JP3708892B2 - Optical frequency comb generator and manufacturing method thereof - Google Patents

Optical frequency comb generator and manufacturing method thereof Download PDF

Info

Publication number
JP3708892B2
JP3708892B2 JP2002097166A JP2002097166A JP3708892B2 JP 3708892 B2 JP3708892 B2 JP 3708892B2 JP 2002097166 A JP2002097166 A JP 2002097166A JP 2002097166 A JP2002097166 A JP 2002097166A JP 3708892 B2 JP3708892 B2 JP 3708892B2
Authority
JP
Japan
Prior art keywords
waveguide
light
reflection film
incident
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002097166A
Other languages
Japanese (ja)
Other versions
JP2003295140A (en
Inventor
成嘉 三澤
義宣 中山
元伸 興梠
修 仲本
ウイディヤトモコ バンバン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002097166A priority Critical patent/JP3708892B2/en
Publication of JP2003295140A publication Critical patent/JP2003295140A/en
Application granted granted Critical
Publication of JP3708892B2 publication Critical patent/JP3708892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光周波数コム発生器に関し、光通信、光CT、光周波数標準器など多波長でコヒーレンス性の高い標準光源、又は、各波長間のコヒーレンス性も利用できる光源を必要とする分野に適用される。
【0002】
【従来の技術】
光周波数を高精度に測定する場合には、測定する光を他の光と干渉させ、発生ずる光ビート周波数の電気信号を検出するヘテロダイン検波を行う。このヘテロダイン検波において測定可能なレーザ光の帯域は、検波系に使用される受光素子の帯域に制限され、概ね数十GHz程度である。
【0003】
一方、近年の光エレクトロニクスの発展に伴い、周波数多重通信のためのレーザ光制御や、広範囲に分布する吸収線の周波数測定を行うため、光の測定可能帯域を更に拡大する必要がある。
【0004】
かかる測定可能帯域の拡大化の要請に応えるべく、従来において、例えば特開平7−58386に示すような光周波数コム発生器(Optical Frequency Comb Generator)を用いた広帯域なヘテロダイン検波系が提案されている。この光周波数コム発生器は、周波数軸上で等間隔に配置された櫛状のサイドバンドを広帯域にわたり発生させるものであり、発生させたサイドバンドの周波数安定度は、入射光の周波数安定度とほぼ同等である。この生成したサイドバンドと被測定光をヘテロダイン検波することにより、数THzに亘る広帯域なヘテロダイン検波系を構築することが可能となる。
【0005】
図3は、従来における導波路型光周波数コム発生器20の構成図である。この導波路型光周波数コム発生器20は、導波路型光変調器200から構成される。導波路型光変調器200は、基板201と、導波路202と、電極203と、入射側反射膜204と、出射側反射膜205と、発振器206とを備える。
【0006】
基板201は、例えば引き上げ法により育成された3〜4インチ径のLiNbOやGaAs等の大型結晶について(結晶についてを成長させる方向をz軸としたきに)x軸と垂直になるようにウェハ状に切り出し(以下、xカットと称する)、或いはy軸と垂直になるように切り出す(以下、yカットと称する)。
【0007】
導波路202は、例えばTiを拡散させることにより形成されるものであり、光を伝搬させるために導波路202を構成する層の屈折率は基板201等の他層よりも高く設定されている。導波路202に入射した光は、導波路202と基板201との境界面で全反射しながら伝搬する。
【0008】
電極203は、例えばTiやPt、Au等の金属材料からなり、外部から供給された周波数fmの電気信号を導波路202に駆動入力する。この電極203を図3に示すように、導波路202の両脇において対向するように設けることにより、導波路202における光の伝搬方向と変調電界の進行方向のなす角は直角となる。
【0009】
入射側反射膜204及び出射側反射膜205は、導波路202に入射した光を共振させるため設けられたものであり、導波路202を通過する光を往復反射させることにより共振させる。
【0010】
入射側反射膜204は、導波路型光変調器200の光入射側に配され、図示しない光源から周波数νの光が入射される。また、この入射側反射膜204は、出射側反射膜205により反射されて、かつ導波路202を通過した光を反射する。
【0011】
出射側反射膜205は、導波路型光変調器200の光出射側に配され、導波路202を通過した光を反射する。またこの出射側反射膜205は、導波路202を通過した光を一定の割合で外部に出射する。
【0012】
発振器206は、電極203に接続され、周波数fmの電気信号を供給する。
【0013】
上述の構成からなる導波路型光周波数コム発生器20において、光が導波路202内を往復する時間に同期した電気信号を電極203から導波路型光変調器200へ駆動入力とすることにより、光位相変調器111を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、バルク型光周波数コム発生器10と同様に、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等になる。
【0014】
【発明が解決しようとする課題】
ところで、この導波路型光周波数コム発生器20を作製する場合において、入射側反射膜204及び出射側反射膜205を積層させる前に、両端面を鏡面研磨して高精度に仕上げる。ちなみに研磨する理由は光の散乱を防止し、また光の伝搬方向と入射側反射膜204及び出射側反射膜205とを垂直にするためである。このとき、基板のエッジ部分において傷や切り欠き等の損傷が生じないように、同じ導波路型光周波数コム発生器20を何段か重ね合わせて固定した状態で同時に研磨するのが一般的である。
【0015】
しかしながら、この導波路型光周波数コム発生器20の上面は、電極203の膜厚分の段差があるため、基板のエッジ部分において、損傷を生じ易い領域と生じ難い領域が存在する。例えば電極203の上面は、重なり合う導波路型光周波数コム発生器20と完全に密着するため、基板のエッジ部分において損傷が生じることなく高精度に鏡面研磨することができるが、導波路202の上面は、それと密着しないため、研磨の最中にエッジ部分に損傷が生じる場合が多い。ちなみに導波路202が形成されているエッジ部分に損傷が生じると、入射側反射膜204を介して導波路202から光が漏洩してしまい、フィネスを向上させる上で大きな障害となる。
【0016】
そこで、本発明は上述した問題点に鑑みて案出されたものであり、研磨時に生じる導波路が形成されているエッジ部分の損傷を軽減させることにより、導波路内を伝搬する光の損失を低減可能な高効率の光周波数コム発生器及びその製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明に係る光周波数コム発生器は、上述した課題を解決するために、所定の周波数の変調信号を発振する発振手段と、互いに平行な入射側反射膜及び出射側反射膜から構成され、入射側反射膜を介して入射された光を共振させる共振手段と、電界が印加されることにより屈折率が変化する電気光学結晶からなり、xカット或いはyカットの基板内に形成され、上記入射側反射膜と上記出射側反射膜が光入射端と光出射端に夫々配され、上記発振手段から供給された上記変調信号に応じて上記共振手段において共振された光の位相を変調して、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光導波路と、上記基板上において、上記発振手段から発振された変調信号に基づき上記光導波路に電界を印加するための電極を備え、上記電極は、上記基板上において、上記光導波路の両側に互いに平行するように配され、上記光導波路上及びその近傍を除く全面を覆い、上記導波路における光入射端或いは光出射端に近づくにつれて幅が変られて上記導波路における上記光入射端の上部及び上記光出射端の上部を覆うように形成されていることを特徴とする。
【0018】
また、本発明は、供給された変調信号に応じて光導波路内で共振された光の位相を変調して光周波数コムを発生する光周波数コム発生器の製造方法において、xカット或いはyカットの基板内に光導波路を形成する光導波路形成工程と、上記基板上において、上記光導波路の両側に互いに平行するように配され、上記光導波路上及びその近傍を除く全面を覆い、上記導波路における光入射端或いは光出射端に近づくにつれて幅が変られて上記導波路における上記光入射端の上部及び上記光出射端の上部を覆う電極を形成する電極形成工程と、上記金属層が形成された複数の基板を積層して、上記光入射端及び上記光出射端を同時に研磨する研磨工程と、互いに平行な入射側反射膜及び出射側反射膜を上記光導波路の光入射端及び光出射端に夫々積層する反射膜積層工程とを有することを特徴とする。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
【0023】
図1は、本発明を適用した導波路型光周波数コム発生器1の構成を示す図である。この導波路型光周波数コム発生器1は、基板11と、導波路12と、電極13と、反射膜14と、金属層15と、発振器16とを備える。
【0024】
基板11は、例えば引き上げ法により育成された3〜4インチ径のLiNbOやLiTiO等の大型結晶を(結晶についてを成長させる方向をz軸としたきに)x軸と垂直になるようにウェハ状に切り出し(以下、xカットと称する)、或いはy軸と垂直になるように切り出す(以下、yカットと称する)。
【0025】
導波路12は、例えばTiやZn、H等を拡散させることにより形成されるものであり、光を伝搬させるために導波路12を構成する層の屈折率は基板11等の他層よりも高く設定されている。導波路12に入射した光は、導波路12と基板11との境界面で全反射しながら伝搬する。
【0026】
電極13は、例えばTiやPt、Au、Cu等の金属材料からなり、発振器16から供給される周波数fmの電気信号を導波路12に駆動入力する。この電極13を図1に示すように、導波路12の両脇において対向するように設けることにより、導波路12における光の伝搬方向と変調電界の進行方向のなす角は直角となる。なお、この電極13は、長手方向(光の伝搬方向)の長さを導波路12よりも若干短めに形成される。換言すれば、基板11の両端において電極13が形成されていない領域を残すように形成される。
【0027】
反射膜14は、導波路12に入射した光を共振させるため設けられたものであり、入射側端面と出射側端面に夫々配される。この反射膜14は、導波路12を通過する光を往復反射させることにより共振させる。
【0028】
入射側端面に配された反射膜14は、図示しない光源から周波数νの光が入射される。また、この入射側端面に配された反射膜14は、対向する反射膜14により反射されて導波路12を通過した光を反射する。
【0029】
出射側端面に配された反射膜14は、導波路12を通過した光を反射する。またこの出射側端面に配された反射膜14は、反射率を若干低く設定されることにより、共振された光を一定の割合で外部に出射する。
【0030】
金属層15は、例えばAu、Cu等の金属材料からなり、導波路12の上部に形成される。またこの金属層15は、導波路12の入射側及び出射側に夫々配され、例えば図1に示すように、光入射端或いは光出射端に近づくについれて幅が広くなるように形成される。ちなみにこの金属層15は、光入射端或いは光出射端に近づくにつれて幅が広くなるような三角形としても良いし、台形にしても良い。なお、この金属層15の膜厚は、図1に示す側面図に示すように電極13の膜厚と同じか、或いは電極13の膜厚以上であることが条件となる。また、この金属層15は、電極13と電気的に接触しないように配置することも必須条件である。
【0031】
この金属層15を導波路型光周波数コム発生器1を製造する際に形成することにより、研磨時における損傷を軽減させることができ、ひいてはフィネスを向上させることができる。この製造工程の詳細は後述する。またこの金属層15は、入射側端面近傍及び出射側端面近傍に形成されているため、導波路12よりも短い電極13と位置的に重なり合うことは殆どなくなる。このため、発振器16を介して発信された高周波を電極13に印加する際において、この金属層15の影響を抑えることが可能となる。換言すれば、金属層15が形成されることにより、電極13を介して電気信号を印加する際においても、発生させる光周波数コムに影響を及ぶことはなくなる。これは金属層15を、三角形や台形等のように、光入射端或いは光出射端に近づくにつれて幅が広くなる形状にすることで、電極13近傍の領域において、金属層15の占める割合は小さくなるため、さらなる効果を期待することができる。
【0032】
なお、金属層15の面積を小さくすることにより静電容量を抑えることが可能となり、高周波特性に及ぶ影響を抑えることができるため、金属層15の表面積はなるべく小さい方が望ましい。
【0033】
仮に金属層の存在が変調電界へ大きく影響を及ぼす場合には、導波路型光周波数コム発生器を作製した後に、かかる金属層を切除する必要がある。しかしながら金属層は導波路12の上部に積層させる必要があるところ、金属層切除時に導波路12に対して損傷を生じさせる可能性があり、フィネスを悪化させる原因となる。また作製後に金属層を切除する工程を導入することにより労力の負担を増大させる原因となり、特に本発明の如き光デバイスは、できるだけ簡略な生産工程を踏むことにより、光通信システム等からの大量の需要に応えることできる。
【0034】
この点において上述した金属層15は、周波数コムを発生させる際においてそのまま積層させておいても、導波路12に印加する変調電界へ殆ど影響を与えることはないため、導波路型光周波数コム発生器1を作製した後に、かかる金属層15を切除する必要はなくなる。このため、本発明を適用した導波路型光周波数コム発生器1は、金属層15の切除により導波路12へ損傷を与えることはなくなるため、フィネスを悪化させることはなく、また生産工程を簡略化させることができるため、労力の負担を軽減でき、ひいては生産の効率化を図ることが可能となる。
【0035】
なお、本発明は上述した図1に示す実施の形態に限定されるものではない。例えば図2に示すように金属層15の代替として、電極13により導波路12における入射側端面の上部及び出射側端面の上部を覆うようにした導波路型光周波数コム発生器2を適用しても良い。以下、導波路型光周波数コム発生器2にについて図2を用いて説明する。なお、導波路型光周波数コム発生器1と同一の構成要素には同一の符号を付して説明を省略する。
【0036】
導波路型光周波数コム発生器2は、基板11と、導波路12と、電極23と、反射膜14と、金属層15と、発振器16とを備える。
【0037】
電極23は、例えばTiやPt、Au、Cu等の金属材料からなり、外部から供給された周波数fmの電気信号を導波路12に駆動入力する。この電極23を図2に示すように、導波路12の両脇において対向するように設けることにより、導波路12における光の伝搬方向と変調電界の進行方向のなす角は直角となる。なおこの電極23は、長手方向(光の伝搬方向)の長さを導波路12とほぼ等しくなるように形成される。換言すれば、基板11の両端において電極12が形成されていない領域を残すように形成される。
【0038】
またこの電極23は、図2に示すように光入射端或いは光出射端に近づくにつれて幅が広くなるように導波路12の上部を覆うようにしても良い。これにより、金属層15の果たす役割を電極23により代替することができる。
【0039】
次に、本発明を適用した導波路型光周波数コム発生器1の製造方法について説明する。
【0040】
先ず、引き上げ法等により育成された3〜4インチ径のLiNbOやGaAs等の大型結晶をxカット或いはyカットして基板11とし、当該基板内において、例えばTiを拡散させることにより、導波路12を形成する。
【0041】
次に、基板11表面上において、例えば、パターニング、蒸着、リフトオフ等の工程を経ることにより、上述した金属材料からなる電極13を形成させる。
【0042】
次に金属層15を、例えばパターニング、蒸着、リフトオフ等の工程を経ることにより形成する。この金属層15を形成することにより、導波路型光周波数コム発生器のエッジ部分における段差を解消することができる。
【0043】
次に入射側端面及び出射側端面を研磨する。ちなみに研磨する理由は光の散乱を防止し、また光の伝搬方向と反射膜14とを垂直にするためである。
【0044】
実際に端面を研磨する場合に、同じ導波路型光周波数コム発生器を何段か重ね合わせて固定した状態で同時に研磨する。電極13の膜厚に相当する金属層15を積層させることにより、電極13の膜厚分の段差を解消することが可能となる。このため研磨時に導波路両端面におけるエッジ部分が表面に露出することがなくなり、傷や切り欠き等の損傷を生じることは殆ど無くなる。また電極13の上面は、重なり合う導波路型光周波数コム発生器と密着するため、上述したエッジ部分において損傷が生じることなく高精度に鏡面研磨することができ、また導波路12の上面には、電極13と同じ厚さの金属層15と密着するため、研磨時にはどの面にも均一な応力がかかることになる。これにより基板のエッジ部分において、損傷を生じやすい領域と生じ難い領域が存在することがなくなり、高精度に研磨することができる。また研磨時において、導波路202のエッジ部分における損傷を防ぐことができるため、光の漏洩を防止し、フィネスの向上を期待することができる。
【0045】
最後に光導波路の光入射端及び光出射端に反射膜14を夫々積層させ、発振器16と電極13とを配線する。
【0046】
ちなみに、導波路型光周波数コム発生器2を作製する場合には、電極23を形成する工程において、図2の形状になるようにパターニング等の処理を行なう。
【0047】
すなわち、本発明を適用した導波路型光周波数コム発生器の製造方法は、光導波路における光入射端の上部及び光出射端の上部において、膜厚が上記電極の膜厚以上であり、上記光入射端或いは上記光出射端に近づくにつれて幅が広くなるようなに金属層を形成する工程を導入することにより、光周波数コムを発生させる上で供給する変調電界への影響を軽減しつつ、光入射端並びに光出射端の研磨時における損傷を軽減させることにより、フィネスを向上させることができる。
【0048】
【発明の効果】
以上詳細に説明したように、本発明に係る光周波数コム発生器及びその製造方法は、基板上において、光導波路の両側に互いに平行するように配され、上記光導波路上及びその近傍を除く全面を覆い、上記導波路における光入射端或いは光出射端に近づくにつれて幅が変られて上記導波路における上記光入射端の上部及び上記光出射端の上部を覆う電極を形成する電極形成工程を導入する。これにより、光周波数コムを発生させる上で供給する変調電界への影響を軽減しつつ、光入射端並びに光出射端の研磨時における損傷を軽減させることにより、フィネスを向上させることができる。
【図面の簡単な説明】
【図1】本発明を適用した導波路型光周波数コム発生器の具体的な構成例を説明するための図である。
【図2】本発明を適用した導波路型光周波数コム発生器において、金属層の果たす役割を電極により代替させる構成を説明するための図である。
【図3】従来型の導波路型光周波数コム発生器の構成を示した図である。
【符号の説明】
1 導波路型光周波数コム発生器、11 基板、12 導波路、13 電極、14 反射膜、15 金属層、16 発振器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical frequency comb generator, and is used in a field that requires a multi-wavelength, high-coherence standard light source such as optical communication, optical CT, or optical frequency standard, or a light source that can also utilize coherence between wavelengths. Applied.
[0002]
[Prior art]
In the case of measuring the optical frequency with high accuracy, heterodyne detection is performed in which the light to be measured is made to interfere with other light and an electric signal having an optical beat frequency generated is detected. The band of the laser beam that can be measured in this heterodyne detection is limited to the band of the light receiving element used in the detection system, and is about several tens of GHz.
[0003]
On the other hand, with the recent development of optoelectronics, it is necessary to further expand the measurable band of light in order to perform laser light control for frequency division multiplexing and frequency measurement of absorption lines distributed over a wide range.
[0004]
In order to meet such a demand for expanding the measurable bandwidth, a wideband heterodyne detection system using an optical frequency comb generator as shown in, for example, Japanese Patent Laid-Open No. 7-58386 has been proposed. . This optical frequency comb generator generates comb-shaped sidebands arranged at equal intervals on the frequency axis over a wide band, and the frequency stability of the generated sideband is equal to the frequency stability of incident light. It is almost equivalent. By heterodyne detection of the generated sideband and light to be measured, a wideband heterodyne detection system over several THz can be constructed.
[0005]
FIG. 3 is a configuration diagram of a conventional waveguide-type optical frequency comb generator 20. The waveguide type optical frequency comb generator 20 includes a waveguide type optical modulator 200. The waveguide type optical modulator 200 includes a substrate 201, a waveguide 202, an electrode 203, an incident side reflection film 204, an emission side reflection film 205, and an oscillator 206.
[0006]
The substrate 201 is a wafer such that, for example, a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method is perpendicular to the x axis (when the crystal growth direction is the z axis). Or cut out so as to be perpendicular to the y-axis (hereinafter referred to as y-cut).
[0007]
The waveguide 202 is formed, for example, by diffusing Ti, and the refractive index of the layer constituting the waveguide 202 is set higher than that of other layers such as the substrate 201 in order to propagate light. The light incident on the waveguide 202 propagates while being totally reflected at the interface between the waveguide 202 and the substrate 201.
[0008]
The electrode 203 is made of a metal material such as Ti, Pt, or Au, for example, and drives and inputs an electric signal having a frequency fm supplied from the outside to the waveguide 202. As shown in FIG. 3, by providing the electrodes 203 so as to face each other on both sides of the waveguide 202, the angle formed by the light propagation direction in the waveguide 202 and the traveling direction of the modulated electric field becomes a right angle.
[0009]
The incident-side reflection film 204 and the emission-side reflection film 205 are provided to resonate light incident on the waveguide 202 and resonate by reciprocally reflecting light passing through the waveguide 202.
[0010]
The incident-side reflection film 204 is disposed on the light incident side of the waveguide type optical modulator 200, and light having a frequency ν 1 is incident from a light source (not shown). Further, the incident-side reflection film 204 reflects light reflected by the emission-side reflection film 205 and having passed through the waveguide 202.
[0011]
The exit-side reflection film 205 is disposed on the light exit side of the waveguide type optical modulator 200 and reflects light that has passed through the waveguide 202. The exit-side reflection film 205 emits light that has passed through the waveguide 202 to the outside at a constant rate.
[0012]
The oscillator 206 is connected to the electrode 203 and supplies an electric signal having a frequency fm.
[0013]
In the waveguide-type optical frequency comb generator 20 having the above-described configuration, an electric signal synchronized with the time when the light reciprocates in the waveguide 202 is used as a drive input from the electrode 203 to the waveguide-type optical modulator 200. Compared with the case where the optical phase modulator 111 is passed only once, deep phase modulation several tens of times or more can be applied. Thereby, like the bulk type optical frequency comb generator 10, an optical frequency comb having a wide sideband can be generated, and the frequency interval between adjacent sidebands is the frequency fm of the inputted electric signal. Become equivalent.
[0014]
[Problems to be solved by the invention]
By the way, when manufacturing this waveguide type optical frequency comb generator 20, before laminating the incident side reflection film 204 and the emission side reflection film 205, both end surfaces are mirror-polished and finished with high accuracy. Incidentally, the reason for polishing is to prevent light scattering and to make the light propagation direction perpendicular to the incident side reflection film 204 and the emission side reflection film 205. At this time, in order to prevent damage such as scratches and notches at the edge portion of the substrate, the same waveguide type optical frequency comb generator 20 is generally polished in a state of being overlapped and fixed at the same time. is there.
[0015]
However, since the upper surface of the waveguide type optical frequency comb generator 20 has a level difference corresponding to the film thickness of the electrode 203, there are regions where damage is likely to occur and regions where damage is unlikely to occur. For example, since the upper surface of the electrode 203 is completely in close contact with the overlapping waveguide type optical frequency comb generator 20, it can be mirror-polished with high accuracy without causing damage at the edge portion of the substrate. In many cases, the edge portion is damaged during polishing because it is not in close contact with it. Incidentally, if an edge portion where the waveguide 202 is formed is damaged, light leaks from the waveguide 202 through the incident side reflection film 204, which is a great obstacle to improving finesse.
[0016]
Therefore, the present invention has been devised in view of the above-described problems, and reduces the loss of light propagating in the waveguide by reducing damage to the edge portion where the waveguide is formed during polishing. An object of the present invention is to provide a highly efficient optical frequency comb generator that can be reduced and a method for manufacturing the same.
[0017]
[Means for Solving the Problems]
An optical frequency comb generator according to the present invention comprises an oscillating means for oscillating a modulation signal of a predetermined frequency, and an incident side reflection film and an emission side reflection film, which are parallel to each other, to The resonating means for resonating light incident through the side reflecting film and an electro-optic crystal whose refractive index changes when an electric field is applied are formed in an x-cut or y-cut substrate, and the incident side The reflection film and the emission-side reflection film are arranged at the light incident end and the light emission end, respectively, and modulate the phase of the light resonated in the resonance means according to the modulation signal supplied from the oscillation means, An optical waveguide that generates sidebands centered on the frequency of incident light at intervals of the frequency of the modulation signal, and an electric field applied to the optical waveguide on the substrate based on the modulation signal oscillated from the oscillation means. An electrode for applying the light is provided, and the electrodes are arranged on the substrate so as to be parallel to each other on both sides of the optical waveguide, cover the entire surface except for the optical waveguide and the vicinity thereof, and light incident on the waveguide The width is changed as the end or the light emitting end is approached, and the upper portion of the light incident end and the upper portion of the light emitting end of the waveguide are formed to cover.
[0018]
According to another aspect of the present invention, there is provided an optical frequency comb generator manufacturing method for generating an optical frequency comb by modulating the phase of light resonated in an optical waveguide according to a supplied modulation signal. An optical waveguide forming step of forming an optical waveguide in the substrate; and on the substrate, the optical waveguide is disposed on both sides of the optical waveguide so as to be parallel to each other, covers the entire surface except for the optical waveguide and the vicinity thereof; An electrode forming step of forming an electrode covering the upper portion of the light incident end and the upper portion of the light emitting end in the waveguide by changing the width as approaching the light incident end or the light emitting end, and the metal layer is formed. A polishing step of laminating a plurality of substrates and simultaneously polishing the light incident end and the light emitting end, and an incident-side reflecting film and an emitting-side reflecting film parallel to each other on the light incident end and the light emitting end of the optical waveguide. husband And having a reflective film laminating step of laminating.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
FIG. 1 is a diagram showing a configuration of a waveguide type optical frequency comb generator 1 to which the present invention is applied. The waveguide type optical frequency comb generator 1 includes a substrate 11, a waveguide 12, an electrode 13, a reflective film 14, a metal layer 15, and an oscillator 16.
[0024]
The substrate 11 is made of, for example, a large crystal such as LiNbO 3 or LiTiO 3 having a diameter of 3 to 4 inches grown by a pulling method (when the growth direction of the crystal is taken as the z axis) so as to be perpendicular to the x axis. Cut out into a wafer shape (hereinafter referred to as x-cut) or cut out so as to be perpendicular to the y-axis (hereinafter referred to as y-cut).
[0025]
The waveguide 12 is formed, for example, by diffusing Ti, Zn, H + or the like, and the refractive index of the layer constituting the waveguide 12 is larger than that of the other layers such as the substrate 11 in order to propagate light. It is set high. The light incident on the waveguide 12 propagates while being totally reflected at the boundary surface between the waveguide 12 and the substrate 11.
[0026]
The electrode 13 is made of a metal material such as Ti, Pt, Au, or Cu, for example, and drives and inputs an electric signal having a frequency fm supplied from the oscillator 16 to the waveguide 12. As shown in FIG. 1, by providing the electrodes 13 so as to face each other on both sides of the waveguide 12, the angle formed by the propagation direction of the light in the waveguide 12 and the traveling direction of the modulation electric field becomes a right angle. The electrode 13 is formed with a length in the longitudinal direction (light propagation direction) slightly shorter than that of the waveguide 12. In other words, it is formed so as to leave a region where the electrode 13 is not formed at both ends of the substrate 11.
[0027]
The reflective film 14 is provided to resonate the light incident on the waveguide 12 and is disposed on the incident side end face and the emission side end face, respectively. The reflection film 14 resonates by reciprocally reflecting light passing through the waveguide 12.
[0028]
The reflection film 14 disposed on the incident side end face receives light having a frequency ν 1 from a light source (not shown). Further, the reflection film 14 disposed on the incident side end face reflects the light reflected by the opposing reflection film 14 and passed through the waveguide 12.
[0029]
The reflective film 14 disposed on the emission side end surface reflects the light that has passed through the waveguide 12. Further, the reflection film 14 disposed on the emission side end face emits the resonated light to the outside at a constant rate by setting the reflectance to be slightly low.
[0030]
The metal layer 15 is made of a metal material such as Au or Cu, and is formed on the waveguide 12. The metal layer 15 is disposed on each of the incident side and the exit side of the waveguide 12, and is formed so as to increase in width as it approaches the light incident end or the light emitting end, for example, as shown in FIG. . Incidentally, the metal layer 15 may be a triangle whose width becomes wider as it approaches the light incident end or the light emitting end, or may be a trapezoid. The film thickness of the metal layer 15 is required to be equal to or greater than the film thickness of the electrode 13 as shown in the side view shown in FIG. It is also an essential condition that the metal layer 15 is disposed so as not to be in electrical contact with the electrode 13.
[0031]
By forming the metal layer 15 when the waveguide-type optical frequency comb generator 1 is manufactured, damage during polishing can be reduced, and finesse can be improved. Details of this manufacturing process will be described later. Further, since the metal layer 15 is formed in the vicinity of the incident side end face and in the vicinity of the emission side end face, the metal layer 15 hardly overlaps the position of the electrode 13 shorter than the waveguide 12. For this reason, when the high frequency wave transmitted through the oscillator 16 is applied to the electrode 13, the influence of the metal layer 15 can be suppressed. In other words, the formation of the metal layer 15 does not affect the generated optical frequency comb even when an electric signal is applied through the electrode 13. This is because the metal layer 15 has a shape that increases in width as it approaches the light incident end or light output end, such as a triangle or a trapezoid, so that the proportion of the metal layer 15 in the region near the electrode 13 is small. Therefore, further effects can be expected.
[0032]
In addition, since it becomes possible to suppress an electrostatic capacitance by making the area of the metal layer 15 small and to suppress the influence on a high frequency characteristic, it is desirable that the surface area of the metal layer 15 is as small as possible.
[0033]
If the presence of the metal layer greatly affects the modulation electric field, it is necessary to cut off the metal layer after the waveguide-type optical frequency comb generator is manufactured. However, when the metal layer needs to be laminated on the upper portion of the waveguide 12, there is a possibility of causing damage to the waveguide 12 when the metal layer is cut, which causes a deterioration of finesse. In addition, it introduces a process of cutting the metal layer after fabrication, which increases the burden of labor. In particular, an optical device such as the present invention can be manufactured in large quantities from an optical communication system or the like by following as simple a production process as possible. Can meet demand.
[0034]
In this respect, the metal layer 15 described above has almost no influence on the modulation electric field applied to the waveguide 12 even if it is laminated as it is when generating a frequency comb. It is no longer necessary to cut out such a metal layer 15 after producing the vessel 1. For this reason, the waveguide type optical frequency comb generator 1 to which the present invention is applied does not damage the waveguide 12 by cutting off the metal layer 15, so that the finesse is not deteriorated and the production process is simplified. Therefore, the burden of labor can be reduced, and as a result, production efficiency can be improved.
[0035]
The present invention is not limited to the embodiment shown in FIG. For example, as shown in FIG. 2, as an alternative to the metal layer 15, a waveguide-type optical frequency comb generator 2 in which an electrode 13 covers the upper part of the incident end face and the upper part of the exit end face in the waveguide 12 is applied. Also good. Hereinafter, the waveguide type optical frequency comb generator 2 will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the component same as the waveguide type optical frequency comb generator 1, and description is abbreviate | omitted.
[0036]
The waveguide type optical frequency comb generator 2 includes a substrate 11, a waveguide 12, an electrode 23, a reflective film 14, a metal layer 15, and an oscillator 16.
[0037]
The electrode 23 is made of a metal material such as Ti, Pt, Au, or Cu, for example, and drives and inputs an electric signal having a frequency fm supplied from the outside to the waveguide 12. As shown in FIG. 2, by providing the electrodes 23 so as to face each other on both sides of the waveguide 12, the angle formed by the propagation direction of light in the waveguide 12 and the traveling direction of the modulation electric field becomes a right angle. The electrode 23 is formed so that the length in the longitudinal direction (light propagation direction) is substantially equal to that of the waveguide 12. In other words, it is formed so as to leave a region where the electrode 12 is not formed at both ends of the substrate 11.
[0038]
Further, as shown in FIG. 2, the electrode 23 may cover the upper portion of the waveguide 12 so as to increase in width as it approaches the light incident end or the light emitting end. Thereby, the role played by the metal layer 15 can be replaced by the electrode 23.
[0039]
Next, a manufacturing method of the waveguide type optical frequency comb generator 1 to which the present invention is applied will be described.
[0040]
First, a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method or the like is x-cut or y-cut to form a substrate 11, and, for example, Ti is diffused in the substrate to obtain a waveguide. 12 is formed.
[0041]
Next, the electrode 13 made of the above-described metal material is formed on the surface of the substrate 11 by performing processes such as patterning, vapor deposition, and lift-off, for example.
[0042]
Next, the metal layer 15 is formed through processes such as patterning, vapor deposition, and lift-off, for example. By forming the metal layer 15, the step at the edge portion of the waveguide type optical frequency comb generator can be eliminated.
[0043]
Next, the incident side end face and the emission side end face are polished. Incidentally, the reason for polishing is to prevent light scattering and to make the light propagation direction perpendicular to the reflection film 14.
[0044]
When the end face is actually polished, the same waveguide type optical frequency comb generator is polished at the same time in a state where it is fixed by overlapping several stages. By laminating the metal layer 15 corresponding to the film thickness of the electrode 13, a step corresponding to the film thickness of the electrode 13 can be eliminated. For this reason, edge portions on both end faces of the waveguide are not exposed to the surface during polishing, and damage such as scratches and cutouts is hardly caused. Further, since the upper surface of the electrode 13 is in close contact with the overlapping waveguide type optical frequency comb generator, it can be mirror-polished with high accuracy without causing damage at the edge portion described above. Since the metal layer 15 having the same thickness as the electrode 13 is in close contact with each other, uniform stress is applied to any surface during polishing. As a result, there are no areas where damage is likely to occur and areas where damage is unlikely to occur at the edge portion of the substrate, and polishing can be performed with high accuracy. Further, since damage at the edge portion of the waveguide 202 can be prevented during polishing, light leakage can be prevented and finesse can be expected to be improved.
[0045]
Finally, the reflection film 14 is laminated on the light incident end and the light exit end of the optical waveguide, and the oscillator 16 and the electrode 13 are wired.
[0046]
Incidentally, when the waveguide type optical frequency comb generator 2 is manufactured, in the process of forming the electrode 23, processing such as patterning is performed so as to have the shape of FIG.
[0047]
That is, in the method of manufacturing a waveguide-type optical frequency comb generator to which the present invention is applied, the film thickness is greater than or equal to the film thickness of the electrode at the upper part of the light incident end and the upper part of the light output end of the optical waveguide By introducing a step of forming a metal layer so that the width becomes wider as it approaches the incident end or the light emitting end, the influence on the modulation electric field supplied for generating the optical frequency comb is reduced, and the light is reduced. Finesse can be improved by reducing damage during polishing of the incident end and the light emitting end.
[0048]
【The invention's effect】
As described above in detail, the optical frequency comb generator and the manufacturing method thereof according to the present invention are arranged on the substrate so as to be parallel to both sides of the optical waveguide, and the entire surface excluding the optical waveguide and its vicinity. Introducing an electrode forming step of forming an electrode covering the upper part of the light incident end and the upper part of the light emitting end of the waveguide, the width of which is changed as the light incident end or the light emitting end of the waveguide is approached. To do. Thereby, finesse can be improved by reducing damage at the time of polishing of the light incident end and the light emitting end while reducing the influence on the modulation electric field supplied when generating the optical frequency comb.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a specific configuration example of a waveguide-type optical frequency comb generator to which the present invention is applied.
FIG. 2 is a diagram for explaining a configuration in which a role of a metal layer is replaced by an electrode in a waveguide type optical frequency comb generator to which the present invention is applied.
FIG. 3 is a diagram showing a configuration of a conventional waveguide-type optical frequency comb generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waveguide type optical frequency comb generator, 11 Substrate, 12 Waveguide, 13 Electrode, 14 Reflective film, 15 Metal layer, 16 Oscillator

Claims (2)

所定の周波数の変調信号を発振する発振手段と、
互いに平行な入射側反射膜及び出射側反射膜から構成され、入射側反射膜を介して入射された光を共振させる共振手段と、
電界が印加されることにより屈折率が変化する電気光学結晶からなり、xカット或いはyカットの基板内に形成され、上記入射側反射膜と上記出射側反射膜が光入射端と光出射端に夫々配され、上記発振手段から供給された上記変調信号に応じて上記共振手段において共振された光の位相を変調して、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光導波路と、
上記基板上において、上記発振手段から発振された変調信号に基づき上記光導波路に電界を印加するための電極を備え、
上記電極は、上記基板上において、上記光導波路の両側に互いに平行するように配され、上記光導波路上及びその近傍を除く全面を覆い、上記導波路における光入射端或いは光出射端に近づくにつれて幅が変られて上記導波路における上記光入射端の上部及び上記光出射端の上部を覆うように形成されていることを特徴とする光周波数コム発生器。
Oscillating means for oscillating a modulation signal of a predetermined frequency;
A resonance means configured to resonate light incident through the incident-side reflection film, the incident-side reflection film and the emission-side reflection film being parallel to each other;
An electro-optic crystal whose refractive index changes when an electric field is applied, is formed in an x-cut or y-cut substrate, and the incident-side reflection film and the emission-side reflection film are formed at the light incident end and the light emission end. The phase of the light resonated in the resonance means is modulated in accordance with the modulation signal supplied from the oscillation means, and the sideband centered on the frequency of the incident light is used as the modulation signal. Optical waveguides generated at frequency intervals;
On the substrate, an electrode for applying an electric field to the optical waveguide on the basis of a modulation signal oscillated from the oscillating means,
The electrodes are arranged on the substrate so as to be parallel to both sides of the optical waveguide, cover the entire surface except the optical waveguide and the vicinity thereof, and approach the light incident end or light emitting end of the waveguide. An optical frequency comb generator having a width changed so as to cover an upper part of the light incident end and an upper part of the light outgoing end of the waveguide .
供給された変調信号に応じて光導波路内で共振された光の位相を変調して光周波数コムを発生する光周波数コム発生器の製造方法において、In a method of manufacturing an optical frequency comb generator for generating an optical frequency comb by modulating the phase of light resonated in an optical waveguide according to a supplied modulation signal,
xカット或いはyカットの基板内に光導波路を形成する光導波路形成工程と、an optical waveguide forming step of forming an optical waveguide in an x-cut or y-cut substrate; 上記基板上において、上記光導波路の両側に互いに平行するように配され、上記光導波路上及びその近傍を除く全面を覆い、上記導波路における光入射端或いは光出射端に近づくにつれて幅が変られて上記導波路における上記光入射端の上部及び上記光出射端の上部を覆う電極を形成する電極形成工程と、On the substrate, the optical waveguide is disposed so as to be parallel to both sides of the optical waveguide, covers the entire surface except for the optical waveguide and the vicinity thereof, and the width is changed as it approaches the light incident end or light emitting end of the waveguide. Forming an electrode covering the upper part of the light incident end and the upper part of the light emitting end of the waveguide;
上記金属層が形成された複数の基板を積層して、上記光入射端及び上記光出射端を同時に研磨する研磨工程と、A polishing step of laminating a plurality of substrates on which the metal layer is formed, and polishing the light incident end and the light emitting end simultaneously,
互いに平行な入射側反射膜及び出射側反射膜を上記光導波路の光入射端及び光出射端に夫々積層する反射膜積層工程とA reflection film laminating step of laminating an incident side reflection film and an emission side reflection film parallel to each other on the light incident end and the light exit end of the optical waveguide
を有することを特徴とする光周波数コム発生器の製造方法。A method of manufacturing an optical frequency comb generator, comprising:
JP2002097166A 2002-03-29 2002-03-29 Optical frequency comb generator and manufacturing method thereof Expired - Fee Related JP3708892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097166A JP3708892B2 (en) 2002-03-29 2002-03-29 Optical frequency comb generator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097166A JP3708892B2 (en) 2002-03-29 2002-03-29 Optical frequency comb generator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003295140A JP2003295140A (en) 2003-10-15
JP3708892B2 true JP3708892B2 (en) 2005-10-19

Family

ID=29239859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097166A Expired - Fee Related JP3708892B2 (en) 2002-03-29 2002-03-29 Optical frequency comb generator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3708892B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781648B2 (en) 2004-04-14 2011-09-28 株式会社 光コム Optical resonator
JP2007079465A (en) * 2005-09-16 2007-03-29 Sumitomo Osaka Cement Co Ltd Optical control element and its manufacturing method
JP6144770B2 (en) * 2013-09-30 2017-06-07 日本碍子株式会社 Optical components
JP6745395B1 (en) * 2019-12-17 2020-08-26 株式会社Xtia Optical resonator, optical modulator, optical frequency comb generator, optical oscillator, and method of manufacturing the optical resonator and optical modulator

Also Published As

Publication number Publication date
JP2003295140A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP3640390B2 (en) Light modulator
US7239442B2 (en) Optical frequency comb generator
US7712977B2 (en) Optical resonator, optical modulator, optical frequency comb generator, optical oscillator and method of preparing optical oscillator
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
JP7152802B2 (en) Optical comb generator
US7039077B2 (en) Optical wavelength converting apparatus, and optical wavelength converting method
WO2005047965A1 (en) Optical frequency comb generator and optical modulator
JP3708892B2 (en) Optical frequency comb generator and manufacturing method thereof
JP3891977B2 (en) Optical frequency comb generator and optical modulator
JPS60187078A (en) Semiconductor laser device
JP4766775B2 (en) Terahertz light generation device and terahertz light generation method
JP3848883B2 (en) Optical resonator and optical frequency comb generator
US11506842B2 (en) Systems and methods for efficient coupling between integrated photonic waveguides and electro-optic resonator
JP3537058B2 (en) Multiplexed optical frequency comb generator
JP6745395B1 (en) Optical resonator, optical modulator, optical frequency comb generator, optical oscillator, and method of manufacturing the optical resonator and optical modulator
US6115169A (en) Semiconductor optical modulator and integrated optical circuit device
JP3910834B2 (en) Optical frequency comb generator
WO2021125007A1 (en) Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator
JP4002917B2 (en) Optical resonator measuring apparatus and method
JP2003098497A (en) Optical waveguide type light frequency comb generator
JP2020086136A (en) Light modulator and optical comb generator
JP2021193413A (en) Optical resonator, optical modulator, optical frequency comb generator, optical oscillator, and manufacturing methods of optical resonator and optical modulator
JP2013156288A (en) Optical semiconductor device
JP2002055370A (en) Optical wavelength conversion module
JPH0511228A (en) Optical modulator and laser beam source and optical measuring instrument using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050804

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees