the surface of the preliminary solder 12 for the purpose of improving the soldering quality, and then, as shown in (d), the weak heat-resistant electron having the inner bending lead terminal 1b. The component 1 is mounted on the preliminary solder 12. Although not shown in the drawings, when practically used, the weak heat-resistant electronic component 1 is mounted on the preliminary solder 12 by accurately aligning and mounting the weak heat-resistant electronic component 1 with a recognition function mounting machine. It is preferable that the jig 1 is prevented from shifting laterally by the jig and the position regulation of the weak heat-resistant electronic component 1 is continued until the soldering is completed. When the weak heat resistant electronic component 1 is mounted on the preliminary solder 12, the pressing rod 13 is lowered to press the weak heat resistant electronic component 1 against the preliminary solder 12. In this state, the pair of heating tools 14 heated to about 400 ° C. are positioned above the preliminary solder 12 on which the inner bending lead terminals 1b on both sides of the component body 1a of the weak heat-resistant electronic component 1 are respectively mounted. After that, it descends as shown by the arrow.
[0024]
As shown in (e), since the tip of each descending heating tool 14 contacts the preliminary solder 12 and the preliminary solder 12 is remelted, the lead terminal 1b has the weight of the weak heat-resistant electronic component 1 and the pressing rod 13 as shown in FIG. Due to the pressing force, the submerged solder 12 sinks into contact with the substrate electrode of the circuit board 8, and the molten preliminary solder 12 gets wet along the lead terminals 1b. Thereafter, as shown in (f), when the pressing rod 13 and the heating tool 14 are raised as indicated by arrows, the melted preliminary solder 12 is solidified to form a fillet 11, and the weak heat-resistant electronic component 1 is formed. Soldering is complete.
[0025]
In the mounting process of the weak heat-resistant electronic component 1, soldering is performed using the cream solder 10 having a normal alloy composition as in the case of the general electronic component 9, so that the circuit board 8 is different from the case where the conventional low-temperature solder 4 is used. It is excellent in durability when stress is applied to it, and since there is no possibility of cracking, high reliability can be secured. Further, the re-melting of the preliminary solder 12 once melted and solidified by the cream solder 10 is performed by bringing the heating tool 14 into contact therewith. At this time, the heating tool 14 moves in the vicinity thereof without contacting the component main body 1a and the lead terminal 1b, contacts only the preliminary solder 12, and does not carry into the reflow furnace. The component main body 1a is not destroyed under the influence of heat.
[0026]
Moreover, the cream solder 10 for soldering the weak heat-resistant electronic component 1 is provided together with the cream solder 10 for soldering the general electronic component 9 on the circuit board 8 (in this embodiment, the same cream solder). However, the general electronic component 9 and the weak heat-resistant electronic component 1 may be different types of solder, and screen printing may be performed in two steps). When the solder is carried into a reflow furnace for soldering, the cream solder 10 is melted and then solidified to become the spare solder 12. The weak heat-resistant electronic component 1 is placed on the spare solder 12 in the same manner as the general electronic component 9. The weak heat-resistant electronic component 1 is soldered by simply attaching the heating tool 14 to the preliminary solder 12 and using the conventional thread solder 2 and soldering iron 3. Compared to manual soldering, the time required for soldering can be greatly reduced.
[0027]
Next, first to fourth embodiments of the present invention will be described below. In any of the embodiments, the basic steps are as described in FIG. The only difference is that each means is different, and the same effect as in FIG. 1 can be obtained. FIG. 2 is a perspective view showing the pair of heating tools 14A and 14A used in the first embodiment as seen from below. The heating tool 14A is attached to a soldering device (not shown) after positioning the contact surface 17 to be parallel to the circuit board 8 so that the contact surface 17 to the preliminary solder 12 is a flat surface.
[0028]
FIG. 3 shows the main steps in the first embodiment using the heating tool 14A, and FIGS. 3A to 3C correspond to the steps (d) to (f) in FIG. (D)-(f) of the figure is the right view of (a)-(c) of the figure, respectively. As clearly shown in (a), the substrate electrode 18 for mounting the weak heat-resistant electronic component 1 having the inner bent lead terminal 1b extends outward from the mounting position of the lead terminal 1b. The preliminary solder 12 is provided on the entire surface of the substrate electrode 18. Therefore, the preliminary solder 12 is provided so as to protrude outward from the lead terminal 1b mounted on the upper surface portion thereof, and the heating tool 14A has a contact surface 17 slightly spaced from the lead terminal 1b. Thus, the preliminary solder 12 is attached to the soldering apparatus with the relative position to the circuit board 8 facing the portion projecting outward and parallel to the circuit board 8. This also applies to the second to fourth embodiments described later.
[0029]
Moreover, in this embodiment, as shown in (d), the case where the weak heat-resistant electronic component 1 provided with the six lead terminals 1b on each side of the component main body 1a is mounted is illustrated, and accordingly Each heating tool 14A has a contact surface 17 having a length capable of simultaneously contacting the six preliminary solders 12 respectively.
[0030]
The heating tool 14A is lowered straight from the above-mentioned positioned state as indicated by an arrow in (a), and its contact surface 17 is all pre-solder 12 as shown in (b) and (e). At the same time, each preliminary solder 12 melts at the moment when the contact surface 17 contacts, and the lead terminal 1b sinks into the molten preliminary solder 12 and contacts the substrate electrode 18. At the same time, when the melted preliminary solder 12 is wetted along the lead terminals 1b and the preliminary solder 12 is solidified to form the fit 11, weak heat-resistant electrons are obtained as shown in (c) and (f). The soldering of the component 1 is completed.
[0031]
In the soldering step, the operation stroke of the heating tool 14A is controlled by a control unit (not shown) provided in the apparatus. That is, the heating tool 14A is moved down to the lowest point at which the contact surface 17 becomes a predetermined gap D with respect to the surface of the circuit board 8, as shown in FIGS. Controlled to rise. Thereby, since the contact surface 17 of the heating tool 14A does not completely crush the preliminary solder 12, generation of solder balls described later can be prevented. The predetermined gap D is preferably set to 0.03 mm or more and 0.1 mm or less, so that the molten pre-solder 12 can be efficiently wetted to the lead terminal 1b while preventing the generation of solder balls. Can do. In addition, the predetermined gap D is actually a distance between the contact surface 17 and the substrate electrode 18, but the substrate electrode 18 is exaggerated in the figure, but has a negligible thickness. is there. Therefore, the predetermined gap D can be regarded as a gap between the contact surface 17 and the surface of the circuit board 8.
[0032]
In this soldering process, the contact surface 17 of each heating tool 14A simultaneously contacts and melts all the preliminary solders 12 in one row and six places, so that the time required for soldering is the same as that of the conventional thread solder 2 and solder. Compared to the case where the lead terminals b are soldered one by one using the iron 3, it can be shortened to 1/10 or less, and the soldering of one weak heat-resistant electronic component 1 can be performed in an extremely short time of about 2 to 3 seconds. Can be completed.
[0033]
Further, as clearly shown in (b), the heating tool 14A contacts the preliminary solder 12 without contacting the lead terminal 1b by forming the substrate electrode 18 so as to protrude outward as described above. Therefore, the weak heat-resistant electronic component 1 hardly receives heat conduction from the high-temperature heating tool 14A, and has no adverse effect on the function as the electronic component.
[0034]
FIG. 4 is a process diagram for explaining the occurrence of inconvenience when it is assumed that the heating tool 14A is lowered until the contact surface 17 directly contacts the circuit board 8 in the first embodiment. When the contact surface 17 of the heating tool 14A comes into contact with the circuit board 8, the molten pre-solder 12 is crushed and part of it is formed into a ball shape that protrudes outside the heating tool 14A and is separated. When the heating tool 14 </ b> A is raised, a part of the separated preliminary solder 12 remains attached to a position away from the fillet 11 in the form of the ball and becomes a so-called solder ball 19. When the solder balls 19 are separated from the surface of the circuit board 8 and roll on the circuit board 8, there is a possibility that an inconvenience such as an electrical short circuit between adjacent lead terminals in the electronic components 1 and 9 may occur. Therefore, in the first embodiment described above, the lowest point of the heating tool 14A is set to a position where the contact surface 17 and the surface of the circuit board 8 become the predetermined gap D, and the generation of the solder balls 19 is effective. Prevent it.
[0035]
FIG. 5 is a perspective view showing the pair of heating tools 14B and 14B used in the second embodiment, as viewed from below. In the heating tool 14B, the contact surface 17 to the pre-solder 12 is a uniform flat surface as in the first embodiment, but on both sides of the contact surface 17 in the longitudinal direction. Each protrusion 20 is formed. The height D of the protrusion 20 from the contact surface 17 is set to be the same as the predetermined gap D in the first embodiment, that is, 0.03 mm or more and 0.1 mm or less. As in the first embodiment, the heating tool 14B is positioned so that the contact surface 17 is parallel to the circuit board 8 and attached to the soldering apparatus.
[0036]
FIG. 6 shows the main steps in the second embodiment using the heating tool 14B, and FIGS. 6A to 6C correspond to the steps (d) to (f) in FIG. (D)-(f) of the figure is the right view of (a)-(c) of the figure, respectively. As shown in (a) and (d), the heating tool 14B is positioned in the same manner as described in the first embodiment, and then descends straight while maintaining that state. As shown in (c) and (f) after the protrusions 20 on both sides come into contact with the vicinity of the preliminary solder 12 on the surface of the circuit board 8 and stop for 2 to 3 seconds as shown in (e). To rise. When the heating tool 14B contacts and melts the preliminary solder 12, a gap corresponding to the height D of the protrusion 20 is formed between the contact surface 17 of the heating tool 14B and the surface of the circuit board 8. Since this gap is the same as the predetermined gap D in the first embodiment, similarly to the first embodiment, the melted preliminary solder 12 is prevented along the lead terminal 1b while preventing the generation of the solder balls 19. Can be efficiently wetted.
[0037]
Also in this embodiment, a plurality of (12 in this embodiment) lead terminals 1b of weak heat-resistant electronic components 1 can be soldered simultaneously in a short time of 2 to 3 seconds. In addition, in this embodiment, since the heating tool 14B has only to be lowered until the contact surface 17 comes into contact with the surface of the circuit board 8, the operation stroke of the heating tool 14A is controlled as in the first embodiment. There is an advantage that the control mechanism of the heating tool 14B can be simplified as compared with the case of precise control by the unit.
[0038]
FIG. 7 is a perspective view showing a pair of heating tools 14C, 14C used in the third embodiment as seen from below. In this heating tool 14C, the contact surface 17 to the pre-solder 12 is a uniform flat surface as in the first embodiment, but the contact surface 17 is outward in the longitudinal direction. A protruding piece 21 is formed along one side of the side. The height D of the protruding piece 21 from the contact surface 17 is set to be the same as the height D of the protruding portion 20 of the heating tool 14B of the second embodiment, that is, 0.03 mm or more and 0.1 mm or less. . As in the first embodiment, the heating tool 14C is slightly outwardly spaced from the lead terminal 1b of the weak heat-resistant electronic component 1 mounted on the preliminary solder 12, and is in contact with the circuit board 8. It positions so that 17 may become parallel and is attached to a soldering apparatus.
[0039]
FIG. 8 shows the main steps in the third embodiment using the heating tool 14C. FIGS. 8A to 8C correspond to the steps D to F in FIG. (D)-(f) of the figure is the right view of (a)-(c) of the figure, respectively. As shown in (a) and (d), the heating tool 14C is positioned in the same manner as described in the first embodiment, and descends straight while maintaining the state, and (b), (b) As shown in e), after the protruding piece 21 comes into contact with the vicinity of the outer side of the preliminary solder 12 on the surface of the circuit board 8 and stops for 2 to 3 seconds, it is shown in (c) and (f). To rise. When the heating tool 14C contacts and melts the preliminary solder 12, a gap corresponding to the height D of the protruding piece 21 is formed between the contact surface 17 of the heating tool 14B and the surface of the circuit board 8. Since this gap D is the same as the predetermined gap D of the first embodiment, the preliminarily melted pre-solder 12 while preventing the generation of the solder balls 19 is applied to the lead terminal 1b as in the first embodiment. Can be efficiently wetted along.
[0040]
Also in this embodiment, a plurality of lead terminals 1b of the weak heat-resistant electronic component 1 can be soldered simultaneously in a short time of 2 to 3 seconds, and the contact surface 17 of the heating tool 14C is the surface of the circuit board 8. Therefore, there is an advantage that the control mechanism of the heating tool 14B can be simplified as in the second embodiment.
[0041]
In addition, even if the molten pre-solder 12 is pressed by the contact surface 17 and protrudes outward from the substrate electrode 18, there is an effect that this can be reliably prevented by the protruding small piece 21.
[0042]
FIG. 9 is a perspective view showing a pair of heating tools 14D and 14D used in the fourth embodiment, as viewed from below. In the heating tool 14D, an inclined contact surface 22 inclined downward from the inside toward the outside is formed on the lower end surface along the longitudinal direction of the heating tool 14D, and the contact surface along the outside of the inclined contact surface 22 23 is formed. The vertical distance D between the upper end of the inclined contact surface 22 and the contact surface 23 is the same as the height D of the protrusion 20 of the heating tool 14B of the second embodiment, that is, 0.03 mm or more. It is set to 0.1 mm or less. The heating tool 14D is positioned so that it is slightly outwardly spaced from the lead terminal 1b of the weak heat-resistant electronic component 1 attached to the preliminary solder 12, and the contact surface 23 is parallel to the circuit board 8. It is attached to a soldering device.
[0043]
FIG. 10 shows the main steps in the fourth embodiment using the heating tool 14D, and FIGS. 10A to 10C correspond to the steps (d) to (f) in FIG. (D)-(f) of the figure is the right view of (a)-(c) of the figure, respectively. As shown in (a) and (d), the heating tool 14D is positioned in the same manner as described in the first embodiment and descends straight while maintaining the state, and (b), ( As shown in e), after the contact surface 23 comes into contact with the vicinity of the outer side of the preliminary solder 12 on the surface of the circuit board 8 and stops for 2 to 3 seconds, (c) and (f) Ascend as shown. When the contact surface 23 of the heating tool 14 </ b> D contacts the circuit board 8, there is an inclined contact surface 22 between the inclined contact surface 22 that contacts and melts the preliminary solder 12 and the surface of the circuit board 8. In accordance with the gradient, a gap is formed which gradually increases inward, and the maximum value of this gap is the same as the predetermined gap D in the first embodiment. Therefore, as in the first embodiment, the solder ball 19 can be prevented.
[0044]
Also in this embodiment, as is clear from (d) to (f), soldering of a plurality of lead terminals 1b of the weak heat-resistant electronic component 1 can be performed simultaneously in a short time of 2 to 3 seconds, Furthermore, since the heating tool 14D only needs to be lowered until the contact surface 23 comes into contact with the surface of the circuit board 8, the control mechanism of the heating tool 14D is simplified as in the second and third embodiments. There are advantages you can do. In addition, it is possible to more reliably prevent the pre-solder 12 melted by the contact surface 23 in close contact with the surface of the circuit board 8 from protruding outward from the board electrode 18 and to the inside. The inclined contact surface 22 having an upward gradient has an effect of smoothly and effectively accelerating the molten pre-solder 12 from getting wet along the lead terminal 1b.
[0045]
【The invention's effect】
As described above, according to the mounting method of the weak heat-resistant electronic component of the present invention, since the soldering of the weak heat-resistant electronic component is performed using the cream solder in the same manner as the general electronic component, the conventional low-temperature solder is used. There is no risk of cracking as in the case of soldering, and high reliability can be ensured. In addition, remelting of pre-solder once melted and solidified by cream solder is performed by bringing the heating tool into contact without bringing it into the reflow furnace, so that the weak heat-resistant electronic components are destroyed by the influence of heat. Compared with conventional manual soldering using thread solder and a soldering iron, it is possible to solder weak heat-resistant electronic components by simply bringing a heating tool into contact with the pre-solder. Thus, the time required for soldering can be greatly shortened, and the production tact can be shortened. Furthermore, all the lead terminals on both sides of the component main body can be soldered simultaneously by one operation of the heating tool, and the production tact can be further shortened.
[Brief description of the drawings]
FIG. 1 is a process diagram sequentially illustrating basic processes according to a mounting method for a weak heat-resistant electronic component of the present invention.
FIG. 2 is a perspective view showing a heating tool used in the mounting method of the weak heat-resistant electronic component according to the first embodiment of the present invention.
FIGS. 3A to 3C are process diagrams showing main processes of the first embodiment of the present invention using the heating tool, and FIGS. 3D to 3F are FIGS. ) Right side view.
FIG. 4 is a process diagram for explaining the occurrence of inconvenience when it is assumed that the above main process is not used.
FIG. 5 is a perspective view showing a heating tool used in a method for mounting a weak heat-resistant electronic component according to a second embodiment of the present invention.
FIGS. 6A to 6C are process diagrams showing main steps of the second embodiment of the present invention using the heating tool, and FIGS. 6D to 6F are FIGS. ) Right side view.
FIG. 7 is a perspective view showing a heating tool used in a method for mounting a weak heat-resistant electronic component according to a third embodiment of the present invention.
FIGS. 8A to 8C are process diagrams showing main steps of the third embodiment of the present invention using the heating tool, and FIGS. 8D to 8F are FIGS. ) Right side view.
FIG. 9 is a perspective view showing a heating tool used in a method for mounting a weak heat-resistant electronic component according to a fourth embodiment of the present invention.
FIGS. 10A to 10C are process diagrams showing main steps of the fourth embodiment of the present invention using the heating tool, and FIGS. 10D to 10F are FIGS. ) Right side view.
FIG. 11 is a perspective view showing a conventional method for mounting a weak heat-resistant electronic component.
FIG. 12 is a partial process diagram illustrating another conventional method for mounting a weak heat-resistant electronic component.
[Explanation of symbols]
1 Weak heat resistant electronic parts
1a Parts body
1b Lead terminal
8 Circuit board
9 General electronic components
10 Cream solder
12 Preliminary solder
14,14A-14D Heating tool
17 Contact surface
18 Substrate electrode
20 Protrusion (protrusion)
21 Protruding small piece (protruding part)
22 Inclined contact surface
23 Contact surface

Claims (7)

回路基板における弱耐熱性電子部品の両側に配設されたリード端子を取付ける電極上にはんだを印刷する工程と、
前記はんだを溶融させ固化させ予備はんだを形成する工程と、
前記予備はんだ上に弱耐熱性電子部品のリード端子を装着する工程と、
前記弱耐熱性電子部品の両側のリード端子より外方側の予備はんだの各部分に加熱ツールを同時に接触させて前記弱耐熱性電子部品の両側の予備はんだを同時に溶融させる工程と
からなる弱耐熱性電子部品の実装方法。
A step of printing solder on the electrodes for mounting the lead terminals disposed on both sides of the weak heat-resistant electronic component on the circuit board ;
Melting and solidifying the solder to form a preliminary solder;
Mounting a lead terminal of a weak heat-resistant electronic component on the preliminary solder; and
Weak heat resistance comprising a step of simultaneously bringing a heating tool into contact with each part of the preliminary solder outside the lead terminals on both sides of the weak heat resistant electronic component to simultaneously melt the preliminary solder on both sides of the weak heat resistant electronic component Mounting method for electronic components.
弱耐熱性電子部品の両側に配設されたリード端子を取付ける電極を含む回路基板の電極上にはんだを印刷する工程と、
弱耐熱性電子部品以外の部品を前記回路基板に実装する工程と、
前記はんだを溶融させ固化させ予備はんだを形成する工程と、
前記予備はんだ上に弱耐熱性電子部品のリード端子を装着する工程と、
前記弱耐熱性電子部品の両側のリード端子より外方側の予備はんだの各部分に加熱ツールを同時に接触させて前記弱耐熱性電子部品の両側の予備はんだを同時に溶融させる工程と
からなる弱耐熱性電子部品の実装方法。
A step of printing solder on the electrodes of the circuit board including the electrodes for attaching the lead terminals disposed on both sides of the weak heat-resistant electronic component ;
Mounting a component other than the weak heat- resistant electronic component on the circuit board;
Melting and solidifying the solder to form a preliminary solder;
Mounting a lead terminal of a weak heat-resistant electronic component on the preliminary solder; and
Weak heat resistance comprising a step of simultaneously bringing a heating tool into contact with each part of the preliminary solder outside the lead terminals on both sides of the weak heat resistant electronic component to simultaneously melt the preliminary solder on both sides of the weak heat resistant electronic component Mounting method for electronic components.
前記予備はんだを再溶融させるときに、前記加熱ツールの前記予備はんだに対する接触面が回路基板の表面に対し所定間隙を越えて近接しないように前記加熱ツールを作動制御することを特徴とする請求項1または2に記載の弱耐熱性電子部品の実装方法。  The operation of the heating tool is controlled such that when the preliminary solder is remelted, the contact surface of the heating tool with the preliminary solder does not approach the surface of the circuit board beyond a predetermined gap. The mounting method of the weak heat-resistant electronic component of 1 or 2. 前記加熱ツールに前記接触面から突出する突出部を設け、前記予備はんだを再溶融させるときに、前記突出部が回路基板に当接するように前記加熱ツールを作動制御することを特徴とする請求項3に記載の弱耐熱性電子部品の実装方法。  The heating tool is provided with a protrusion protruding from the contact surface, and the heating tool is controlled to operate so that the protrusion contacts the circuit board when the preliminary solder is remelted. 4. A mounting method of the weak heat-resistant electronic component according to 3. 前記接触面の長手方向の両端に所定高さの突部状の一対の突出部を設け、前記予備はんだを再溶融させるときに、前記一対の突出部が回路基板における複数の予備はんだの配列の両端近傍箇所に当接するように前記加熱ツールを作動制御することを特徴とする請求項4に記載の弱耐熱性電子部品の実装方法。  Providing a pair of protrusions having a predetermined height at both ends in the longitudinal direction of the contact surface, when the preliminary solder is remelted, the pair of protrusions is an array of a plurality of preliminary solders on the circuit board. The method for mounting a weak heat-resistant electronic component according to claim 4, wherein the heating tool is controlled to be in contact with the vicinity of both ends. 前記接触面の外方側の側縁部に長手方向に沿って小さな片状の突出部を設け、前記予備はんだを再溶融させるときに、突出部が回路基板における予備はんだの配列の外方側の近傍箇所に当接するように前記加熱ツールを作動制御することを特徴とする請求項4に記載の弱耐熱性電子部品の実装方法。  A small piece-like protrusion is provided along the longitudinal direction on the outer edge of the contact surface, and when the preliminary solder is remelted, the protrusion is on the outer side of the preliminary solder array on the circuit board. The method of mounting a weak heat-resistant electronic component according to claim 4, wherein the heating tool is controlled to be in contact with a portion in the vicinity of the heat-resistant electronic component. 前記加熱ツールの前記接触面を前記電子部品に近接する側に向かって前記回路基板との間隙が大きくなるよう傾斜した傾斜接触面に形成し、前記予備はんだを再溶融させるときに、前記傾斜接触面の外方側の側縁部が回路基板における予備はんだの配列の外方側の近傍箇所に当接するように前記加熱ツールを作動制御することを特徴とする請求項3に記載の弱耐熱性電子部品の実装方法。  When the contact surface of the heating tool is formed on an inclined contact surface inclined so that a gap with the circuit board is increased toward a side close to the electronic component, and the pre-solder is remelted, the inclined contact is formed. 4. The weak heat resistance according to claim 3, wherein the operation of the heating tool is controlled so that a side edge portion on the outer side of the surface abuts on a portion on the outer side of the arrangement of the preliminary solder on the circuit board. Electronic component mounting method.
JP01657397A 1997-01-30 1997-01-30 Mounting method for weak heat-resistant electronic components Expired - Fee Related JP3709036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01657397A JP3709036B2 (en) 1997-01-30 1997-01-30 Mounting method for weak heat-resistant electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01657397A JP3709036B2 (en) 1997-01-30 1997-01-30 Mounting method for weak heat-resistant electronic components

Publications (2)

Publication Number Publication Date
JPH10215064A JPH10215064A (en) 1998-08-11
JP3709036B2 true JP3709036B2 (en) 2005-10-19

Family

ID=11920041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01657397A Expired - Fee Related JP3709036B2 (en) 1997-01-30 1997-01-30 Mounting method for weak heat-resistant electronic components

Country Status (1)

Country Link
JP (1) JP3709036B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676353B1 (en) * 2000-10-26 2007-01-31 산요덴키가부시키가이샤 Method for manufacturing hybrid integrated circuit device
FR2897503B1 (en) * 2006-02-16 2014-06-06 Valeo Sys Controle Moteur Sas METHOD FOR MANUFACTURING AN ELECTRONIC MODULE BY SEQUENTIALLY FIXING COMPONENTS AND CORRESPONDING PRODUCTION LINE
JP4810393B2 (en) * 2006-10-27 2011-11-09 富士通株式会社 Optical module manufacturing method and manufacturing apparatus
JP2008311349A (en) * 2007-06-13 2008-12-25 Nippon Avionics Co Ltd Soldering method and soldering device for electronic component

Also Published As

Publication number Publication date
JPH10215064A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3565047B2 (en) Solder bump forming method and solder bump mounting method
CN109310012B (en) Steel mesh and manual reflow soldering method using same
US7833831B2 (en) Method of manufacturing an electronic component and an electronic device
JPH0810716B2 (en) Electronic package
US4997122A (en) Solder shaping process
TWI395300B (en) Soldering structure of through hole
CN110459667B (en) LED flip-chip substrate
JP3709036B2 (en) Mounting method for weak heat-resistant electronic components
US4858820A (en) Desoldering aid and method
JPH03124095A (en) Method of brazing device onto printed circuit board
US4962878A (en) Desoldering aid
US20020061687A1 (en) Solder bearing grid array
JP4263765B1 (en) Electronic component soldering method
JP2009031111A (en) Semiconductor integrated device socket module
JP5517433B2 (en) Leadless electronic component mounting method and mounting structure
JPH0878837A (en) Mounting soldering technique and mounting soldered printed board
JP2008027954A (en) Process for producing electronic component mounting substrate
JP2828069B2 (en) Soldering method of work with bump
JP4615496B2 (en) Manufacturing method of electronic component mounting board
JP2822496B2 (en) Soldering lead pins to printed wiring board
JP3779650B2 (en) Terminal soldered electronic components
JPH08111581A (en) Method of soldering ball grid array printed wiring board
JP2737341B2 (en) Welcome soldering method
JP2004281646A (en) Fixing method and equipment of electronic component
JP3063587B2 (en) Electronic component and method of manufacturing electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees