JP3706400B2 - Method of forming gradient material - Google Patents

Method of forming gradient material Download PDF

Info

Publication number
JP3706400B2
JP3706400B2 JP19100194A JP19100194A JP3706400B2 JP 3706400 B2 JP3706400 B2 JP 3706400B2 JP 19100194 A JP19100194 A JP 19100194A JP 19100194 A JP19100194 A JP 19100194A JP 3706400 B2 JP3706400 B2 JP 3706400B2
Authority
JP
Japan
Prior art keywords
polymer
solvent
base polymer
gradient material
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19100194A
Other languages
Japanese (ja)
Other versions
JPH0825488A (en
Inventor
泰幸 上利
雅之 島田
明 上田
進 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Highpolymer Co Ltd
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP19100194A priority Critical patent/JP3706400B2/en
Publication of JPH0825488A publication Critical patent/JPH0825488A/en
Application granted granted Critical
Publication of JP3706400B2 publication Critical patent/JP3706400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【産業上の利用分野】
材質として好ましい機械的性質を有しているにも拘らず、その表面特性が不充分あるいは不完全であって、そのまま用いることが不可能である場合、その表面を他の材質により改質するケース、例えばラミネート、塗装、コーティング等の手段により耐候性、耐食性、耐摩耗性、帯電防止、平滑性、導電性など表面性質の改善が行なわれる。この表面改質の手段は材質の性能向上に極めて有効な手段であり、広く採用されている。しかし、通常のこの様な表面改質においては、躯体材質と表面材との間に界面が存在し、表面材の剥離や熱衝撃、機械的衝撃などによる接着強度の低下があり、界面の存在による問題が残っていた。本発明は、このような界面が存在しない高分子傾斜材料の新規な製造法に関する。
【0002】
【従来の技術】
導電性高分子材料の如き特殊な有機高分子複合材を除き、通常異なる高分子間の接合は熱融着か接着剤を塗布あるいは表面偏析法を採用することにより行われている。
また、従来の傾斜材料の形成方法としては、光ファイバーの製造方法に利用される方法として、
【0003】
(1)ファイバー状のマトリックス材料(基材高分子)の表層の屈折率が変更する様な重合性モノマーをマトリックス材料表層部分に濃度勾配がつく様に拡散させ、次いで該重合性モノマーをその場所において重合させることにより傾斜性を付与する方法;
【0004】
(2)反応性が異なる2種類の重合性モノマーを遠心力場の存在下で共重合を開始し、該混合溶液から析出する生成ポリマーを遠心力により移動させ、重合の進行とともに変化する共重合組成比を利用してポリマーに傾斜性を付与する方法;
【0005】
(3)屈折率などが異なる2種類のポリマーをブレンドし、ファイバー状に成形したのち、一方の材料が溶解するような溶剤に浸漬し、該溶解性材料を抽出することによって傾斜性を付与する方法;
【0006】
(4)一方のポリマー材料(基材高分子)と重合性モノマーの混合物をファイバー状に成形した後、ファイバー表面から該重合モノマーを揮発させ、ついで重合性モノマーを重合することにより傾斜性を付与する方法;
【0007】
などが開発されている。
また光ファイバー以外の有機高分子の傾斜材料の製造としては、一方のポリマーのゲル状体(基材高分子)に他の重合性モノマーを拡散した後に該重合性モノマーを重合させることにより傾斜材料を形成する方法などの提案がある。熱融着や接着剤を用いる2種のポリマーの接合は接着界面の生成が避けられず、界面接着強度に限界があり、また熱的衝撃や機械的衝撃を受けるときは、界面に応力が集中し、界面で破壊し易い。
また光ファイバーや他の傾斜材料の製造法においては、一方のポリマーに他の重合性モノマーを滲透させた状態で重合を行うのであるから極めて複雑な反応系となり、分子量の調節、残存モノマー量の調節などは極めて困難である。
【0008】
【発明が解決しようとする課題】
本発明は、夫々特定の分子量を有する2種以上のポリマーが接合した傾斜材料であって接合面を形成させずに、接合面の熱衝撃による形状保持性、引張剪断強度などの改善された傾斜材料の形成方法の開発を目的とする。
【0009】
【課題を解決するための手段】
本発明は、基材高分子及び積層高分子並びに溶媒における溶解度パラメーターの差が2.0以内であり、20℃における蒸発速度指数(酢酸ブチルを100とした指数)が1300以下である溶媒を用い、基材高分子上に積層高分子溶液を載せ、溶媒を蒸発させることを特徴とする傾斜材料の形成方法を開発することにより上記の目的を達成した。
【0010】
本発明の対象となる基材高分子、積層高分子は、モノマーの形でなく高分子であり、使用する溶媒との関係において、溶解度パラメーターの差が2.0以内であることを必要とするだけで特に制限されない。尚溶媒としては、これら基材高分子、積層高分子を共に溶解する必要があり、更に20℃における蒸発速度指数(酢酸ブチルを100とした指数)が1300以下である必要がある。
【0011】
例えば溶解度パラメーターとしてポリ塩化ビニル(19.6±0.3)、ポリメタクリル酸メチル(18.9±0.4)、トルエン(18.2)、テトラヒドロフラン(18.6)であり、この組合せでは使用可能である。
この場合、一般論としては溶媒として蒸発性が低い場合(蒸発速度指数が小さい。)は、基材高分子に対して貧溶媒が好ましいと考えられ、また蒸発性が大きい場合は基材高分子に対して良溶媒であることが好ましい。
【0012】
基材高分子がフィルム状であれば操作が容易であるが、必ずしもこの形態である必要はなく、基材高分子がゲル状などの高濃度溶液であっても溶媒の溶解性と蒸発性のバランスさえ良ければ、積層高分子溶液を基材高分子層へ混合しない様にゆるやかに注入するときは傾斜材料を形成することができる。積層高分子溶液が基材高分子に対し、あまりに多量であるときは全部の溶媒が蒸発するまで長時間を必要とすることになるため基材高分子を完全に溶解させてしまう危険がある。従って基材高分子の厚みにもよるがこれを完全に溶解する量よりは少ないこと、例えば一回当り基材高分子1cm2 当り10ml以下、好ましくは1ml以下程度の量とすることである。
【0013】
傾斜材料の形成温度は、使用する溶媒の種類によっても変るが、溶媒沸点の5℃以下より低い温度で行うことが好ましい。混合溶媒にあっては初めの中に低沸点溶媒が揮散してしまい、沸点が変るので一つの目安として考えればよい。
【0014】
この様にして形成された傾斜材料は、基材高分子層と積層高分子層の間に両者の濃度が徐々に変化した混合層が形成され、明確な界面が存在しない特長があり、このため表面層の剥離や熱衝撃による接着強度の低下などの問題が解決できた。
【0015】
【作用】
本発明は、基材高分子および積層高分子の選択の自由度が大きく、非常に広範囲の物性、特性に傾斜性を付与することが可能である。特に従来は固体の基材高分子に対し、積層高分子をモノマーの形で滲透せしめた後、重合させる形式をとっているので、分子量残存モノマー量の調節に困難があったが、本発明においては、積層高分子もポリマーの形で使用するためにこの問題は全く生じない。
更に基材高分子と積層高分子を相互に相溶性のある高分子を選ぶことにより、濃度が徐々に傾斜した分子オーダーで均一に混合した傾斜層を形成させることが可能であって、ガラス転移温度域の広い傾斜材料を安定して形成させることが可能となった。
【0016】
【実施例】
[実施例1〜4,比較例1〜2]
基材高分子としてポリ塩化ビニルフィルム(厚み;約100μm)、積層高分子溶液としてポリメタクリル酸メチルのテトラヒドロフラン(THF)/トルエン混合溶液(混合比5/1)(ポリマー濃度4.2%)を選んで、表 1に示す条件でポリ塩化ビニル/ポリメタクリル酸メチル系の傾斜材料(傾斜材料の厚み;約200μm)を作製した。
【0017】
さらに実施例4においては、第1段においてポリ塩化ビニルフィルム上にポリ塩化ビニル/ポリメタクリル酸メチルの混合比(重量)が7/3であるTHF/トルエン溶液を載せ、−且蒸発、乾燥し、次にここで得られたフィルム複合体にポリ塩化ビニル/ポリメタクリル酸メチルの混合比が5/5のTHF/トルエン溶液で処理し、さらに混合比が3/7のTHF/トルエン溶液、最後にポリメタクリル酸メチル単独のTHF/トルエン溶液を同様に載せて蒸発乾燥し傾斜材料を形成した。尚積層高分子濃度は同一であるが、一段法に対し、第1〜第3段は0.05ml、第4段のみ0.06ml、合計0.21mlとした。
【0018】
得られた傾斜材料のその表面から裏面への傾斜状態すなわち、ポリメタクリル酸メチルの濃度変化をFourier transform infraredSpectroscopy attenuated total reflectance法(FTIR−ATR法)によって調べるとほぼ直線的になり、実施例3が最も理想的な傾斜状態であった。また、比較例1(THF100%)はほぼ2層ラミネート系であった。比較例2はほぼ同質材料となった。
【0019】
この場合、積層高分子側から削ってその表面の赤外吸収をFTIR−ATR法により測定しているので、全体的にポリ塩化ビニル含有量が大きく測定される様である。特に比較例1では実験誤差として使用したポリ塩化ビニルフィルムより厚い基材高分子層が検出された。
【0020】
実施例4の場合、濃度変化は一段法と同様、タイプC(後述の物性値で差がある。)であった。
その作製した傾斜材料の特性を均一材料(比較例2)と2層材料(比較例1)と比較した(表2)。
傾斜材料の引張り強さ、引張り伸び、引張り弾性率のいずれも2層系に比べ大きく、両表面は2層材料と同一であるが、引張強度、引張弾性率に優れていることが分かった。
【0021】
また、傾斜材料のDMA特性において、tan δの半値幅の温度域は均一材料よりも非常に広く、防振材料として利用する場合、使用温度域を大きくできると考えられる。
さらに、界面強度について検討するため、低温の恒温槽中に30分間放置した後に、高温の恒温槽中に30分間放置することを5回繰り返すことによって(JIS C 0025)、熱衝撃を加えた後の物性について検討した。
【0022】
最大反り角度(θ)は、平滑なサンプルフィルム(12.5mm×25mm)に熱衝撃を加えた後、ポリ塩化ビニル側に反る角度を測定した。傾斜材料の最大反り角度は2層材料に比べ小さく、熱衝撃の影響を余り受けないものと考えられる。
【0023】
引張り剪断強度は、ポリ塩化ビニル板とポリメタクリル酸メチル板の部分を重ね部にサンプルをはさみ、溶剤接着した後、熱衝撃を加え、JIS K6850に準じ、引張り剪断試験を行なった。傾斜材料の引張り剪断接着強さは2層材料よりも著しく大きく、作製した傾斜材料の耐熱衝撃特性は非常に優れていることがわかった。
【0024】
【表1】

Figure 0003706400
【0025】
【表2】
Figure 0003706400
【0026】
【発明の効果】
本発明における傾斜材料の形成方法においては、従来法の如く、重合モノマーを用いていないため重合段階が不要であり、比較的簡便に特定した分子量の積層高分子量を有する傾斜材料を形成できる。
本発明においては、溶媒としては、基材高分子および積層高分子との溶解度パラメーターの差が2.0以内であること、この両者の高分子に対する共通な溶媒であることを必要とする点を除けば比較的自由度が大きく、非常に広範囲の物性、特性に傾斜性を付与することが可能であること、高分子溶液中への高分子の拡散状態とその停止時間を制御することにより、種々の濃度傾斜状態の比較的厚いシート状の傾斜材料を設計でき、連統製造工程にも適していること;2種類の高分子として相溶性の高分子対を選べば、分子オーダーで均一に混合しかつガラス転移温度域の広い傾斜材料を得ることができるという特徴がある。
【0027】
得られた傾斜材料は、その表面特性は基材高分子とは別の積層高分子の物性を有しているにも拘らず両高分子層間に界面が存在しないため剥離の心配は全くなく、又熱衝撃などの様に応力が界面に集中する様な場合においても問題はない。
【図面の簡単な説明】
【図1】FTIR−ATR法で求めた傾斜材料の濃度傾斜状態を示す。[0001]
[Industrial application fields]
A case where the surface is modified with another material when its surface characteristics are insufficient or incomplete and cannot be used as it is despite having favorable mechanical properties as a material. For example, surface properties such as weather resistance, corrosion resistance, wear resistance, antistatic properties, smoothness, and conductivity are improved by means such as lamination, painting, and coating. This surface modification means is an extremely effective means for improving the performance of the material and is widely adopted. However, in such normal surface modification, there is an interface between the casing material and the surface material, and there is a decrease in adhesive strength due to peeling of the surface material, thermal shock, mechanical impact, etc. Problem remained. The present invention relates to a novel method for producing a gradient polymer material having no such interface.
[0002]
[Prior art]
Except for special organic polymer composites such as conductive polymer materials, bonding between different polymers is usually performed by heat fusion, applying an adhesive, or adopting a surface segregation method.
In addition, as a method of forming a conventional gradient material, as a method used in a method of manufacturing an optical fiber,
[0003]
(1) A polymerizable monomer that changes the refractive index of the surface layer of the fiber-like matrix material (base polymer) is diffused so as to have a concentration gradient in the surface portion of the matrix material, and then the polymerizable monomer is placed in its place. A method of imparting gradient by polymerization in
[0004]
(2) Copolymerization of two types of polymerizable monomers with different reactivity, starting in the presence of a centrifugal force field, and moving the produced polymer precipitated from the mixed solution by centrifugal force, and changing as the polymerization proceeds A method of imparting a gradient to a polymer using a composition ratio;
[0005]
(3) After blending two types of polymers having different refractive indexes and forming into a fiber shape, the polymer is immersed in a solvent in which one of the materials dissolves, and the gradient is imparted by extracting the soluble material. Method;
[0006]
(4) After forming a mixture of one polymer material (base polymer) and a polymerizable monomer into a fiber shape, volatilizes the polymerized monomer from the fiber surface, and then polymerizes the polymerizable monomer to impart gradient. how to;
[0007]
Etc. are being developed.
In addition, as an organic polymer gradient material other than an optical fiber, the gradient material is obtained by polymerizing the polymerizable monomer after diffusing another polymerizable monomer into one polymer gel (base polymer). There are suggestions such as how to form. Bonding of two types of polymers using heat fusion and adhesives cannot avoid the formation of an adhesive interface, and there is a limit to the interfacial adhesive strength. When subjected to thermal or mechanical impact, stress is concentrated on the interface. And easy to break at the interface.
In addition, in the manufacturing method of optical fibers and other gradient materials, polymerization is performed in a state where one polymerizable polymer is infiltrated with another polymerizable monomer, resulting in an extremely complicated reaction system, and adjustment of molecular weight and adjustment of residual monomer amount. It is extremely difficult.
[0008]
[Problems to be solved by the invention]
The present invention is a gradient material in which two or more kinds of polymers each having a specific molecular weight are bonded to each other, and without forming a bonded surface, the gradient of the bonded surface with improved shape retention, tensile shear strength, and the like is improved. The purpose is to develop a material formation method.
[0009]
[Means for Solving the Problems]
The present invention uses a solvent in which the difference in solubility parameter between the base polymer and the laminated polymer and the solvent is 2.0 or less and the evaporation rate index at 20 ° C. (index with butyl acetate as 100) is 1300 or less. The above object has been achieved by developing a method of forming a gradient material characterized in that a laminated polymer solution is placed on a base polymer and the solvent is evaporated.
[0010]
The base polymer and laminated polymer that are the subject of the present invention are not in the form of monomers but are polymers, and the difference in solubility parameter is required to be within 2.0 in relation to the solvent used. Just not particularly limited. As the solvent, it is necessary to dissolve both the base polymer and the laminated polymer, and it is necessary that the evaporation rate index at 20 ° C. (index with butyl acetate as 100) is 1300 or less.
[0011]
For example, the solubility parameters are polyvinyl chloride (19.6 ± 0.3), polymethyl methacrylate (18.9 ± 0.4), toluene (18.2), tetrahydrofuran (18.6). It can be used.
In this case, as a general rule, when the evaporation property is low as a solvent (the evaporation rate index is small), it is considered that a poor solvent is preferable to the substrate polymer, and when the evaporation property is large, the substrate polymer Is preferably a good solvent.
[0012]
If the substrate polymer is in the form of a film, the operation is easy, but it is not always necessary to be in this form. Even if the substrate polymer is a gel-like high concentration solution, the solubility and evaporability of the solvent If the balance is good, a gradient material can be formed when the laminated polymer solution is slowly poured so as not to mix with the base polymer layer. If the amount of the laminated polymer solution is too large with respect to the base polymer, it takes a long time until all the solvent evaporates, so that there is a risk that the base polymer is completely dissolved. Therefore, although it depends on the thickness of the base polymer, it is less than the amount completely dissolved, for example, 10 ml or less, preferably 1 ml or less per 1 cm 2 of base polymer per one time.
[0013]
Although the temperature at which the gradient material is formed varies depending on the type of solvent used, it is preferably carried out at a temperature lower than the solvent boiling point of 5 ° C. or lower. In a mixed solvent, the low boiling point solvent volatilizes in the beginning, and the boiling point changes.
[0014]
The gradient material formed in this way is characterized in that a mixed layer in which the concentration of both gradually changes is formed between the base polymer layer and the laminated polymer layer, and there is no clear interface. Problems such as peeling of the surface layer and a decrease in adhesive strength due to thermal shock could be solved.
[0015]
[Action]
The present invention has a large degree of freedom in selecting a base polymer and a laminated polymer, and can impart a gradient to a very wide range of physical properties and characteristics. In particular, since the conventional method employs a method in which a laminated polymer is permeated in the form of a monomer and then polymerized with respect to a solid base polymer, it has been difficult to control the amount of residual molecular weight. This problem does not occur at all because the laminated polymer is also used in the form of a polymer.
Furthermore, by selecting a polymer that is compatible with the base polymer and the laminated polymer, it is possible to form a graded layer that is uniformly mixed in a molecular order with a gradually graded concentration. A gradient material with a wide temperature range can be formed stably.
[0016]
【Example】
[Examples 1-4 and Comparative Examples 1-2]
Polyvinyl chloride film (thickness: about 100 μm) as the base polymer, and a mixed solution of polymethyl methacrylate in tetrahydrofuran (THF) / toluene (mixing ratio 5/1) (polymer concentration 4.2%) as the laminated polymer solution. A polyvinyl chloride / polymethyl methacrylate-based gradient material (thickness of the gradient material; about 200 μm) was prepared under the conditions shown in Table 1.
[0017]
Furthermore, in Example 4, a THF / toluene solution having a polyvinyl chloride / polymethyl methacrylate mixing ratio (weight) of 7/3 was placed on the polyvinyl chloride film in the first stage, and then evaporated and dried. Next, the film composite obtained here was treated with a THF / toluene solution having a mixture ratio of polyvinyl chloride / polymethyl methacrylate of 5/5, and further a THF / toluene solution having a mixture ratio of 3/7. A THF / toluene solution of polymethyl methacrylate alone was placed in the same manner and evaporated to dryness to form a gradient material. Although the laminated polymer concentration was the same, the first to third stages were 0.05 ml, the fourth stage was 0.06 ml, and the total was 0.21 ml.
[0018]
When the gradient state of the obtained gradient material from the front surface to the back surface, that is, the change in the concentration of polymethyl methacrylate was examined by the Fourier transform infrared spectroscopic attached total reflection method (FTIR-ATR method), Example 3 was almost linear. It was the most ideal inclination state. Further, Comparative Example 1 (THF 100%) was almost a two-layer laminate system. Comparative Example 2 was almost the same material.
[0019]
In this case, since the infrared absorption of the surface is measured by the FTIR-ATR method by cutting from the laminated polymer side, the polyvinyl chloride content seems to be largely measured as a whole. In particular, in Comparative Example 1, a base polymer layer thicker than the polyvinyl chloride film used as an experimental error was detected.
[0020]
In the case of Example 4, the concentration change was type C (there is a difference in the physical property values described later) as in the one-step method.
The characteristics of the prepared gradient material were compared with a uniform material (Comparative Example 2) and a two-layer material (Comparative Example 1) (Table 2).
The tensile strength, tensile elongation, and tensile modulus of the gradient material were all greater than those of the two-layer system, and both surfaces were the same as the two-layer material, but it was found that the gradient material was excellent in tensile strength and tensile modulus.
[0021]
Further, in the DMA characteristics of the gradient material, the temperature range of the half width of tan δ is much wider than that of the uniform material, and it is considered that the use temperature range can be increased when it is used as a vibration isolating material.
Furthermore, in order to examine the interfacial strength, after leaving for 30 minutes in a low temperature thermostatic chamber and then for 30 minutes in a high temperature thermostatic chamber (JIS C 0025), after applying a thermal shock The physical properties of were examined.
[0022]
The maximum warpage angle (θ) was measured by applying a thermal shock to a smooth sample film (12.5 mm × 25 mm) and then warping the polyvinyl chloride side. It is considered that the maximum warp angle of the gradient material is smaller than that of the two-layer material and is not significantly affected by thermal shock.
[0023]
The tensile shear strength was determined by carrying out a tensile shear test in accordance with JIS K6850 by applying a thermal shock after sandwiching a sample between a portion of a polyvinyl chloride plate and a polymethyl methacrylate plate and adhering with a solvent. The tensile shear adhesive strength of the gradient material is significantly larger than that of the two-layer material, and it was found that the thermal shock resistance property of the prepared gradient material is very excellent.
[0024]
[Table 1]
Figure 0003706400
[0025]
[Table 2]
Figure 0003706400
[0026]
【The invention's effect】
In the method of forming a gradient material in the present invention, unlike the conventional method, since a polymerization monomer is not used, a polymerization step is unnecessary, and a gradient material having a laminated high molecular weight with a specified molecular weight can be formed relatively easily.
In the present invention, the solvent requires that the difference in solubility parameter between the base polymer and the laminated polymer is within 2.0, and that the solvent must be a common solvent for both polymers. Except for this, the degree of freedom is relatively large, and it is possible to impart gradients to a very wide range of physical properties and characteristics, by controlling the diffusion state of the polymer in the polymer solution and its stop time, It is possible to design a relatively thick sheet-like gradient material with various concentration gradients, and it is suitable for the continuous manufacturing process; if a compatible polymer pair is selected as two types of polymers, it is uniform on the molecular order. There is a feature that a gradient material which is mixed and has a wide glass transition temperature range can be obtained.
[0027]
Although the obtained gradient material has physical properties of a laminated polymer different from the base polymer in terms of surface characteristics, there is no fear of peeling because there is no interface between both polymer layers, There is no problem even when stress is concentrated at the interface, such as thermal shock.
[Brief description of the drawings]
FIG. 1 shows a concentration gradient state of a gradient material obtained by the FTIR-ATR method.

Claims (4)

基材高分子及び積層高分子並びに溶媒における溶解度パラメーターの差が2.0以内であり、20℃における蒸発速度指数(酢酸ブチルを100とした指数)が1300以下である溶媒を用い、基材高分子上に積層高分子溶液を載せ、溶媒を蒸発させることを特徴とする傾斜材料の形成方法。The difference in solubility parameter between the base polymer and the laminated polymer and the solvent is within 2.0, and a solvent whose evaporation rate index at 20 ° C. (index with butyl acetate as 100) is 1300 or less is used. A method for forming a gradient material, comprising placing a laminated polymer solution on a molecule and evaporating the solvent. 基材高分子及び積層高分子を溶解可能である20℃における蒸発速度指数(酢酸ブチルを100とした指数)が1300以下である溶媒の高分子溶液を、基材高分子1cm2 当り10ml以下用いる請求項1記載の傾斜材料の形成方法。A polymer solution of a solvent that can dissolve the base polymer and the laminated polymer and has an evaporation rate index at 20 ° C. (index based on butyl acetate of 100) of 1300 or less is 10 ml or less per 1 cm 2 of the base polymer. The method for forming a gradient material according to claim 1. 基材高分子面上に、基材高分子及び積層高分子を含む高分子溶液を載せ、各層毎に溶媒を蒸発させ、逐次積層して行くに際し、高分子溶液中の基材高分子濃度を高い方から低い方へ順次変化させて積層することからなる請求項1〜2記載の傾斜材料の形成方法。 When the polymer solution containing the base polymer and the laminated polymer is placed on the base polymer surface, the solvent is evaporated for each layer, and the layers are sequentially laminated, the base polymer concentration in the polymer solution is adjusted. The method for forming a gradient material according to claim 1, wherein the layers are laminated by changing in order from the higher one to the lower one . 基材高分子が高濃度の基材高分子溶液である請求項1記載の傾斜材料の形成方法。The method for forming a gradient material according to claim 1, wherein the base polymer is a high-concentration base polymer solution.
JP19100194A 1994-07-20 1994-07-20 Method of forming gradient material Expired - Fee Related JP3706400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19100194A JP3706400B2 (en) 1994-07-20 1994-07-20 Method of forming gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19100194A JP3706400B2 (en) 1994-07-20 1994-07-20 Method of forming gradient material

Publications (2)

Publication Number Publication Date
JPH0825488A JPH0825488A (en) 1996-01-30
JP3706400B2 true JP3706400B2 (en) 2005-10-12

Family

ID=16267220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19100194A Expired - Fee Related JP3706400B2 (en) 1994-07-20 1994-07-20 Method of forming gradient material

Country Status (1)

Country Link
JP (1) JP3706400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845713B2 (en) * 2002-05-28 2006-11-15 大阪市 Polylactic acid molded body
JP6296951B2 (en) * 2014-09-25 2018-03-20 富士フイルム株式会社 Laminated film, infusion bag and method for producing laminated film

Also Published As

Publication number Publication date
JPH0825488A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
US5665450A (en) Optically transparent composite material and process for preparing same
CN100470270C (en) Composition for liquid crystal film formation, optically anisotropic film and process for producing them
Kryszewski Gradient polymers and copolymers
US9884944B2 (en) Remendable interfaces for polymer composites
Koberstein et al. Creating smart polymer surfaces with selective adhesion properties
Akovali et al. Gradient polymers by diffusion polymerization
Weaver et al. Preparation and properties of optically transparent, pressure‐cured poly (methacrylate) composites
Yokoyama et al. Surface structure of asymmetric fluorinated block copolymers
Lipatov et al. Gradient interpenetrating polymer networks
JP3706400B2 (en) Method of forming gradient material
Dutta et al. Blends containing liquid crystalline polymers: Preparation and properties of melt‐drawn fibers, unidirectional prepregs, and composite laminates
Nishimori et al. Alternating copolymers of vinyl catechol or vinyl phenol with alkyl maleimide for adhesive and water-repellent coating materials
US20060172157A1 (en) Method for producing retardation film, and retardation film
Senshu et al. Relationship between Morphology of Microphase-Separated Structure and Phase Restructuring at the Surface of Poly [2-hydroxyethyl methacrylate-b lock-4-(7 ‘-octenyl) styrene] Diblock Copolymers Corresponding to Environmental Change
US5905554A (en) Non-birefringent optical adhesives and films
CN110506229B (en) Light transmittance control film and composition for light transmittance control film
EP2486070B1 (en) Increase in the toughness of a material achieved by means of a curable composition including at least one vinyl ester monomer
CA2078948A1 (en) Composite composition having high transparency and process for producing same
US5894050A (en) Method of manufacturing an optical component
Hou et al. IM7/LARCTM-ITPI polyimide composites
CN1529186A (en) High-luminousness optical lens and making method thereof
JP3477381B2 (en) Method of controlling refractive index of optical polymer material by fluorination
JPH11508632A (en) Laminating by photography
Cho et al. Interphase sizing temperature effect of LaRC PETI-5 on the dynamic mechanical thermal properties of carbon fiber/BMI composites
JP2001247774A (en) Polymer alloy and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees