JP3706748B2 - Method for producing high molecular weight polylactic acid and polymer - Google Patents

Method for producing high molecular weight polylactic acid and polymer Download PDF

Info

Publication number
JP3706748B2
JP3706748B2 JP25427498A JP25427498A JP3706748B2 JP 3706748 B2 JP3706748 B2 JP 3706748B2 JP 25427498 A JP25427498 A JP 25427498A JP 25427498 A JP25427498 A JP 25427498A JP 3706748 B2 JP3706748 B2 JP 3706748B2
Authority
JP
Japan
Prior art keywords
polylactic acid
molecular weight
high molecular
polymer
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25427498A
Other languages
Japanese (ja)
Other versions
JP2000086749A (en
Inventor
健志 金森
英一 小関
吉次 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25427498A priority Critical patent/JP3706748B2/en
Publication of JP2000086749A publication Critical patent/JP2000086749A/en
Application granted granted Critical
Publication of JP3706748B2 publication Critical patent/JP3706748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高分子量ポリ乳酸の製造方法に関する。本発明で得られたポリ乳酸は高分子量であり、粒状、ペレット状、板状など種々の形態をなす。
【0002】
【従来の技術】
ポリ乳酸は生体安全性が高く、しかも分解物である乳酸は生体内で吸収される。このようにポリ乳酸は生体安全性の高い高分子化合物であり、手術用縫合糸、ドラッグデリバリー(徐放性カプセル)、骨折時の補強剤など医療用にも用いられ、自然環境下で分解する為分解性プラスチックとしても注目されている。又、一軸、二軸延伸フィルムや繊維、射出成形品などとして種々の用途にも用いられている。
【0003】
このようなポリ乳酸の製造方法には、乳酸を直接脱水縮合して目的物を得る直接法と、乳酸から一旦環状ラクチド(二量体)を合成し、晶析法などにより精製を行い、ついで開環重合を行う方法がある。例えば、特公昭56−14688号公報には、2分子の環状ジエステルを中間体とし、これをオクチル酸錫、ラウリルアルコールを触媒として重合し、ポリ乳酸を製造することが開示されている。このようにして得られたポリ乳酸は、成形加工の工程における取り扱い性を容易にするため、あらかじめ米粒大から豆粒程度の大きさの球状、立方体、円柱状、破砕状等のペレット状の製品とされる。
【0004】
【発明が解決しようとする課題】
しかしながら、分子量10万〜50万の高分子量のポリ乳酸の融点は170〜200℃と高く、従来このようなポリ乳酸の最終重合物を溶融状態で反応器から取り出し、これを融点以上で加熱すると、ポリ乳酸の分解や着色を生じた。
【0005】
又、従来は、ポリ乳酸に太陽光及び/又はそれに類似する連続スペクトルを有する光線を照射すると、分解もしくは劣化により分子量低下をもたらす事が知られており、光線を照射する事により高分子量のポリ乳酸が得られたという報告はない。
本発明は、ポリ乳酸の高分子量化に際し、着色や分解がなく、かつ短時間で成形に適した形態を有する高分子量のポリ乳酸を製造することにある。
【0006】
【課題を解決するための手段】
本発明者らは、前記の課題について鋭意検討を行った結果、ポリ乳酸の重合過程において未だ十分に高分子量には至らないポリ乳酸に、UV強度120mW/cm以上で400nm以下の紫外線を照射する事によりポリ乳酸の重合反応をさらに進行させ、高分子量ポリ乳酸が得られる事を見いだした。
すなわち本発明は、ポリ乳酸に、UV強度120mW/cm以上で400nm以下の紫外線を照射する事を特徴とする高分子量ポリ乳酸の製造方法である。又、本発明は前述の方法で製造されたポリ乳酸重合体である。
【0007】
【発明の実施の形態】
本発明において、ポリ乳酸とは、実質的にL−乳酸及び/又はD−乳酸由来のモノマー単位のみで構成されるポリマーである。ここで「実質的に」とは、本発明の効果を損なわない範囲で、L−乳酸またはD−乳酸に由来しない、他のモノマー単位を含んでいても良いという意味である。
ポリ乳酸が、L−乳酸及び/又はD−乳酸に由来するモノマー単位からだけなる場合には、重合体は結晶性で高融点を有する。しかも、L−乳酸、D−乳酸由来のモノマー単位の比率(L/D比と略称する)を変化させることにより、結晶性・融点を自在に調節する事ができるので、用途に応じ、実用特性を制御する事を可能にする。
【0008】
本発明の製造方法では、まず1段目の重合反応を行い平均分子量1万〜20万のポリ乳酸を得る。1段目のポリ乳酸の製造方法としては、既知の任意の重合方法を採用する事ができる。最も代表的に知られているのは、乳酸の無水環状二量体であるラクチドを開環重合する方法(ラクチド法)であるが、乳酸を直接縮合重合しても構わない。
1段目の重合に用いる触媒としては、オクチル酸錫などの錫系化合物、テトライソプロピルチタネートなどのチタン系化合物、ジルコニウムイソプロポキシドなどのジルコニウム化合物、三酸化アンチモンなどのアンチモン系化合物等、いずれも乳酸の重合に従来公知の触媒が挙げられる。また、添加する触媒量によって、最終ポリマーの分子量を調整する事もできる。触媒量が少ないほど反応速度は遅くなるが、分子量は高くなる。
【0009】
重合反応は、例えば開環重合を行う場合、ラクチド重量に対して0.001〜1重量部、好ましくは0.01〜0.5重量部の触媒を用い、重合方法、触媒量にも異なるが通常10分〜20時間程度加熱重合する。反応は、窒素などの不活性ガス雰囲気下にて行うのが好ましい。
【0010】
このような方法で得られたポリ乳酸に、400nm以下、好ましくは250〜370nmの紫外線を放射する光源の光を照射する事で2段目の重合反応を進行させる。波長が400nm以下なのは、400nm以上の可視光では、分子量の増大が認められないことによる。
照射時の温度は、ポリ乳酸のガラス転移温度以上においては軟化・変形が進行するため、形状を保持する必要がある場合には注意を要するが、そうでない場合は限定されない。但し、200℃以上の温度では、ポリ乳酸は分解反応をともなうので、150℃以下が好ましい。
また、照射する光線は、400nm以下の紫外線を放射する光源による光で有れば何でもよい。但し、放射照度が小さい場合は、分解・劣化反応の方が支配的となり効果はなく、本発明では放射照度の大きい光源を用いることが必須となる。
照射すべき光は、200〜1000nmの領域に発光ピーク波長を有する光源からの光である。例えば、光源として、キセノンランプ、蛍光ランプ、水銀ランプ(高圧水銀ランプ、超高圧水銀ランプ)、紫外用メタルハライドランプ等が挙げられる。これらのうち、大きな放射照度を得る為には高圧水銀ランプ、紫外用メタルハライドランプが好ましい。
これらの光源の放射光に赤外線が含まれる場合は、赤外線による発熱がポリマーの分解或いは変形を引き起こす可能性があるので、発熱を防止するために、フィルタを用いて紫外線のみを照射すること、或いは空冷式、水冷式等の冷却を行いながら照射することが有効である。広い波長域の紫外線を放射する光源の場合は、ポリマーの不必要な劣化反応を防止するため、フィルタ等を用いて必要とされる波長の紫外線のみ照射すると良い。
【0011】
光の照射時間は、光源の種類及び照射光の強度によるが、本明細書の実施例で示す例については、2〜3分の照射で十分である。照射強度は、UV120mW/cm以上、好ましくは、120〜300mW/cmである。これは、UV強度がこの値より低いと、照射時間を長くしても、分子量の増大が認められないからである。なお、UV強度は、測定波長300〜390nmにおけるピーク強度値によって定義される値である。
【0012】
本発明で2段目の重合に使用されるポリ乳酸は、改質の為の副次的添加物が加えてられていても良い。副次的添加剤の例としては、安定剤、酸化防止剤、顔料、着色剤、各種フィラー、静電剤、離型剤、可塑剤、香料、抗菌剤、核形成剤等その他の類似のものが挙げられる。
【0013】
本発明及び以下の実施例において、重合体の重量平均分子量(Mw)はGPC分析によるポリスチレン換算値である。MFRは、JIS−K7210熱可塑性プラスチックの流れ試験方法に準じて、荷重2.16kg、200℃にて行った。
【0014】
【実施例】
(比較例)
ポリL乳酸(島津製作所製「ラクティ」)を用い、重量平均分子量(Mw)、MFRの測定を行った。
【0015】
(実施例)
比較例にて使用したポリL乳酸(島津製作所製「ラクティ)を、120℃で3Hr真空乾燥し絶乾状態にした後、下記照射装置を用い所定の時間光線照射処理を行った。処理後のサンプルは、重量平均分子量(Mw)、MFRの測定を行った。
表1にUV照射試験結果を示す。
【0016】
日本電池製UV照射装置
条件:ランプ HAN500NL(高圧水銀ランプ)
温度 初期 20℃、照射後 120〜170℃
試験時間 2〜4min.
照射高さ 200、400mm
なお、前記ランプの分光エネルギー分布は、図1に示す通りで、400nm以下にピーク波長を有する。
【0017】
【表1】

Figure 0003706748
【0018】
表1より、UV照射により、分子量(Mw)及び多分散度(Mw/Mn)の増大が認められ、MFRの測定結果からも、流動性が低下しており、より高分子量のポリL乳酸が得られた。
【0019】
【発明の効果】
本発明によれば、ポリ乳酸の高分子量化に際し、着色や分解がなく、かつ短時間で成形に適した形態を有する高分子量のポリ乳酸を製造することができる。
【図面の簡単な説明】
【図1】本発明で使用したランプの分光エネルギー分布を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high molecular weight polylactic acid. The polylactic acid obtained by the present invention has a high molecular weight and takes various forms such as granular, pellet, and plate.
[0002]
[Prior art]
Polylactic acid has high biological safety, and lactic acid, which is a decomposition product, is absorbed in vivo. In this way, polylactic acid is a polymer compound with high biological safety, and it is also used for medical purposes such as surgical sutures, drug delivery (sustained release capsules), and reinforcing agents at the time of fracture, and decomposes in the natural environment. Therefore, it is also attracting attention as a degradable plastic. Moreover, it is used also for various uses, such as a uniaxial and biaxially stretched film, a fiber, and an injection molded product.
[0003]
Such polylactic acid can be produced by a direct method of directly dehydrating and condensing lactic acid to obtain a target product, synthesizing cyclic lactide (dimer) from lactic acid, and purifying it by a crystallization method and the like. There is a method of performing ring-opening polymerization. For example, Japanese Examined Patent Publication No. 56-14688 discloses that polylactic acid is produced by polymerizing two cyclic diesters as intermediates and using tin octylate and lauryl alcohol as catalysts. In order to facilitate handling in the molding process, the polylactic acid obtained in this way is preliminarily shaped into pellets such as spheres, cubes, cylinders, crushed particles, etc. Is done.
[0004]
[Problems to be solved by the invention]
However, the melting point of high molecular weight polylactic acid having a molecular weight of 100,000 to 500,000 is as high as 170 to 200 ° C. Conventionally, when the final polymer of such polylactic acid is taken out from the reactor in a molten state and heated above the melting point, The polylactic acid was decomposed and colored.
[0005]
Conventionally, it has been known that when polylactic acid is irradiated with sunlight and / or light having a continuous spectrum similar to it, the molecular weight is decreased due to decomposition or degradation. There is no report that lactic acid was obtained.
An object of the present invention is to produce a high molecular weight polylactic acid which has no coloration or decomposition and has a form suitable for molding in a short time when the polylactic acid has a high molecular weight.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors irradiate polylactic acid that has not yet reached a sufficiently high molecular weight in the polymerization process of polylactic acid with UV intensity of 120 mW / cm 2 or more and 400 nm or less. As a result, it was found that the polymerization reaction of polylactic acid was further advanced to obtain high molecular weight polylactic acid.
That is, the present invention is a method for producing a high molecular weight polylactic acid characterized by irradiating polylactic acid with ultraviolet rays having a UV intensity of 120 mW / cm 2 or more and 400 nm or less. Moreover, this invention is the polylactic acid polymer manufactured by the above-mentioned method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, polylactic acid is a polymer that is substantially composed only of monomer units derived from L-lactic acid and / or D-lactic acid. Here, “substantially” means that other monomer units not derived from L-lactic acid or D-lactic acid may be included as long as the effects of the present invention are not impaired.
When polylactic acid consists only of monomer units derived from L-lactic acid and / or D-lactic acid, the polymer is crystalline and has a high melting point. Moreover, by changing the ratio of monomer units derived from L-lactic acid and D-lactic acid (abbreviated as L / D ratio), the crystallinity and melting point can be freely adjusted, so that practical properties can be used according to the application. It is possible to control.
[0008]
In the production method of the present invention, first, the first stage polymerization reaction is performed to obtain polylactic acid having an average molecular weight of 10,000 to 200,000. As a method for producing the first-stage polylactic acid, any known polymerization method can be employed. Most representatively known is a method of ring-opening polymerization of lactide, which is an anhydrous cyclic dimer of lactic acid (lactide method), but lactic acid may be directly subjected to condensation polymerization.
Catalysts used for the first stage polymerization include tin compounds such as tin octylate, titanium compounds such as tetraisopropyl titanate, zirconium compounds such as zirconium isopropoxide, and antimony compounds such as antimony trioxide. A conventionally well-known catalyst is mentioned for the polymerization of lactic acid. Also, the molecular weight of the final polymer can be adjusted by the amount of catalyst added. The smaller the amount of catalyst, the slower the reaction rate, but the higher the molecular weight.
[0009]
For example, when the ring-opening polymerization is performed, the polymerization reaction uses 0.001 to 1 part by weight, preferably 0.01 to 0.5 part by weight of the catalyst with respect to the weight of the lactide, and the polymerization method and the amount of the catalyst are different. Usually, heat polymerization is performed for about 10 minutes to 20 hours. The reaction is preferably carried out in an inert gas atmosphere such as nitrogen.
[0010]
The polylactic acid obtained by such a method is irradiated with light from a light source that emits ultraviolet light having a wavelength of 400 nm or less, preferably 250 to 370 nm, so that the second-stage polymerization reaction proceeds. The reason why the wavelength is 400 nm or less is that no increase in molecular weight is observed in visible light of 400 nm or more.
Since the temperature at the time of irradiation is softened and deformed above the glass transition temperature of polylactic acid, caution is required when the shape needs to be maintained, but it is not limited otherwise. However, polylactic acid is accompanied by a decomposition reaction at a temperature of 200 ° C. or higher, and is preferably 150 ° C. or lower.
The light beam to be irradiated may be any light as long as it is light from a light source that emits ultraviolet light of 400 nm or less. However, when the irradiance is small, the decomposition / degradation reaction is dominant and has no effect. In the present invention, it is essential to use a light source having a large irradiance.
The light to be irradiated is light from a light source having an emission peak wavelength in a region of 200 to 1000 nm. Examples of the light source include a xenon lamp, a fluorescent lamp, a mercury lamp (high pressure mercury lamp, ultrahigh pressure mercury lamp), an ultraviolet metal halide lamp, and the like. Among these, in order to obtain a large irradiance, a high-pressure mercury lamp and an ultraviolet metal halide lamp are preferable.
If the emitted light of these light sources contains infrared rays, the heat generated by the infrared rays may cause decomposition or deformation of the polymer. Therefore, in order to prevent the heat generation, only ultraviolet rays are irradiated using a filter, or It is effective to irradiate while performing cooling such as air cooling or water cooling. In the case of a light source that emits ultraviolet rays in a wide wavelength range, in order to prevent unnecessary degradation reaction of the polymer, it is preferable to irradiate only ultraviolet rays having a required wavelength using a filter or the like.
[0011]
The irradiation time of light depends on the type of light source and the intensity of irradiation light, but for the examples shown in the examples of the present specification, irradiation for 2 to 3 minutes is sufficient. The irradiation intensity is 120 mW / cm 2 or more, preferably 120 to 300 mW / cm 2 . This is because if the UV intensity is lower than this value, no increase in molecular weight is observed even if the irradiation time is extended. The UV intensity is a value defined by a peak intensity value at a measurement wavelength of 300 to 390 nm.
[0012]
The polylactic acid used for the second stage polymerization in the present invention may contain a secondary additive for modification. Examples of secondary additives include stabilizers, antioxidants, pigments, colorants, various fillers, electrostatic agents, mold release agents, plasticizers, fragrances, antibacterial agents, nucleating agents, and other similar ones. Is mentioned.
[0013]
In the present invention and the following examples, the weight average molecular weight (Mw) of the polymer is a polystyrene equivalent value by GPC analysis. MFR was performed at a load of 2.16 kg and 200 ° C. according to the flow test method of JIS-K7210 thermoplastics.
[0014]
【Example】
(Comparative example)
Using poly-L lactic acid (“Lacty” manufactured by Shimadzu Corporation), the weight average molecular weight (Mw) and MFR were measured.
[0015]
(Example)
The poly-L lactic acid (“Lacty” manufactured by Shimadzu Corporation) used in the comparative example was vacuum dried at 120 ° C. for 3 hours, and then subjected to light irradiation treatment for a predetermined time using the following irradiation apparatus. The samples were measured for weight average molecular weight (Mw) and MFR.
Table 1 shows the UV irradiation test results.
[0016]
Nihon Battery UV irradiation equipment conditions: Lamp HAN500NL (high pressure mercury lamp)
Temperature Initial 20 ° C, 120-170 ° C after irradiation
Test time 2-4 min.
Irradiation height 200, 400mm
The spectral energy distribution of the lamp is as shown in FIG. 1, and has a peak wavelength of 400 nm or less.
[0017]
[Table 1]
Figure 0003706748
[0018]
From Table 1, increase in molecular weight (Mw) and polydispersity (Mw / Mn) is recognized by UV irradiation. From the measurement result of MFR, fluidity is reduced, and higher molecular weight poly L lactic acid is found. Obtained.
[0019]
【The invention's effect】
According to the present invention, high molecular weight polylactic acid having a form suitable for molding can be produced in a short time without coloring or decomposition when polylactic acid is made high molecular weight.
[Brief description of the drawings]
FIG. 1 is a diagram showing a spectral energy distribution of a lamp used in the present invention.

Claims (1)

ポリ乳酸に、UV強度120mW/cm以上で400nm以下の紫外線を照射する事を特徴とする高分子量ポリ乳酸の製造方法。A method for producing high molecular weight polylactic acid, comprising irradiating polylactic acid with ultraviolet rays having a UV intensity of 120 mW / cm 2 or more and 400 nm or less.
JP25427498A 1998-09-08 1998-09-08 Method for producing high molecular weight polylactic acid and polymer Expired - Fee Related JP3706748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25427498A JP3706748B2 (en) 1998-09-08 1998-09-08 Method for producing high molecular weight polylactic acid and polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25427498A JP3706748B2 (en) 1998-09-08 1998-09-08 Method for producing high molecular weight polylactic acid and polymer

Publications (2)

Publication Number Publication Date
JP2000086749A JP2000086749A (en) 2000-03-28
JP3706748B2 true JP3706748B2 (en) 2005-10-19

Family

ID=17262702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25427498A Expired - Fee Related JP3706748B2 (en) 1998-09-08 1998-09-08 Method for producing high molecular weight polylactic acid and polymer

Country Status (1)

Country Link
JP (1) JP3706748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920878B1 (en) 2002-01-07 2009-10-09 토요 보세키 가부시기가이샤 Easy-to-tear Stretched Aliphatic-Polyester Film

Also Published As

Publication number Publication date
JP2000086749A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
CN109982728B (en) Absorbent polymer blend compositions with enhanced nucleation rates
US4689424A (en) Radiation sterilizable absorbable polymeric materials and methods for manufacturing the same
AU2003239428B2 (en) High strength bioresorbables containing poly-glycolic acid
JP2714454B2 (en) Method for producing bioabsorbable polyester
JP5024694B2 (en) Radiation sterilizable medical material and its use
Loo et al. Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly (lactide-co-glycolide)(PLGA)
Avgoustakis Polylactic-co-glycolic acid (PLGA)
JPS5996123A (en) Production of high-molecular weight polylactide
CN103709691A (en) Biodegradable cross-linked polymer, and preparation method thereof
Phong et al. Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation
US6949254B2 (en) Bio-decomposable polymer composition showing good thermal decomposition
US4435590A (en) Radiation sterilizable absorbable polymeric materials and methods for manufacturing the same
JP3706748B2 (en) Method for producing high molecular weight polylactic acid and polymer
Macdougall et al. Degradable and Resorbable Polymers
JP7116169B2 (en) Lactic acid-glycolic acid copolymer and method for producing the same
CN101735409A (en) Modified polylactic acid material under low irradiation dose and preparation method thereof
EP3097134B1 (en) Biodegradable hydrogel with controlled lifetime and method of preparation thereof
CN112469550B (en) Absorbable copolymer compositions for high strength sutures with enhanced post-implantation strength retention
JPH10287733A (en) Production of crosslinked polycaprolactone
JP2008127406A (en) Method for synthesizing biodegradable polymer
JP3517858B2 (en) Polylactic acid production method
JP2850775B2 (en) Polylactic acid production method
JP3620304B2 (en) Copolymer of lactic acid polymer and method for producing the same
Leonard et al. Investigation into depth dependence of effect of E-beam radiation on mechanical and degradation properties of polylactide
JP3301221B2 (en) Polylactic acid production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20050412

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Effective date: 20050704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110805

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110805

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120805

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130805

LAPS Cancellation because of no payment of annual fees