JP3706396B2 - Windmill wing - Google Patents

Windmill wing Download PDF

Info

Publication number
JP3706396B2
JP3706396B2 JP09958694A JP9958694A JP3706396B2 JP 3706396 B2 JP3706396 B2 JP 3706396B2 JP 09958694 A JP09958694 A JP 09958694A JP 9958694 A JP9958694 A JP 9958694A JP 3706396 B2 JP3706396 B2 JP 3706396B2
Authority
JP
Japan
Prior art keywords
blade
bearing
wind turbine
rotor head
connecting shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09958694A
Other languages
Japanese (ja)
Other versions
JPH07310645A (en
Inventor
修一 鳥羽
雄二 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09958694A priority Critical patent/JP3706396B2/en
Publication of JPH07310645A publication Critical patent/JPH07310645A/en
Application granted granted Critical
Publication of JP3706396B2 publication Critical patent/JP3706396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、風力発電などに適用される風車における風車翼に関する。
【0002】
【従来の技術】
図2は風力発電などに使用されている従来の風車における風車翼の説明図である。図において、従来の風車翼においては翼部3fとロータヘッド3とが深溝型の玉軸受3a、連結軸3b、翼ガイド3cなどにより連結されており、玉軸受3aによる転がりラジアルスラスト軸受機構及び翼ガイド3cによる滑りラジアル軸受3d機構により連結軸3bを支えている。通常、風車翼の連結軸3bにはロータヘッド3の回転により生ずる遠心力による玉軸受3aスラスト方向の荷重、翼部3fに作用する空気力(風速及び風向の変化による変動成分を含む)および翼部3f自重による滑りラジアル軸受3dラジアル方向の荷重、翼部3fに作用する空気力(風速及び風向の変化による変動成分を含む)および翼自重による曲げモーメントなどが作用する。
【0003】
【発明が解決しようとする課題】
上記のように、従来の風車翼においては連結軸3bをラジアル方向の荷重を支える深溝型2点支持式の玉軸受3aと、翼ガイド3cと連結軸3bとの間の滑りラジアル軸受3dとの2ヶ所で支える構造になっており、翼部3fとロータヘッド3との連結部における構造が複雑になって重量も増加する。さらに、翼ガイド3cによる滑りラジアル軸受3d部は摩擦係数が大きいため、翼部3fを回転させてピッチを変えるのに必要なリンケージ機構3eに大きな負担が掛かる。
【0004】
【課題を解決するための手段】
本発明に係る風車翼は上記課題の解決を目的にしており、ロータヘッドにより翼部をピッチが可変に支持して回転させる風車翼において、ラジアル荷重とスラスト荷重とを同時に支持可能な旋回輪軸受を介して上記翼部を支持し、上記ロータヘッドと上記旋回輪軸受の外輪とをボルトにより結合すると共に、上記旋回輪軸受の内輪と上記翼部の連結軸及び駆動部と結合された上記ロータヘッド側のプレートとをボルトにより結合した構成を特徴とする。
【0005】
【作用】
即ち、本発明に係る風車翼においては、ロータヘッドにより翼部をピッチが可変に支持して回転させる風車翼における翼部がラジアル荷重とスラスト荷重とを同時に支持可能な旋回輪軸受を介して支持され、上記ロータヘッドと上記旋回輪軸受の外輪とをボルトにより結合すると共に、上記旋回輪軸受の内輪と上記翼部の連結軸及び駆動部と結合された上記ロータヘッド側のプレートとをボルトにより結合するようになっており、ラジアル荷重とスラスト荷重とを同時に支持可能な旋回輪軸受を介して翼部を支持することにより従来の風車翼における翼ガイドを省略することができる。従って、翼ガイドによる滑り軸受も廃されることにより翼部を回転させてピッチを変える際の摩擦係数が小さくなる。
【0006】
【実施例】
図1は本発明の一実施例に係る風車翼の説明図である。図において、本実施例に係る風車翼は風力発電などに使用される風車におけるもので、従来の風車翼における深溝型の玉軸受に代えてラジアル方向の荷重とスラスト方向の荷重とを同時に支えることができる4点支持式の旋回輪軸受1を用い、併せて翼ガイドによる滑りラジアル軸受を廃しており、重量が軽減されるとともに翼部6を回転させてピッチを変える際の摩擦係数が小さくなり、ピッチを変えるのに必要なリンケージ機構部の負担が軽くなり、小型化が可能になっている。即ち、図に示すようにロータヘッド3と4点支持式の旋回輪軸受1の外輪11とをボルトにより結合し、旋回輪軸受1の内輪12と翼部6の連結軸2及びロータヘッド3側のプレート5とをボルトにより結合している。ロータヘッド3側のプレート5は駆動部4と結合されており、駆動部4で発生する回転駆動力が連結軸2、翼部6へ伝達されて翼部6のピッチ変更がスムーズに行われる構造になっている。この旋回輪軸受1は翼部6の重量及びロータヘッド3の回転により発生する遠心力やモーメントなどに対して十分な強度を有する。旋回輪軸受1は潤滑用のグリースが漏れ出た場合でも十分に滑めらかな旋回が可能で焼付き防止効果が得られるように玉型を用いているが、コロ型でもよい。また、旋回輪軸受1内の玉は外輪11と内輪12に刻設されている溝状の玉ガイドと円弧11a,11b,12a,12bの4ヶ所でほぼ線接触をして内輪12に掛かる荷重を支えている。このように4点支持が可能になるのは、翼部6を回転させてピッチを変える際の旋回速度が遅いので、高速回転軸用などの軸受と比較して摩擦等を考慮する必要が無いからである。
【0007】
従来の風車翼においては連結軸をラジアル方向の荷重を支える深溝型2点支持式の玉軸受と、翼ガイドと連結軸との間の滑りラジアル軸受との2ヶ所で支える構造になっており、翼部とロータヘッドとの連結部における構造が複雑になって重量も増加する。さらに、翼ガイドによる滑りラジアル軸受部は摩擦係数が大きいため、翼部を回転させてピッチを変えるのに必要なリンケージ機構に大きな負担が掛かるが、本風車翼においてはロータヘッド3と翼部6の連結軸2との連結部にラジアル方向の荷重とスラスト方向の荷重とを同時に支持することができる4点支持式の旋回輪軸受1を用い、この旋回輪軸受1の内輪12と翼部6の連結軸2と翼部6ピッチの駆動部4とを一体化し、旋回輪軸受1の外輪11とロータヘッド3とを一体化してロータヘッド3が回転中でも自由に翼部6を旋回させて翼部6のピッチを変更することができる構造をしており、ラジアル方向の荷重とスラスト方向の荷重とを同時に支えることのできる旋回輪軸受1を使用することにより翼部6の連結軸2とロータヘッド3との連結部の構造が簡単になって従来の風車翼における翼ガイドを省略することができ、翼ガイドを省略した分だけ重量が軽減される。さらに、翼部6のピッチを変える際の回転は旋回輪軸受1内の玉の転がりのみにより、従来の滑りラジアル軸受との併用の場合と比較すると摩擦係数が小さくなるので、駆動部4におけるリンケージ機構の負荷が小さくなっている。また、本風車翼においては例えば重さ約400kgの翼ガイドを省略することができ、旋回輪軸受1の使用により強度が増加するので約30kgの玉軸受から約150kgの旋回輪軸受1に替わるが、連結部1ヶ所につき約280kgの重量が軽減する。通常風車は翼部6が3本であるので、全体で約840kgの重量が軽減される。また、従来の風車翼における連結軸と軸ガイドとの間の滑りラジアル軸受における摩擦係数は約0.1であるが、玉型の旋回輪軸受1のみの構造では摩擦係数が約0.01となり、翼部6を回転させてピッチを変える駆動部4及びそのリンケージ機構の負荷が著しく軽減される。
【0008】
【発明の効果】
本発明に係る風車翼は前記のように構成されており、従来の風車翼における翼ガイドを省略することができるので、翼部とロータヘッドとの連結部における構造が簡単になって重量が軽減する。また、翼部を回転させてピッチを変える際の摩擦係数が小さくなるので、翼部のピッチを変える駆動部およびリンケージ機構に掛かる負担が軽減する。
【図面の簡単な説明】
【図1】図1(a)は本発明の一実施例に係る風車翼における連結軸の断面図、同図(b)はその旋回輪軸受の断面図である。
【図2】図2(a)は従来の風車におけるロータヘッドの断面図、同図(b)はその連結軸の断面図である。
【符号の説明】
1 旋回輪軸受
2 翼部の連結軸
3 ロータヘッド
4 駆動部
5 駆動側のプレート
6 翼部
[0001]
[Industrial application fields]
The present invention relates to a wind turbine blade in a wind turbine applied to wind power generation or the like.
[0002]
[Prior art]
FIG. 2 is an explanatory diagram of wind turbine blades in a conventional wind turbine used for wind power generation and the like. In the figure, in a conventional wind turbine blade, a blade portion 3f and a rotor head 3 are connected by a deep groove type ball bearing 3a, a connecting shaft 3b, a blade guide 3c, and the like, and a rolling radial thrust bearing mechanism and a blade by the ball bearing 3a. The connecting shaft 3b is supported by a sliding radial bearing 3d mechanism by the guide 3c. Normally, the connecting shaft 3b of the wind turbine blade has a ball bearing 3a load in the thrust direction due to the centrifugal force generated by the rotation of the rotor head 3, aerodynamic force acting on the blade portion 3f (including fluctuation components due to changes in wind speed and wind direction), and blades. The load in the radial direction of the sliding radial bearing 3d due to the weight of the portion 3f, the aerodynamic force (including fluctuation components due to changes in the wind speed and the wind direction) acting on the blade portion 3f, the bending moment due to the blade's own weight, and the like act.
[0003]
[Problems to be solved by the invention]
As described above, in the conventional wind turbine blade, the deep groove type two-point support ball bearing 3a that supports the load on the connecting shaft 3b in the radial direction, and the sliding radial bearing 3d between the blade guide 3c and the connecting shaft 3b. The structure is supported at two locations, and the structure of the connecting portion between the wing portion 3f and the rotor head 3 becomes complicated and the weight increases. Further, since the sliding radial bearing 3d portion by the blade guide 3c has a large friction coefficient, a large burden is imposed on the linkage mechanism 3e necessary for rotating the blade portion 3f to change the pitch.
[0004]
[Means for Solving the Problems]
A wind turbine blade according to the present invention aims to solve the above-mentioned problem, and in a wind turbine blade rotating a blade portion with a variable pitch supported by a rotor head, a slewing ring bearing capable of simultaneously supporting a radial load and a thrust load. The rotor that supports the wing portion via the bolt and connects the rotor head and the outer ring of the slewing ring bearing with bolts, and is connected to the inner ring of the slewing ring bearing, the connecting shaft of the wing part, and the drive unit. It is characterized by a structure in which the head side plate is coupled with a bolt .
[0005]
[Action]
In other words, in the wind turbine blade according to the present invention, the blade portion in the wind turbine blade that rotates the blade portion with the rotor head being supported by the rotor head is supported via the swivel ring bearing capable of supporting the radial load and the thrust load at the same time. The rotor head and the outer ring of the slewing ring bearing are coupled by a bolt, and the inner ring of the slewing ring bearing and the plate on the rotor head side coupled to the connecting shaft and the drive unit of the wing part are coupled by a bolt. It has become so that to bond, it is possible to omit the wing guide in a conventional wind turbine blade by supporting the wings through the simultaneously supportable slewing ring bearing a radial load and thrust load. Accordingly, since the sliding bearing by the blade guide is also eliminated, the friction coefficient when the pitch is changed by rotating the blade portion is reduced.
[0006]
【Example】
FIG. 1 is an explanatory view of a wind turbine blade according to an embodiment of the present invention. In the figure, the wind turbine blade according to the present embodiment is a wind turbine used for wind power generation or the like, and supports a radial load and a thrust load at the same time instead of the deep groove type ball bearing in the conventional wind turbine blade. The four-point support type slewing ring bearing 1 that can be used and the sliding radial bearing by the blade guide are also abolished, and the weight is reduced and the friction coefficient when the pitch is changed by rotating the blade portion 6 is reduced. The burden of the linkage mechanism necessary for changing the pitch is reduced, and the size can be reduced. That is, as shown in the figure, the rotor head 3 and the outer ring 11 of the four-point support type slewing ring bearing 1 are coupled by bolts, and the inner ring 12 of the slewing ring bearing 1 and the connecting shaft 2 of the blade 6 and the rotor head 3 side. The plate 5 is connected with bolts. The plate 5 on the rotor head 3 side is coupled to the drive unit 4, and the rotational driving force generated by the drive unit 4 is transmitted to the connecting shaft 2 and the blade unit 6 so that the pitch of the blade unit 6 can be changed smoothly. It has become. This slewing ring bearing 1 has sufficient strength against the weight of the blade 6 and the centrifugal force and moment generated by the rotation of the rotor head 3. The slewing ring bearing 1 uses a ball shape so that a sufficiently smooth slewing can be performed even if the lubricating grease leaks out and an anti-seizure effect can be obtained, but a roller type may also be used. Further, the ball in the slewing ring bearing 1 is in contact with the groove-shaped ball guides engraved on the outer ring 11 and the inner ring 12 at four points of the arcs 11a, 11b, 12a and 12b, and the load applied to the inner ring 12 Is supporting. The four-point support is possible in this way because the turning speed when the pitch is changed by rotating the wings 6 is slow, so there is no need to consider friction or the like compared to a bearing for a high-speed rotating shaft or the like. Because.
[0007]
In conventional wind turbine blades, the connecting shaft is supported at two locations: a deep groove type two-point support ball bearing that supports the load in the radial direction, and a sliding radial bearing between the blade guide and the connecting shaft. The structure of the connecting portion between the wing portion and the rotor head becomes complicated and the weight increases. Furthermore, since the sliding radial bearing portion by the blade guide has a large coefficient of friction, a large burden is imposed on the linkage mechanism necessary to change the pitch by rotating the blade portion. However, in this wind turbine blade, the rotor head 3 and the blade portion 6 are used. A four-point support type slewing ring bearing 1 capable of supporting a radial load and a thrust direction load at the same time at a connecting part with the connecting shaft 2 is used. The connecting shaft 2 and the driving portion 4 having a pitch of the blade portion 6 are integrated, and the outer ring 11 and the rotor head 3 of the swivel ring bearing 1 are integrated to freely rotate the blade portion 6 while the rotor head 3 is rotating. The pitch of the portion 6 can be changed, and by using the slewing ring bearing 1 that can simultaneously support a radial load and a thrust load, the connecting shaft 2 and the rotor head of the wing portion 6 can be used. 3 and the structure of the connecting portion becomes easy can be omitted wing guide in a conventional wind turbine blade in a weight amount corresponding to the omitted wing guide can be reduced. Further, since the rotation when changing the pitch of the blade portion 6 is only the rolling of the balls in the slewing ring bearing 1, the friction coefficient is smaller than that in the case of the combined use with the conventional sliding radial bearing. The load on the mechanism is small. Further, in the wind turbine blade, for example, a blade guide having a weight of about 400 kg can be omitted, and the strength is increased by using the slewing ring bearing 1, so that the ball bearing of about 30 kg is replaced with the slewing ring bearing 1 of about 150 kg. The weight of about 280kg per connection part is reduced. Since the normal windmill has three wings 6, the weight of the whole is reduced by about 840 kg. In addition, the friction coefficient in the sliding radial bearing between the connecting shaft and the shaft guide in the conventional wind turbine blade is about 0.1, but in the structure of the ball-shaped slewing ring bearing 1 alone, the friction coefficient is about 0.01. The load on the drive unit 4 and its linkage mechanism that change the pitch by rotating the wing unit 6 is significantly reduced.
[0008]
【The invention's effect】
The wind turbine blade according to the present invention is configured as described above, and since the blade guide in the conventional wind turbine blade can be omitted, the structure at the connecting portion between the blade portion and the rotor head is simplified and the weight is reduced. To do. Further, since the friction coefficient when changing the pitch by rotating the wing portion is reduced, the burden on the drive unit and the linkage mechanism for changing the pitch of the wing portion is reduced.
[Brief description of the drawings]
FIG. 1A is a sectional view of a connecting shaft in a wind turbine blade according to an embodiment of the present invention, and FIG.
2A is a cross-sectional view of a rotor head in a conventional wind turbine, and FIG. 2B is a cross-sectional view of a connecting shaft thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 slewing ring bearing 2 connecting shaft 3 of wing | blade part 3 rotor head 4 drive part 5 drive side plate 6 wing part

Claims (1)

ロータヘッドにより翼部をピッチが可変に支持して回転させる風車翼において、ラジアル荷重とスラスト荷重とを同時に支持可能な旋回輪軸受を介して上記翼部を支持し、上記ロータヘッドと上記旋回輪軸受の外輪とをボルトにより結合すると共に、上記旋回輪軸受の内輪と上記翼部の連結軸及び駆動部と結合された上記ロータヘッド側のプレートとをボルトにより結合したことを特徴とする風車翼。In a wind turbine blade that rotates while supporting a blade portion with a variable pitch supported by a rotor head, the blade portion is supported via a swirl ring bearing capable of simultaneously supporting a radial load and a thrust load. A wind turbine characterized in that an outer ring of a bearing is coupled with a bolt, and an inner ring of the slewing ring bearing is coupled with a plate on the rotor head side coupled with a connecting shaft and a drive unit of the wing portion by a bolt. Wings.
JP09958694A 1994-05-13 1994-05-13 Windmill wing Expired - Lifetime JP3706396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09958694A JP3706396B2 (en) 1994-05-13 1994-05-13 Windmill wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09958694A JP3706396B2 (en) 1994-05-13 1994-05-13 Windmill wing

Publications (2)

Publication Number Publication Date
JPH07310645A JPH07310645A (en) 1995-11-28
JP3706396B2 true JP3706396B2 (en) 2005-10-12

Family

ID=14251207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09958694A Expired - Lifetime JP3706396B2 (en) 1994-05-13 1994-05-13 Windmill wing

Country Status (1)

Country Link
JP (1) JP3706396B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533642B2 (en) * 2004-02-20 2010-09-01 三菱重工業株式会社 Winding wheel bearing structure for windmill
US7927019B2 (en) 2005-05-31 2011-04-19 Mitsubishi Heavy Industries Ltd. Slewing bearing structure
CN101858313B (en) * 2010-06-10 2012-05-30 北京京冶轧机轴承制造有限公司 Wind generating set and variable blade bearing thereof
JP2013076441A (en) * 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd Turning ring bearing structure for wind turbine, and method for replacing turning ring bearing structure for wind turbine

Also Published As

Publication number Publication date
JPH07310645A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
KR100750826B1 (en) Bearing for an adjustable rotor blade on a wind energy plant
US20100140948A1 (en) Wind turbine and method of assembling the same
CN102869570B (en) Counterweight-based device for controlling the orientation of fan blades of a turboprop engine
JP2000039000A5 (en)
US10197093B2 (en) Bearing arrangement
JP3706396B2 (en) Windmill wing
JPH0158769B2 (en)
JP2003201951A (en) Excessive rotation avoiding mechanism of horizontal axis wind mill
CN206972433U (en) Wind generating set pitch control device and wind power generating set
CN201809085U (en) Tower crane driven by air power to rotate
CN201339542Y (en) Active pitch-controlled wind-powered generator
CN113320686B (en) Propeller active pitch-changing mechanism
CN2379639Y (en) Bearing with rolling contact
EP3249219B1 (en) Wind turbine bearings
CN213064043U (en) Shafting structure and compressor
CN210599282U (en) Wind driven generator with breeze starting function
CN214465584U (en) Embedded combined air bearing
JPS6354144B2 (en)
JP2545711B2 (en) Joint mechanism
EP3922850B1 (en) Yaw bearings for a wind turbine
CN212667655U (en) A three rotor heads of lightweight heavy load for unmanned aerial vehicle
CN210531054U (en) Novel vertical axis wind turbine
CN211391663U (en) Rotor wing variable-pitch connecting rod and synchronizer
CN2532304Y (en) Gear miniature speed booster with oblong shape casing
JPH0121185Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term