JP3708574B2 - Filtering method of differential value of intake and intake pressure - Google Patents

Filtering method of differential value of intake and intake pressure Download PDF

Info

Publication number
JP3708574B2
JP3708574B2 JP31722294A JP31722294A JP3708574B2 JP 3708574 B2 JP3708574 B2 JP 3708574B2 JP 31722294 A JP31722294 A JP 31722294A JP 31722294 A JP31722294 A JP 31722294A JP 3708574 B2 JP3708574 B2 JP 3708574B2
Authority
JP
Japan
Prior art keywords
value
intake air
differential
differential value
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31722294A
Other languages
Japanese (ja)
Other versions
JPH08177581A (en
Inventor
昭吾 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP31722294A priority Critical patent/JP3708574B2/en
Publication of JPH08177581A publication Critical patent/JPH08177581A/en
Application granted granted Critical
Publication of JP3708574B2 publication Critical patent/JP3708574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、車両のエンジンなどの内燃機関への吸入空気圧力を検出して吸入空気量を推定し、燃料噴射量を電子制御する電子制御燃料噴射装置において、吸入空気圧の検出値を微分してフィルタ処理することにより、検出値に含まれるノイズ成分を除去して誤差の少ない空気量を推定する方法に関する。
【0002】
【従来の技術】
車両のエンジンの出力、燃料経済性および排気ガス対策を満足させる最適な空燃比に制御するための燃料噴射電子制御における吸入空気圧の検出方式として、エンジンの吸気管内に設けるセンサで吸気管圧(PM)を検出し、そのPM値から吸入空気量を推定するD-Jetronic方式が1967年にボッシュ社によって発表され、エンジンのトルク特性の向上、排ガスの有害成分の低減を図ることができる空燃比制御精度の良い方式として採用されてきた。
【0003】
空燃比制御の精度は、前記吸入空気量を推定するために検出する吸気管圧測定値の精度の良否に係わるが、この測定値に含まれるエンジンの回転に伴って発生する脈動性のリップルノイズや、その他の様々な制御の妨害となるノイズを除去することが必要である。
【0004】
先行技術において、空燃比制御精度の向上には種々の工夫がなされてきており、例えば特開平6−146995に見られるごとく、エンジンの燃焼室内の圧力計測手段と、その圧力計測値のノイズ除去手段とを設けることによって燃料供給量制御方法の改善に努めている。
【0005】
また現在一般には前記PMセンサの検出値を、例えば2/1000秒の短時間周期でA/D変換の演算処理をし、PMセンサ値に重畳してくるノイズを除去するために1/mなまし制御(現行例ではm=8がある)を行っている。すなわちPMセンサ検出値の現在値をPMn とし、2/1000秒前の値をPMn-1 とした場合に
PMn =PMn +(PMn −PMn-1 )/8
として除去している。
【0006】
【発明が解決しようとする課題】
しかしながら、前記特開平6−146995の燃料供給制御方法による圧力測定値のノイズの除去は、エンジンの圧縮工程中の所定期間内の2つ以上の筒内圧力測定値の変化を平滑化するという方法によるため、主たるノイズであるエンジンの回転に伴う脈動を把握して除去するにはいたらず、微妙な空燃比の調節が求められるエンジン制御に最適の効果を期待できない。
【0007】
また前述の1/mなまし制御を行う場合には、なましを大きくする(mを大にする)とノイズの除去効果は増加するが、吸入空気圧力値の変化に対する応答性は低下し、逆になましを小さくする(mを小にする)と応答性は高くなるが、ノイズの除去効果は減少する。
【0008】
本発明の目的は、以上のような現状を解決して、車両状態の変化による過渡時に対応するために、吸入空気圧力値の微分値にフィルタ処理を加え、車両状態の変化に対応することができ、誤差の少ない吸入空気量を推定することができる吸入吸気圧力の微分値のフィルタ処理方法を提供することである。
【0009】
【課題を解決するための手段】
本発明は、車両のエンジンへの吸入空気量を推定し、燃料噴射量の電子制御を行うために吸入空気圧の検出値PMの微分値dPMをフィルタ処理する方法において、
予め定めるサンプリング周期で吸入空気圧を検出し、
吸入空気圧の検出値PMの単位サンプリング周期間の変化量を微分値として算出し、
各脈動周期毎に微分値の絶対値の最大値に基づく上限値を設定し、
次の脈動周期の微分値の絶対値から先行する脈動周期の前記上限値分までを削除するように修正し、微分値dPMとして導出することを特徴とする吸入吸気圧力の微分値のフィルタ処理方法である。
また本発明は、前記上限値は、前記各脈動周期毎の微分値の絶対値の最大値よりも、予め定める定数α以上大きくないとき、前記最大値に更新されることを特徴とする。
また本発明は、前記修正した微分値dPMが、前記上限値を予め定める係数βで乗算した値よりも大きいとき、前記上限値分の削除を行わないことを特徴とする。
また本発明は、車両のエンジンのクランク軸の1回転間における吸入空気圧の検出値PMの差を検出し、
検出された差と前記導出される微分値dPMとを比較し、差の方が大きいときは差を微分値dPMとして導出することを特徴とする。
【0010】
【作用】
本発明に従えば、車両のエンジンへの吸入空気量を推定し、その推定に基づいて燃料噴射量を電子制御するために、エンジンへの吸入空気圧力値PMを微分し、その微分値をフィルタ処理している。
【0011】
予め定めた短かい時間のサンプリング周期毎に吸入空気圧力値PMを検出し、A/D変換した検出値PMのサンプリング周期間の変化量を微分値として算出し、算出した微分値の脈動の各周期毎に、微分値の絶対値の最大値を上限値として設定する。次の脈動周期に算出する微分値の絶対値が前記の先行周期の上限値より大きい場合に、微分値の絶対値から前記上限値分を差し引いた値に修正し、大きくない場合は算出値を0に修正して、微分値dPMとして導出している。これによって微分値dPM値の脈動が除去される。
【0012】
また本発明に従えば、前記の各脈動周期毎の微分値の絶対値の最大値が前記上限値に予め定める定数αを加えた値よりも大きくない場合に、上限値を前記最大値に更新し、大きい場合には前記上限値にαを加えた値に更新している。これによって上限値に限度を設定し、その上限値によって微分値dPM値の修正を行うため、脈動以外の変化を除去する誤りを防ぐことができる。
【0013】
また本発明に従えば、上記の修正した微分値dPMの値が、予め定める定数βを前記上限値に乗じた値よりも大きい場合には、差し引いた上限値を再び加算して微分値dPM値として導出している。これによって前記上限値を除去した値において上限値のβ倍の値を検出した場合は、その変化は脈動以外のもので、車両状態の変化によるものと判断して前記除去を取り消すことができる。
【0014】
また本発明に従えば、車両のエンジンのクランク軸が一回転する間の吸入空気圧力値PMの差を検出し、検出した差を前記の導出微分値dPMと比較して大きい方を微分値dPMの決定値としている。これによって前記のいずれの場合も変化への即応性を重視した処理であるのに対して、脈動の影響を受けにくい検出値によって、脈動から検出する変化量より小さい緩やかなPM変化を検出して空気量の推定を行うことができる。
【0015】
【実施例】
図1は、本発明の実施例を適用する車両のエンジンへの燃料噴射を電子制御するシステムの構成図である。エンジン1に吸入される空気2の吸気圧力を吸入空気圧力検出センサであるPMセンサ3で検出し、その検出値をEFiコンピュータと称する電子燃料噴射制御装置4を構成するA/D変換器5でA/D変換し、これをPM値として前記制御装置4を構成する吸入空気圧力フィルタであるPMフィルタ6に取り込んで処理する。本発明によるPMフィルタ6の処理結果によって前記制御装置4を構成する空気量推定処理部7がエンジンへの吸入空気量を推定し、またその空気量推定値に基づいて同じく制御装置4を構成する燃料量算出部8がエンジンに噴射する燃料量算出を行う。前記制御装置4を構成するインジェクタ開弁制御器9が燃料量の算出値に基づき燃料噴射器であるインジェクタ10を制御し、算出量の燃料11を噴射する。エンジン1内に噴射された燃料11は吸入空気2と混合され、混合ガス12がエンジン1内で圧縮され点火されて爆発する。
【0016】
図2は、本発明の一実施例において、エンジンへの吸入空気圧力をPMセンサが2/1000秒すなわち2mS毎にサンプリングして検出し、その検出値をA/D変換器でA/D変換したPMデータを、PMフィルタが演算処理する動作を示す。ステップ101において現在のPM値であるPMn から2mS前すなわち前回入力したPM値であるPMn-1 を差し引いて、PMデータの2mS間の変化量を微分値dPMとして算出する。ステップ102で算出したdPMの絶対値|dPMn |を、計算用のメモリに蓄えてある現在のPMの脈動周期中のdPMの最大値(maxdPM)と比較し、|dPMn |の方が大きければステップ103に進んで、計算用メモリの最大値(maxdPM)を算出した現在のdPMの絶対値|dPMn |に更新してステップ104に進み、ステッ102の判定で|dPMn |の方が大きくなければ更新をせずにそのままステップ104に進む。ステップ104では算出した微分値dPMn の正負の符号が前回入力に対して反転したかどうかを判定し、反転したときにはステップ105に進み脈動の極致を過ぎたとみなしてその脈動周期中の上限値である(maxdPM)を最新の脈動周期の最大値maxdPMk とし、ステップ106に進む。ステップ106では計算用メモリの(maxdPM)を0にクリアしてステップ107に進む。ステップ104でdPMn の符号が反転していない場合にはステップ108に進んで脈動周期の最大値maxdPMk は更新しないで、前回の脈動周期の最大値であるmaxdPMk-1 のままにしてステップ107に進む。ステップ107では次の脈動周期中のPMの微分値の絶対値である|dPMn |が先行周期の最大値maxdPMk より大きいかどうかを判定し、大きくない場合にはステップ109に進んで|dPMn |を0とし、大きい場合にはステップ110に進んで|dPMn |からmaxdPMk を削除した値を修正した微分値として導出する。なお、図2の下部の▲1▼印は後述の説明のための記号である。
【0017】
図3は、図2の動作において設定する脈動周期中の上限値に制限を設けようとする実施例の動作を示す。ステップ201〜204までは図2のステップ101〜104と全く同じであり、ステップ205,206は図2のステップ108,107とそれぞれ同じである。ステップ207ではステップ203で設定した上限値(maxdPM)が上記前回の脈動周期の最大値maxdPMk-1 に予め設定した値αを加えた値より小さいかどうかを判定し、小さくない場合にはステップ208に進んで脈動周期の最大値maxdPMk を前回の脈動周期の最大値maxdPMk-1 にαを加えた値とし、小さい場合には図2の場合と同様にステップ209に進んで脈動周期中の上限値(maxdPM)を最新の脈動周期の最大値maxdPMk とする。ステップ210では図2のステップ106と同じく計算用メモリをクリアしてから、ステップ206に進んで次の周期中の微分値の絶対値である|dPMn |が、先行周期の最大値maxdPMk より大きいかどうかを判定し、大きくない場合にはステップ211に進んで|dPMn |を0とし、大きい場合にはステップ212で|dPMn |からmaxdPMk を削除した値を修正した微分値として導出する。なお、図3の下部の▲1▼印も後述の説明のための記号である。
【0018】
図4は、検出値の変動が脈動の幅以上に甚だしく大きい場合の対策として採用する実施例の動作を示し、ステップ301〜311は図3のステップ201〜211と全く同様である。ステップ313で図2のステップ212と同様に周期中の微分値の絶対値である|dPMn |から先行周期の最大値maxdPMk を削除した後、ステップ312で判定して前記の修正した微分値の絶対値が、前記上限値に予め設定した値にβを乗じた値よりも大きい場合には、ステップ313で削除した先行周期の最大値maxdPMk をステップ314で再び加算して導出する。なお、図4の下部の▲1▼印も、後述の説明のための記号である。
【0019】
図5は、緩やかな変化を検出して制御しようとする実施例の動作を示す。ステップ401はエンジンのクランク軸の1回転すなわち360度毎にサンプリングを行って、その検出値の差をdPMm とし、前記図2〜4の下部に の記号を付した出力と共にステップ402に進み、ステップ402で前記差の絶対値と前記図2〜4のいずれの場合にも導出した|dPMn |とを比較し、1回転の差の方が大きい場合にはステップ403でdPMm をdPMに採用し、大きくない場合にはステップ404でdPMn を採用し、ステップ405でdPMを決定する。
【0020】
【発明の効果】
以上のように本発明によれば、サンプリング周期毎に検出する吸入空気圧の検出値PMを、毎回検出する度毎にその前回の検出値との差を微分値として算出する。またPM値に含まれているエンジンの回転に伴う脈動性のノイズ成分の脈動の極値を微分値の正負の符号の変換点としてとらえている。その極値間を脈動の周期として微分値の絶対値の脈動周期内の最大値を検出して上限値とし、脈動周期毎に上限値の更新を繰返しつつ次の脈動周期の微分値から上限値分を除去したものを微分値dPMの修正値としている。この処理によって上記脈動成分を主とするノイズは除去される。 また本発明は、上記上限値の更新の大きさに限度を設け、その限度以内の最大値を検出した場合は上記上限値の更新を行うが、限度を越える値には更新しない。この処理によって脈動以外の変化を除去する誤りを防ぐことができる。
【0021】
また本発明は、上記上限値を差し引いて修正した後の微分値dPMが上記上限値に所定数を乗算した大きさより大きい値であるような場合には、前記の修正を取り消す処理を行って、車両状態の変化によるものとして対応することができる。
【0022】
また本発明は、吸入空気圧力の検出をクランク軸の360度回転毎に行い、その検出値の差と上記修正値の差とを比較して大きい方を微分値dPMの決定値とすることにより、脈動値から検出される変化量より小さい緩やかな微分値の変化を検出することができる。
【0023】
上記のように本発明によれば、吸入空気圧力値の微分値であるdPMを求め、フィルタ処理をすることによって真の空気量を推定して車両状態の変化による過渡時の燃料噴射制御に対応することができる。
【図面の簡単な説明】
【図1】本発明を実施するための車両エンジンの電子制御燃料噴射システムとエンジン、空気、燃料および燃料インジェクタとの関係を示すブロック図である。
【図2】本発明の一実施例による吸気圧力フィルタ処理の動作を示すフローチャートである。
【図3】本発明の他の実施例による吸気圧力フィルタ処理の動作を示すフローチャートである。
【図4】本発明のさらに他の実施例による吸気圧力フィルタ処理の動作を示すフローチャートである。
【図5】本発明のさらに他の実施例による吸気圧力フィルタ処理の動作を示すフローチャートである。
【符号の説明】
1 車両のエンジン
2 エンジンが吸入する空気
3 空気圧検出センサ
4 電子燃料噴射システム
5 A/D変換器
6 吸気圧力フィルタ
7 空気量推定処理部
8 燃料量算出部
9 インジェクタ開弁制御部
10 インジェクタ
11 燃料
12 空気と燃料の混合ガス
dPM 微分値
[0001]
[Industrial application fields]
The present invention relates to an electronically controlled fuel injection device that detects an intake air pressure to an internal combustion engine such as a vehicle engine to estimate an intake air amount and electronically controls a fuel injection amount, and differentiates a detected value of the intake air pressure. The present invention relates to a method for estimating an air amount with a small error by removing a noise component included in a detection value by performing a filtering process.
[0002]
[Prior art]
As a method for detecting the intake air pressure in the fuel injection electronic control for controlling the air-fuel ratio optimally satisfying the output of the vehicle engine, fuel economy, and exhaust gas countermeasures, an intake pipe pressure (PM) is provided by a sensor provided in the engine intake pipe. ) Was detected by Bosch in 1967, and the air-fuel ratio control that can improve engine torque characteristics and reduce harmful components of exhaust gas It has been adopted as a highly accurate method.
[0003]
The accuracy of the air-fuel ratio control is related to the accuracy of the measured value of the intake pipe pressure detected to estimate the intake air amount, but the pulsating ripple noise generated with the rotation of the engine included in this measured value. In addition, it is necessary to remove noise that interferes with various other controls.
[0004]
In the prior art, various devices have been devised for improving the air-fuel ratio control accuracy. For example, as disclosed in Japanese Patent Laid-Open No. 6-14695, pressure measuring means in a combustion chamber of an engine and noise removing means for the pressure measurement value To improve the fuel supply control method.
[0005]
In addition, generally, the detection value of the PM sensor is A / D-converted with a short period of, for example, 2/1000 seconds, and is 1 / m in order to remove noise superimposed on the PM sensor value. Better control (m = 8 in the current example) is performed. That is, when the current value of the PM sensor detection value is PMn and the value 2/1000 seconds ago is PMn-1, PMn = PMn + (PMn-PMn-1) / 8.
As removed.
[0006]
[Problems to be solved by the invention]
However, the removal of pressure measurement value noise by the fuel supply control method disclosed in Japanese Patent Laid-Open No. Hei 6-14695 smoothes the change in two or more in-cylinder pressure measurement values within a predetermined period during the compression process of the engine. Therefore, it is not possible to grasp and remove the pulsation accompanying the rotation of the engine, which is the main noise, and an optimal effect cannot be expected for engine control that requires delicate adjustment of the air-fuel ratio.
[0007]
In addition, when the 1 / m annealing control described above is performed, increasing the annealing (increasing m) increases the noise removal effect, but the response to changes in the intake air pressure value decreases, Conversely, if the annealing is made small (m is made small), the responsiveness increases, but the noise removal effect decreases.
[0008]
The object of the present invention is to solve the current situation as described above and to apply a filtering process to the differential value of the intake air pressure value in order to cope with a change in the vehicle state in order to cope with a transition due to a change in the vehicle state. An object of the present invention is to provide a method for filtering a differential value of intake air intake pressure, which can estimate an intake air amount with little error.
[0009]
[Means for Solving the Problems]
The present invention relates to a method for filtering a differential value dPM of a detected value PM of an intake air pressure in order to estimate an intake air amount to a vehicle engine and perform electronic control of a fuel injection amount.
Detects intake air pressure at a predetermined sampling cycle,
Calculate the amount of change in the detected value PM of the intake air pressure during the unit sampling period as a differential value,
Set an upper limit based on the maximum absolute value of the differential value for each pulsation cycle,
A method for filtering a differential value of intake air intake pressure, wherein the differential value of the next pulsation period is corrected to be deleted from the absolute value of the preceding pulsation period to the upper limit value and is derived as a differential value dPM. It is.
Further, the present invention is characterized in that the upper limit value is updated to the maximum value when the absolute value of the differential value for each pulsation period is not larger than a predetermined constant α.
Further, the present invention is characterized in that the upper limit value is not deleted when the modified differential value dPM is larger than a value obtained by multiplying the upper limit value by a predetermined coefficient β.
Further, the present invention detects a difference in the detected value PM of the intake air pressure during one rotation of the crankshaft of the vehicle engine,
The detected difference is compared with the derived differential value dPM, and when the difference is larger, the difference is derived as the differential value dPM.
[0010]
[Action]
According to the present invention, in order to estimate the intake air amount to the engine of the vehicle and to electronically control the fuel injection amount based on the estimation, the intake air pressure value PM to the engine is differentiated and the differential value is filtered. Processing.
[0011]
The intake air pressure value PM is detected at each predetermined short sampling period, the amount of change between the sampling periods of the A / D converted detection value PM is calculated as a differential value, and each pulsation of the calculated differential value is calculated. For each period, the maximum absolute value of the differential value is set as the upper limit value. When the absolute value of the differential value calculated in the next pulsation cycle is larger than the upper limit value of the preceding cycle, the value is corrected to a value obtained by subtracting the upper limit value from the absolute value of the differential value. It is corrected to 0 and derived as a differential value dPM. As a result, the pulsation of the differential value dPM value is removed.
[0012]
Further, according to the present invention, when the maximum absolute value of the differential value for each pulsation period is not larger than a value obtained by adding a predetermined constant α to the upper limit value, the upper limit value is updated to the maximum value. If it is larger, it is updated to a value obtained by adding α to the upper limit value. As a result, a limit is set to the upper limit value, and the differential value dPM value is corrected based on the upper limit value. Therefore, it is possible to prevent an error in removing changes other than pulsation.
[0013]
Further, according to the present invention, when the value of the modified differential value dPM is larger than a value obtained by multiplying the predetermined constant β by the upper limit value, the subtracted upper limit value is added again to obtain the differential value dPM value. As derived. Accordingly, when a value that is β times the upper limit value is detected in the value obtained by removing the upper limit value, the change is other than pulsation, and it can be determined that the change is due to a change in the vehicle state, and the removal can be canceled.
[0014]
Further, according to the present invention, the difference in the intake air pressure value PM during one revolution of the crankshaft of the vehicle engine is detected, and the detected difference is compared with the derived differential value dPM, and the larger one is determined as the differential value dPM. The decision value. As a result, in all of the cases described above, the process emphasizes responsiveness to changes, but by detecting a value that is not easily affected by the pulsation, a gentle PM change smaller than the change detected from the pulsation is detected. The amount of air can be estimated.
[0015]
【Example】
FIG. 1 is a configuration diagram of a system that electronically controls fuel injection to a vehicle engine to which an embodiment of the present invention is applied. An intake pressure of the air 2 sucked into the engine 1 is detected by a PM sensor 3 which is an intake air pressure detection sensor, and the detected value is detected by an A / D converter 5 constituting an electronic fuel injection control device 4 called an EFi computer. A / D conversion is performed, and this is converted into a PM value and taken into a PM filter 6 which is an intake air pressure filter constituting the control device 4 and processed. The air amount estimation processing unit 7 constituting the control device 4 estimates the intake air amount to the engine based on the processing result of the PM filter 6 according to the present invention, and also configures the control device 4 based on the estimated air amount. The fuel amount calculation unit 8 calculates the amount of fuel injected into the engine. The injector valve opening controller 9 constituting the control device 4 controls the injector 10 which is a fuel injector based on the calculated value of the fuel amount, and injects the calculated amount of fuel 11. The fuel 11 injected into the engine 1 is mixed with the intake air 2, and the mixed gas 12 is compressed and ignited in the engine 1 to explode.
[0016]
FIG. 2 shows an embodiment of the present invention in which an intake air pressure to an engine is detected by a PM sensor sampling every 2/1000 seconds, that is, every 2 mS, and the detected value is A / D converted by an A / D converter. An operation in which the PM filter performs arithmetic processing on the obtained PM data is shown. In step 101, PMn-1 which is the PM value inputted 2mS before, that is, the PM value inputted last time is subtracted from PMn which is the current PM value, and the change amount of PM data between 2mS is calculated as a differential value dPM. The absolute value | dPMn | of dPM calculated in step 102 is compared with the maximum value (maxdPM) of dPM during the current PM pulsation period stored in the memory for calculation. If | dPMn | The process proceeds to 103, and the maximum value (maxdPM) of the memory for calculation is updated to the current absolute value of dPM | dPMn |, and the process proceeds to step 104. If | dPMn | Without proceeding to step 104. In step 104, it is determined whether or not the sign of the calculated differential value dPMn is inverted with respect to the previous input. When the sign is inverted, the process proceeds to step 105, where it is considered that the pulsation has been exceeded and is the upper limit value in the pulsation cycle. Set (maxdPM) to the maximum value maxdPMk of the latest pulsation cycle, and proceed to Step 106. In step 106, (maxdPM) of the calculation memory is cleared to 0, and the process proceeds to step 107. If the sign of dPMn is not inverted at step 104, the routine proceeds to step 108, where the maximum value of the pulsation period maxdPMk is not updated, and the maximum value of the previous pulsation period, maxdPMk-1, remains unchanged and the routine proceeds to step 107. . In step 107, it is determined whether or not | dPMn | which is the absolute value of the differential value of PM in the next pulsation cycle is larger than the maximum value maxdPMk of the preceding cycle. If not, the routine proceeds to step 109, where | dPMn | If the value is larger than 0, the process proceeds to step 110, and a value obtained by deleting maxdPMk from | dPMn | is derived as a modified differential value. 2 is a symbol for explanation to be described later.
[0017]
FIG. 3 shows the operation of the embodiment in which a limit is set on the upper limit value during the pulsation period set in the operation of FIG. Steps 201 to 204 are exactly the same as steps 101 to 104 in FIG. 2, and steps 205 and 206 are the same as steps 108 and 107 in FIG. In step 207, it is determined whether or not the upper limit value (maxdPM) set in step 203 is smaller than a value obtained by adding a preset value α to the maximum value maxdPMk−1 of the previous pulsation cycle. The maximum value of the pulsation cycle maxdPMk is set to a value obtained by adding α to the maximum value of the previous pulsation cycle maxdPMk-1, and if it is smaller, the process proceeds to step 209 as in FIG. 2, and the upper limit value in the pulsation cycle is reached. Let (maxdPM) be the maximum value maxdPMk of the latest pulsation cycle. In step 210, the calculation memory is cleared in the same manner as in step 106 of FIG. 2, and then the routine proceeds to step 206, where is the absolute value of the differential value in the next cycle | dPMn | is greater than the maximum value maxdPMk of the preceding cycle? If it is not larger, the process proceeds to step 211 where | dPMn | is set to 0. If it is larger, the value obtained by deleting maxdPMk from | dPMn | is derived as a modified differential value in step 212. In addition, (1) mark of the lower part of FIG. 3 is also a symbol for the following description.
[0018]
FIG. 4 shows the operation of the embodiment adopted as a countermeasure when the fluctuation of the detected value is much larger than the pulsation width, and steps 301 to 311 are exactly the same as steps 201 to 211 of FIG. In step 313, the maximum value maxdPMk of the preceding period is deleted from | dPMn | which is the absolute value of the differential value in the cycle as in step 212 of FIG. If the value is larger than the value obtained by multiplying the upper limit by a preset value, β is derived by adding again the maximum value maxdPMk of the preceding period deleted in step 313 in step 314. In addition, (1) mark of the lower part of FIG. 4 is also a symbol for the below-mentioned description.
[0019]
FIG. 5 shows the operation of an embodiment in which a gradual change is detected and controlled. In step 401, sampling is performed every rotation of the crankshaft of the engine, that is, every 360 degrees, the difference between the detected values is set to dPMm, and the process proceeds to step 402 together with the output indicated by the symbol at the bottom of FIGS. The absolute value of the difference is compared with | dPMn | derived in any of the cases of FIGS. 2 to 4 at 402, and when the difference of one rotation is larger, dPMm is adopted as dPM at step 403, If not, dPMn is adopted in step 404, and dPM is determined in step 405.
[0020]
【The invention's effect】
As described above, according to the present invention, every time the detected value PM of the intake air pressure detected at each sampling cycle is detected, the difference from the previous detected value is calculated as a differential value. Further, the extreme value of the pulsation of the pulsating noise component accompanying the rotation of the engine included in the PM value is regarded as a conversion point of the sign of the differential value. The maximum value within the pulsation cycle of the absolute value of the differential value is detected as the pulsation cycle between the extreme values, and the upper limit value is detected every time the pulsation cycle is repeated. A value obtained by removing the minute is used as a modified value of the differential value dPM. By this process, noise mainly including the pulsation component is removed. In addition, the present invention sets a limit on the magnitude of the update of the upper limit value, and updates the upper limit value when a maximum value within the limit is detected, but does not update it to a value exceeding the limit. This process can prevent errors that remove changes other than pulsation.
[0021]
In the present invention, when the differential value dPM after correction by subtracting the upper limit value is larger than the value obtained by multiplying the upper limit value by a predetermined number, a process for canceling the correction is performed. This can be dealt with as a change in the vehicle state.
[0022]
Further, according to the present invention, the intake air pressure is detected every 360 degrees of rotation of the crankshaft, and the difference between the detected values is compared with the difference between the correction values, and the larger one is used as the determined value of the differential value dPM. Thus, it is possible to detect a gradual change in the differential value that is smaller than the change amount detected from the pulsation value.
[0023]
As described above, according to the present invention, dPM, which is a differential value of the intake air pressure value, is obtained, and the true air amount is estimated by performing a filter process to cope with the fuel injection control at the time of transition due to a change in the vehicle state. can do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the relationship between an electronically controlled fuel injection system for a vehicle engine and an engine, air, fuel and fuel injector for implementing the present invention.
FIG. 2 is a flowchart showing an operation of an intake pressure filter process according to an embodiment of the present invention.
FIG. 3 is a flowchart showing an operation of intake pressure filter processing according to another embodiment of the present invention.
FIG. 4 is a flowchart showing an operation of intake pressure filter processing according to still another embodiment of the present invention.
FIG. 5 is a flowchart showing an operation of intake pressure filter processing according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vehicle engine 2 Air which engine takes in 3 Air pressure detection sensor 4 Electronic fuel injection system 5 A / D converter 6 Intake pressure filter 7 Air quantity estimation processing part 8 Fuel quantity calculation part 9 Injector valve opening control part 10 Injector 11 Fuel 12 Mixed gas dPM differential value of air and fuel

Claims (4)

車両のエンジンへの吸入空気量を推定し、燃料噴射量の電子制御を行うために吸入空気圧の検出値PMの微分値dPMをフィルタ処理する方法において、
予め定めるサンプリング周期で吸入空気圧を検出し、
吸入空気圧の検出値PMの単位サンプリング周期間の変化量を微分値として算出し、
各脈動周期毎に微分値の絶対値の最大値に基づく上限値を設定し、
次の脈動周期の微分値の絶対値から先行する脈動周期の前記上限値分までを削除するように修正し、微分値dPMとして導出することを特徴とする吸入吸気圧力の微分値のフィルタ処理方法。
In a method for estimating an intake air amount to a vehicle engine and filtering a differential value dPM of a detected value PM of an intake air pressure in order to perform electronic control of a fuel injection amount,
Detects intake air pressure at a predetermined sampling cycle,
Calculate the amount of change in the detected value PM of the intake air pressure during the unit sampling period as a differential value,
Set an upper limit based on the maximum absolute value of the differential value for each pulsation cycle,
A method for filtering a differential value of intake air intake pressure, wherein the differential value of the next pulsation period is corrected to be deleted from the absolute value of the preceding pulsation period to the upper limit value and is derived as a differential value dPM. .
前記上限値は、前記各脈動周期毎の微分値の絶対値の最大値よりも、予め定める定数α以上大きくないとき、前記最大値に更新されることを特徴とする請求項1記載の吸入吸気圧力の微分値のフィルタ処理方法。  2. The inhalation and intake air according to claim 1, wherein the upper limit value is updated to the maximum value when the absolute value of the differential value for each pulsation cycle is not greater than a predetermined constant α. Filtering method for differential pressure value. 前記修正した微分値dPMが、前記上限値を予め定める係数βで乗算した値よりも大きいとき、前記上限値分の削除を行わないことを特徴とする請求項1または2記載の吸入吸気圧力の微分値のフィルタ処理方法。  3. The intake air intake pressure according to claim 1, wherein when the modified differential value dPM is greater than a value obtained by multiplying the upper limit value by a predetermined coefficient β, the upper limit value is not deleted. Differential value filtering method. 車両のエンジンのクランク軸の1回転間における吸入空気圧の検出値PMの差を検出し、
検出された差と前記導出される微分値dPMとを比較し、差の方が大きいときは差を微分値dPMとして導出することを特徴とする請求項1〜3のいずれかに記載の吸入吸気圧力の微分値のフィルタ処理方法。
Detecting a difference in the detected value PM of the intake air pressure during one rotation of the crankshaft of the vehicle engine;
4. The intake and intake air according to claim 1, wherein the detected difference is compared with the derived differential value dPM, and when the difference is larger, the difference is derived as the differential value dPM. Filtering method for differential pressure value.
JP31722294A 1994-12-20 1994-12-20 Filtering method of differential value of intake and intake pressure Expired - Fee Related JP3708574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31722294A JP3708574B2 (en) 1994-12-20 1994-12-20 Filtering method of differential value of intake and intake pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31722294A JP3708574B2 (en) 1994-12-20 1994-12-20 Filtering method of differential value of intake and intake pressure

Publications (2)

Publication Number Publication Date
JPH08177581A JPH08177581A (en) 1996-07-09
JP3708574B2 true JP3708574B2 (en) 2005-10-19

Family

ID=18085845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31722294A Expired - Fee Related JP3708574B2 (en) 1994-12-20 1994-12-20 Filtering method of differential value of intake and intake pressure

Country Status (1)

Country Link
JP (1) JP3708574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534554B2 (en) 2011-06-20 2017-01-03 Honda Motor Co., Ltd. Fuel injection amount calculation method and fuel injection controlling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534554B2 (en) 2011-06-20 2017-01-03 Honda Motor Co., Ltd. Fuel injection amount calculation method and fuel injection controlling apparatus

Also Published As

Publication number Publication date
JPH08177581A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
KR100791163B1 (en) Fuel injection controlling apparatus for internal combustion engine
US6397828B2 (en) Method for controlling the titre of the air-fuel mixture in an internal combustion engine
JP3708574B2 (en) Filtering method of differential value of intake and intake pressure
JP2908924B2 (en) Method for detecting the amount of air flowing into an engine, a device for performing the method, and a fuel injection amount control device having the device
JPH01280645A (en) Fuel injection control device for engine
JPH06323181A (en) Method and device for controlling fuel in internal combustion engine
JP2004019629A (en) Controller for internal combustion engine
JP2004156456A (en) Intake air amount estimation method, estimation device, intake air amount control method and control device for internal combustion engine
JP3239575B2 (en) Temperature prediction device and temperature control device for internal combustion engine
JP2856986B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05187305A (en) Air amount calculating device of internal combustion engine
JP4246461B2 (en) Intake air amount calculation device
JP4581038B2 (en) Fuel injection amount control device for internal combustion engine
JPS6161012A (en) Output control device of heat wire sensor
JPH10274082A (en) Engine control system
JPS60156947A (en) Method of controlling injected quantity of fuel for internal-combustion engine
JP2754676B2 (en) Fuel injection amount control device for internal combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2627798B2 (en) Intake pressure detection device for internal combustion engine
JPH0318640A (en) Injection quantity control device for internal combustion engine
JP2623660B2 (en) Control device for internal combustion engine
JP2576184B2 (en) Fuel injection amount control device for internal combustion engine
JP3474951B2 (en) Inlet air pressure value processing method
JPH07139393A (en) Fuel injection control device for internal combustion engine
JPH0552152A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees