JP3705462B2 - Manufacturing method of gear with excellent tooth surface strength - Google Patents

Manufacturing method of gear with excellent tooth surface strength Download PDF

Info

Publication number
JP3705462B2
JP3705462B2 JP20599997A JP20599997A JP3705462B2 JP 3705462 B2 JP3705462 B2 JP 3705462B2 JP 20599997 A JP20599997 A JP 20599997A JP 20599997 A JP20599997 A JP 20599997A JP 3705462 B2 JP3705462 B2 JP 3705462B2
Authority
JP
Japan
Prior art keywords
depth
amount
gear
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20599997A
Other languages
Japanese (ja)
Other versions
JPH1151155A (en
Inventor
辺 陽 一 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20599997A priority Critical patent/JP3705462B2/en
Publication of JPH1151155A publication Critical patent/JPH1151155A/en
Application granted granted Critical
Publication of JP3705462B2 publication Critical patent/JP3705462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車,産業機械,農業機械等々の各種機械構造物において用いられる機械要素のうち歯車として利用される歯面強度に優れた歯車の製造方法に関するものである。
【0002】
【従来の技術】
この種の歯車においては、歯面での耐ピッティング性,耐摩耗性(あるいは、耐スコーリング性)に優れていることが要求されるが、このような歯面での耐ピッティング性,耐摩耗性(あるいは、耐スコーリング性)を向上させる場合には、浸炭焼入れや浸炭窒化焼入れなどの表面硬化処理を施すことによって、表面硬さを上昇させたり、硬化深さを増大させたりする方法が広く採用されている。
【0003】
そして、このような表面硬化処理を施した場合に、表面からの深さとC量およびN量との関係は、例えば、図2に示すように、最表面のC量(0.7〜0.9重量%)は深さ方向に次第に減少するものとなっており、また、最表面のN量(0.1〜0.3重量%)は深さ方向に急激に減少するものとなっていた。
【0004】
そこで、近年では、歯車に対する面圧負荷がさらに増大する傾向にあり、その対策として、焼入れ性の良くない異常組織を低減するために、含クロム鋼を浸炭処理し、浸炭処理後に温度を若干降下させて引続き窒化処理に移行するようにしたり、窒化処理前に再加熱処理するようにした特開昭62−33755号公報(特公平7−13293号公報)および特開昭62−33757号公報(特公平7−13294号公報)に記載された方法や、浸炭窒化処理により生成させた残留オーステナイトを加工硬化させて負荷能力を向上させるようにした特開昭49−10124号公報(特公昭54−17699号公報)に記載された方法などが考えられた。
【0005】
【発明が解決しようとする課題】
しかしながら、面圧負荷はさらに高まる傾向となっており、接触表面において従来以上の発熱(例えば、300℃以上の発熱)を伴う場合もみられるようになっており、このような場合には、従来のごとき異常組織の低減や残留オーステナイトの加工硬化による活用だけでは、耐ピッティング性,耐摩耗性(あるいは、耐スコーリング性)の向上に対しては十分でないという問題点があり、このような問題点を解決することが課題としてあった。
【0006】
【発明の目的】
本発明は、このような従来の課題に着目してなされたものであって、歯面における耐ピッティング性,耐摩耗性(あるいは、耐スコーリング性)がさらに向上した歯面強度に優れた歯車の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明者は、面圧負荷がさらに高まり、接触表面において従来以上の発熱(例えば、300℃以上の発熱)を伴う場合もみられるようになってきていることにかんがみ、このような場合においても耐ピッティング性,耐摩耗性(あるいは、耐スコーリング性)をより一層十分なものとするためには、300℃前後においても軟化のしにくい表面硬化層を形成させることが有効であることを見い出し、窒素をさらに活用した浸炭窒化に着目し、この際、焼き戻し軟化抵抗の向上に有効な窒素の深さ方向の最適分布を求めると共に、このような最適分布が得られる熱処理方法を開発して本発明に至ったものである。
【0008】
すなわち、本発明に係わる歯面強度に優れた歯車の製造方法は、請求項1に記載しているように、機械構造用はだ焼鋼を素材とし、最表面のC量が0.5重量%以上0.9重量%以下であり且つ最表面のN量が0.3重量%以上0.8重量%以下であって、N量をC量並みとすると共に、Nの侵入深さが、硬さHv550が得られる深さである有効硬化深さの少なくとも80%の深さにまで達している表面硬化組織を有する歯車の製造方法であって、機械構造用はだ焼鋼からなる歯車素材に対し800℃以上950℃以下の温度で浸炭処理と同時に浸窒処理を行ったのち冷却し、さらに800℃以上930℃以下のオーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れすることにより、表面硬化組織が、CのみでなくNをも固溶した緻密なマルテンサイト組織からなっていることを特徴としている。
【0014】
【発明の作用】
本発明に係わる歯面強度に優れた歯車の製造方法において、その素材としては、S09CK,S15CK,S20CK等の機械構造用炭素はだ焼鋼や、SNC415,SNC815等のニッケル・クロム系,SNCM220,SNCM415,SNCM420,SNCM616,SNCM815等のニッケル・クロム・モリブデン系,SCr415,SCr420等のクロム系,SCM415,SCM418,SCM420,SCM421,SCM822等のクロム・モリブデン系,SMn420,SMnC420等のマンガンおよびマンガン・クロム系などの機械構造用合金はだ焼鋼が使用される。
【0015】
この場合、クロムを含有する機械構造用はだ焼鋼においては、Cr含有量が0.3〜3.0重量%であるものを用いることがより望ましく、Crはこの種のはだ焼鋼において焼入れ性の向上に寄与する作用を有していることから、このような作用を得るために0.3重量%以上とすることが望ましいが、多すぎると靭性を低下させることとなるので3.0重量%以下とすることが望ましい。
【0016】
また、バナジウムを含有する機械構造用はだ焼鋼においては、V含有量が0.1〜0.5重量%であるものを用いることがより望ましく、Vはこの種のはだ焼鋼において靭性を向上させる作用を有していることから、このような作用を得るために0.1重量%以上とすることが望ましいが、多すぎても効果の向上はみられずかえって靭性を低下させることとなるので0.5重量%以下とすることが望ましい。
【0017】
そして、このほか、C,Si,Mn,P,S,Ni,Mo等についてもこの種のはだ焼鋼に適する範囲とすることが望ましいことはいうまでもない。
【0018】
また、その他、結晶粒微細化作用があるAl,Ti,Zr,Nb,N等を含有させたり、被削性向上作用があるPb,S,Ca,Se,Te,Bi等を含有させたりしたものであってもよい。
【0019】
そして、このような機械構造用はだ焼鋼を用いて、塑性加工や切削加工などを行うことによって歯車素材に加工したあと、この歯車素材に対し浸炭処理と同時に浸窒処理を行ったのち冷却し、さらにオーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れすることによって、本発明に係わる歯面強度に優れた歯車を製造する。
【0020】
さらに説明すれば、歯車素材に対し浸炭処理と同時に浸窒処理を行ったのち冷却するに際しては、例えば、800℃以上950℃以下の温度で浸炭処理と同時に浸炭処理を行ったのち冷却する。
【0021】
また、冷却後オーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れするに際しては、冷却後800℃以上930℃以下のオーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れする。
【0022】
このようにして、例えば図1に示すように、最表面のC量が0.5重量%以上0.9重量%以下であり且つ最表面のN量が0.3重量%以上0.8重量%以下であって、N量をC量並みとすると共に、Nの侵入深さが、硬さHv550が得られる深さである有効硬化深さの少なくとも80%の深さにまで達している表面硬化組織を有し、且つこの表面硬化組織が、CのみでなくNをも固溶した緻密なマルテンサイト組織からなっている歯面強度に優れた歯車を得る。
【0025】
本発明による歯車の製造方法では、表層部におけるN量をC量並みとすると共に、Nが硬さHv550が得られる有効硬化深さの80%以上の深さまで侵入しているものとなっているため、接触面圧が高くかつ滑り率が大きく変動するような負荷の場合においても、優れた耐ピッティング性および耐摩耗性(あるいは、耐スコーリング性)を有するものとなる。
【0026】
また、製造に際して再加熱焼入れを行っているため、N量が多いにもかかわらず残留オーステナイト(γ)量が比較的少なく、硬さの低下が小さいことも特徴のひとつである。
【0027】
さらに、表面硬化組織は、CのみでなくNをも固溶させたマルテンサイト組織であって、組織が緻密であるため、クラックの進展抵抗が大であり、高寿命化に有利なものとなっている。
【0028】
【発明の効果】
本発明による歯面強度に優れた歯車の製造方法によれば、機械構造用はだ焼鋼を素材とし、最表面のC量が0.5重量%以上0.9重量%以下であり且つ最表面のN量が0.3重量%以上0.8重量%以下であって、N量をC量並みとすると共に、Nの侵入深さが、硬さHv550が得られる深さである有効硬化深さの少なくとも80%の深さにまで達している表面硬化組織を有する歯車を得ることができ、接触面圧が高くかつ滑り率が大きく変動するような負荷においても優れた耐ピッティング性および耐摩耗性を有し、歯面強度に優れたものにできると共に、再加熱焼入れを行っているため、N量が多いにもかかわらず残留オーステナイト量が少なく、硬さ低下が小さい長寿命の歯車を製造することが可能であるという著大なる効果がもたらされる。
【0030】
また、表面硬化組織は、CのみでなくNをも固溶した緻密なマルテンサイト組織からなっているものとすることによって、クラックの進展抵抗が大きく、高寿命化に有利である歯面強度に優れた歯車を提供することが可能であるという著大なる効果がもたらされる。
【0033】
【実施例】
(実施例1)
表1に示す鋼を素材とし、920℃で60分間保持後冷却する焼ならしを行い、さらに、図4(a)に示すような中央太径部の直径が26mm,中央太径部の長さが28mm,両側細径部の直径がともに22mm,全長が130mmのローラーピッティング試験用試験片Sを機械加工により製作すると共に、図5に示すような直径が70mm,厚さが10mmのピンオンディスク摩耗試験用円盤試験片Sを機械加工により製作した。
【0034】
次いで、図3に示す温度−時間説明図において、温度T=900℃,時間t=240分,雰囲気ガスN,N=6体積%NHガス,雰囲気カーボンポテンシャルC.P.=1.1の条件、および、温度T=840℃,時間t=100分,雰囲気ガスN,N=8体積%NHガス,雰囲気カーボンポテンシャルC.P.=0.95の条件による浸炭処理と浸窒処理とを同時に行ったのち、空冷(A.C.)した。
【0035】
続いて、各試験片S,Sを温度T=850℃にまで再加熱してオーステナイト化し、時間t=150分,雰囲気ガスN=8体積%NHガスによる浸窒処理を再度行ったのち、温度180℃のソルト浴中に浸漬する焼入れ(S.Q.)を行った。
【0036】
そして、各試験片S,Sの最表面のC量,最表面のN量,Nの侵入深さ、有効硬化深さ,有効硬化深さに対するNの侵入深さを調べたところ、同じく表1に示す結果であった。
【0037】
さらに、図4(a)に示したローラーピッティング試験用試験片Sを用いて、図4(b)に示すような直径が130mm,厚さが18mmのローラー(SCr420鋼の浸炭焼入れ品)Rを相手材とし、接触圧力:3.7GPa,すべり率:−40%、潤滑油温度:80℃の条件によるローラーピッティング試験を行って、ピッティング寿命を調べたところ、同じく表1に示す結果であった。
【0038】
さらにまた、図5に示した円盤試験片Sを用いて、同じく図5に示すような本体部の直径が8mm,本体部先端の半径が100mmR,鍔部の直径が12mmのピン(SK3の熱処理品)Pを相手材として、接触圧力:150MPa,摺動速度:0.28m/sの条件によるピンオンディスク摩耗試験を行って摩耗深さを調べたところ、同じく表1に示す結果であった。
【0039】
なお、表1の比較例1は浸炭処理のみを行った場合を示し、比較例2は従来の浸炭窒化焼入れを行った場合を示し、比較例3は過剰な浸窒処理を行った場合を示しており、これらの場合についても同様の評価試験を行った。
【0040】
【表1】

Figure 0003705462
【0041】
表1に示すように、発明例1〜4ではいずれもピッティング寿命が長く、摩耗深さは小さいものとなっていた。
【0042】
これに対して、比較例1〜3ではピッティング寿命が短く、摩耗深さは大きいものとなっていた。
【0043】
(実施例2)
表2に示す鋼を素材とし、920℃で60分間保持後冷却する焼ならしを行い、さらに、図4(a)に示すような中央太径部の直径が26mm,中央太径部の長さが28mm,両側細径部の直径がともに22mm,全長が130mmのローラーピッティング試験用試験片Sを機械加工により製作すると共に、図5に示すような直径が70mm,厚さが10mmのピンオンディスク摩耗試験用円盤試験片Sを機械加工により製作した。
【0044】
次いで、図3に示す温度−時間説明図において、温度T,時間t,雰囲気ガスN,Nがそれぞれ表2に示す条件でかつ雰囲気カーボンポテンシャルC.P.が1.1の条件、および、温度T,時間t,雰囲気ガスN,Nがそれぞれ表2に示す条件でかつ雰囲気カーボンポテンシャルC.P.が0.95の条件による浸炭処理と浸窒処理とを同時に行ったのち、空冷(A.C.)した。
【0045】
続いて、各試験片S,Sを再加熱してオーステナイト化し、温度T,時間t,雰囲気ガスNがそれぞれ表2に示す条件による浸窒処理を再度行ったのち、温度180℃のソルト浴中に浸漬する焼入れ(S.Q.)を行った。
【0046】
そして、各試験片S,Sの最表面のC量,最表面のN量,Nの侵入深さ、有効硬化深さ,有効硬化深さに対するNの侵入深さを調べたところ、表3に示す結果であった。
【0047】
さらに、図4(a)に示したローラーピッティング試験用試験片Sを用いて、図4(b)に示すような直径が130mm,厚さが18mmのローラー(SCr420鋼の浸炭焼入れ品)Rを相手材とし、接触圧力:3.7GPa,すべり率:−40%、潤滑油温度:80℃の条件によるローラーピッティング試験を行って、ピッティング寿命を調べたところ、同じく表3に示す結果であった。
【0048】
さらにまた、図5に示した円盤試験片Sを用いて、同じく図5に示すような本体部の直径が8mm,本体部先端の半径が100mmR,鍔部の直径が12mmのピン(SK3の熱処理品)Pを相手材として、接触圧力:150MPa,摺動速度:0.28m/sの条件によるピンオンディスク摩耗試験を行って摩耗深さを調べたところ、同じく表3に示す結果であった。
【0049】
なお、表1の比較例11は浸炭・浸窒温度を低くかつ再浸窒温度を高くして行った場合を示し、比較例12,13は浸炭・浸窒温度を高くかつ再浸窒温度を低くして行った場合を示しており、これらの場合についても同様の評価試験を行ったところ、同じく表3に示す結果であった。
【0050】
【表2】
Figure 0003705462
【0051】
【表3】
Figure 0003705462
【0052】
表2,表3に示すように、発明例11〜13ではいずれもピッティング寿命が長く、摩耗深さは小さいものとなっていた。
【0053】
これに対して、比較例11〜13ではピッティング寿命が短く、摩耗深さは大きいものとなっていた。
【図面の簡単な説明】
【図1】 本発明による表面硬化組織を有する歯車における表面からの深さとC量およびN量との関係を概略的に示すグラフである。
【図2】 従来例による表面硬化組織を有する歯車における表面からの深さとC量およびN量との関係を概略的に示すグラフである。
【図3】 浸炭・浸窒処理および再浸窒処理条件を示す温度−時間説明図である。
【図4】 ローラーピッティング試験片の平面説明(図4(a))およびローラーピッティング試験要領を示す斜面説明図(図4(b))である。
【図5】 ピンオンディスク型摩耗試験要領を示す正面説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a gear excellent in tooth surface strength used as a gear among machine elements used in various machine structures such as automobiles, industrial machines, and agricultural machines.
[0002]
[Prior art]
This type of gear is required to have excellent pitting resistance and wear resistance (or scoring resistance) on the tooth surface. To improve wear resistance (or scoring resistance), surface hardening treatment such as carburizing quenching or carbonitriding quenching is performed to increase the surface hardness or increase the curing depth. The method is widely adopted.
[0003]
When such a surface hardening treatment is performed, the relationship between the depth from the surface, the C amount and the N amount is, for example, as shown in FIG. 9% by weight) gradually decreases in the depth direction, and the N amount (0.1 to 0.3% by weight) on the outermost surface decreases sharply in the depth direction. .
[0004]
Therefore, in recent years, the surface pressure load on the gear tends to further increase, and as a countermeasure, chrome-containing steel is carburized to reduce abnormal structures with poor hardenability, and the temperature is slightly lowered after carburizing. Thus, the nitriding treatment is continued, or the reheating treatment is carried out before the nitriding treatment, as disclosed in JP-A-62-33755 (JP-B-7-13293) and JP-A-62-33757 ( Japanese Patent Publication No. 7-13294 (Japanese Patent Publication No. 7-13294), and Japanese Patent Application Laid-Open No. 49-10124 (Japanese Patent Publication No. 54-) in which residual austenite produced by carbonitriding is work-hardened to improve load capacity. The method described in Japanese Patent No. 17699) was considered.
[0005]
[Problems to be solved by the invention]
However, the surface pressure load tends to increase further, and there is a case where the contact surface is accompanied by more heat generation than conventional (for example, heat generation of 300 ° C. or more). There is a problem that the reduction of abnormal structure and the utilization of residual austenite by work hardening are not sufficient for improving the pitting resistance and wear resistance (or scoring resistance). The problem was to solve the problem.
[0006]
OBJECT OF THE INVENTION
The present invention has been made by paying attention to such conventional problems, and has excellent tooth surface strength with further improved pitting resistance and wear resistance (or scoring resistance) on the tooth surface. It aims at providing the manufacturing method of a gearwheel.
[0007]
[Means for Solving the Problems]
In view of the fact that the surface pressure load is further increased and the contact surface has been accompanied by heat generation more than conventional (for example, heat generation of 300 ° C. or more), even in such a case, It has been found that it is effective to form a hardened surface layer that is difficult to soften even at around 300 ° C in order to further improve pitting and wear resistance (or scoring resistance). Focusing on carbonitriding that further utilizes nitrogen, we have developed an optimal distribution in the depth direction of nitrogen that is effective in improving temper softening resistance and developed a heat treatment method that can provide such an optimal distribution. The present invention has been achieved.
[0008]
That is, the manufacturing method of the gear excellent in the tooth surface strength according to the present invention is made of case-hardened steel for machine structure as described in claim 1, and the C amount of the outermost surface is 0.5 weight. % And 0.9% by weight or less, and the N amount on the outermost surface is 0.3% by weight or more and 0.8% by weight or less, the N amount is equal to the C amount, and the penetration depth of N is A method of manufacturing a gear having a surface-hardened structure that reaches a depth of at least 80% of an effective hardening depth, which is a depth at which a hardness Hv550 is obtained, and is a gear material made of case-hardened steel for mechanical structure On the other hand, after performing the nitriding treatment at the same time as the carburizing treatment at a temperature of 800 ° C. or more and 950 ° C. or less, cooling, and further reheating to an austenitizing temperature of 800 ° C. or more and 930 ° C. or less and performing the nitriding treatment again. By hardening, the hardened surface structure not only C but N Is characterized in that it consists of a solid solution was dense martensite.
[0014]
[Effects of the Invention]
In the manufacturing method of the gear excellent in tooth surface strength according to the present invention, as the material, carbon structural hardened steel such as S09CK, S15CK, S20CK, nickel-chromium such as SNC415, SNC815, SNCM220, SNCM415, SNCM420, SNCM616, SNCM815, etc. Nickel, Chrome, Molybdenum, etc., SCr415, SCr420, etc., Chrome, SCM415, SCM418, SCM420, SCM421, SCM421, SCM822, etc. Case-hardened steel is used for mechanical structural alloys such as steels.
[0015]
In this case, in the case-hardened steel containing chromium, it is more desirable to use a Cr content of 0.3 to 3.0% by weight, and Cr is used in this type of case-hardened steel. Since it has the effect | action which contributes to the improvement of hardenability, in order to acquire such an effect | action, it is desirable to set it as 0.3 weight% or more, but since too much will reduce toughness. It is desirable to make it 0% by weight or less.
[0016]
Further, in the case-hardening steel containing vanadium, it is more desirable to use a V content of 0.1 to 0.5% by weight, and V is toughness in this kind of case-hardening steel. In order to obtain such an action, it is desirable to make it 0.1% by weight or more, but even if it is too much, the effect is not improved and the toughness is lowered. Therefore, the content is preferably 0.5% by weight or less.
[0017]
In addition to this, it goes without saying that C, Si, Mn, P, S, Ni, Mo, and the like are also preferably in a range suitable for this type of case-hardened steel.
[0018]
In addition, Al, Ti, Zr, Nb, N, etc., which have a grain refinement effect, or Pb, S, Ca, Se, Te, Bi, etc., which have a machinability improving effect, are included. It may be a thing.
[0019]
Then, after machining into gear material by performing plastic working or cutting using such hardened steel for machine structure, this gear material is subjected to nitriding treatment at the same time as carburizing treatment and then cooled. Further, by reheating to the austenitizing temperature, performing nitriding again, and then quenching, a gear having excellent tooth surface strength according to the present invention is manufactured.
[0020]
More specifically, when the gear material is cooled after being subjected to the nitriding process at the same time as the carburizing process, the cooling is performed after the carburizing process is performed simultaneously with the carburizing process at a temperature of 800 ° C. or more and 950 ° C. or less.
[0021]
In addition, after quenching after reheating to the austenitizing temperature after cooling and then quenching, reheating to austenitizing temperature of 800 ° C. or more and 930 ° C. or less after cooling and again performing nitriding treatment Then quench.
[0022]
Thus, for example, as shown in FIG. 1, the C amount on the outermost surface is 0.5 wt% or more and 0.9 wt% or less, and the N amount on the outermost surface is 0.3 wt% or more and 0.8 wt% or less. %, And the amount of penetration of N reaches the depth of at least 80% of the effective hardening depth, which is the depth at which the hardness Hv550 is obtained. A gear having an excellent tooth surface strength is obtained which has a hardened structure and the surface hardened structure is formed of a dense martensite structure in which not only C but also N is dissolved.
[0025]
In the manufacturing method of the gear according to the present invention, the N amount in the surface layer portion is made equal to the C amount, and N penetrates to a depth of 80% or more of the effective hardening depth at which the hardness Hv550 is obtained. Therefore, even in the case of a load where the contact surface pressure is high and the slip rate greatly fluctuates, it has excellent pitting resistance and wear resistance (or scoring resistance).
[0026]
In addition, since reheating and quenching is performed at the time of manufacture, the amount of retained austenite (γ R ) is relatively small and the decrease in hardness is small despite the large amount of N.
[0027]
Furthermore, the surface hardened structure is a martensite structure in which not only C but also N is dissolved, and since the structure is dense, the resistance to crack growth is large, which is advantageous for extending the life. ing.
[0028]
【The invention's effect】
According to the method of manufacturing a gear having excellent tooth surface strength according to the present invention, the hardened steel for machine structure is used as a raw material, and the amount of C on the outermost surface is not less than 0.5% by weight and not more than 0.9% by weight. Effective hardening in which the amount of N on the surface is not less than 0.3% by weight and not more than 0.8% by weight, the amount of N is the same as the amount of C, and the penetration depth of N is the depth at which hardness Hv550 is obtained It is possible to obtain a gear having a hardened surface structure that reaches a depth of at least 80% of the depth, and excellent pitting resistance even under a load where the contact surface pressure is high and the slip ratio varies greatly. Long-life gear that has wear resistance and excellent tooth surface strength, and that is reheat-quenched, so that the amount of retained austenite is small despite the large amount of N and the hardness is small. The great effect that it is possible to produce Is et al.
[0030]
In addition, the hardened surface structure is made of a dense martensite structure in which not only C but also N is dissolved, so that the resistance to crack growth is large and the tooth surface strength is advantageous for extending the service life. The great effect is that it is possible to provide an excellent gear.
[0033]
【Example】
(Example 1)
The steel shown in Table 1 is used as a raw material, and normalizing is performed by holding at 920 ° C. for 60 minutes and then cooling. Further, the diameter of the central large diameter portion is 26 mm as shown in FIG. Saga 28mm, both side small-diameter portion of diameter are both 22 mm, with the overall length is produced by machining a roller pitting test specimen S 1 of 130 mm, a diameter as shown in FIG. 5 70 mm, thickness 10mm of the pin-on-disk wear test disc test piece S 2 was fabricated by machining.
[0034]
Next, in the temperature-time explanatory diagram shown in FIG. 3, the temperature T 1 = 900 ° C., the time t 1 = 240 minutes, the atmospheric gas N 1 , N 2 = 6 vol% NH 3 gas, the atmospheric carbon potential C.I. P. = 1.1, temperature T 2 = 840 ° C., time t 2 = 100 minutes, atmospheric gas N 1 , N 2 = 8 vol% NH 3 gas, atmospheric carbon potential C.I. P. = Carrying treatment and nitriding treatment under the condition of 0.95 were performed at the same time, followed by air cooling (AC).
[0035]
Subsequently, each test piece S 1 , S 2 is reheated to a temperature T 3 = 850 ° C. to austenite, and is subjected to a nitriding treatment with an atmosphere gas N 3 = 8 vol% NH 3 gas for a time t 3 = 150 minutes. After performing again, quenching (SQ) was performed by dipping in a salt bath at a temperature of 180 ° C.
[0036]
Then, C of each test piece S 1, S 2 on the outermost surface, N of the outermost surface, the penetration depth of the N, the effective hardening depth, were examined penetration depth of the N to the effective hardening depth, also The results are shown in Table 1.
[0037]
Furthermore, using a roller pitting test specimen S 1 shown in FIG. 4 (a), FIG. 4 the diameter as shown in (b) is 130 mm, a thickness of 18mm roller (SCr420 steel carburized products) A roller pitting test was conducted by using R as a counterpart material, contact pressure: 3.7 GPa, slip rate: -40%, lubricating oil temperature: 80 ° C., and the pitting life was examined. It was a result.
[0038]
Furthermore, by using the disc test piece S 2 shown in FIG. 5, like the diameter of the body portion as shown in FIG. 5 is 8 mm, the radius of the main body tip 100MmR, the diameter of the flange portion is 12mm pins (SK3 of Heat-treated product) When the wear depth was examined by conducting a pin-on-disk wear test under the conditions of contact pressure: 150 MPa and sliding speed: 0.28 m / s with P as the counterpart material, the results shown in Table 1 were also obtained. It was.
[0039]
In addition, the comparative example 1 of Table 1 shows the case where only the carburizing treatment is performed, the comparative example 2 shows the case where the conventional carbonitriding quenching is performed, and the comparative example 3 shows the case where the excessive nitriding treatment is performed. In these cases, the same evaluation test was conducted.
[0040]
[Table 1]
Figure 0003705462
[0041]
As shown in Table 1, in each of Invention Examples 1 to 4, the pitting life was long and the wear depth was small.
[0042]
In contrast, in Comparative Examples 1 to 3, the pitting life was short and the wear depth was large.
[0043]
(Example 2)
The steel shown in Table 2 is used as a raw material, and normalizing is performed by holding at 920 ° C. for 60 minutes and then cooling. Further, the diameter of the central large diameter portion is 26 mm as shown in FIG. Saga 28mm, both side small-diameter portion of diameter are both 22 mm, with the overall length is produced by machining a roller pitting test specimen S 1 of 130 mm, a diameter as shown in FIG. 5 70 mm, thickness 10mm of the pin-on-disk wear test disc test piece S 2 was fabricated by machining.
[0044]
Next, in the temperature-time explanatory diagram shown in FIG. 3, the temperature T 1 , the time t 1 , and the atmospheric gases N 1 and N 2 are the conditions shown in Table 2 and the atmospheric carbon potential C.I. P. Of the atmospheric carbon potential C., the conditions of the temperature T 2 , the time t 2 , the atmospheric gases N 1 and N 2 are the conditions shown in Table 2 and the atmospheric carbon potential C.I. P. Was subjected to carburizing treatment and nitriding treatment under the condition of 0.95 at the same time, followed by air cooling (AC).
[0045]
Subsequently, the test pieces S 1 and S 2 were reheated to austenite, and after the nitriding treatment was performed again under the conditions shown in Table 2 for the temperature T 3 , the time t 3 , and the atmosphere gas N 3 , the temperature 180 Quenching (SQ) was performed by immersion in a salt bath at 0 ° C.
[0046]
Then, C of each test piece S 1, S 2 on the outermost surface, N of the outermost surface, the penetration depth of the N, the effective hardening depth, were examined penetration depth of the N to the effective hardening depth, the table The result is shown in FIG.
[0047]
Furthermore, using a roller pitting test specimen S 1 shown in FIG. 4 (a), FIG. 4 the diameter as shown in (b) is 130 mm, a thickness of 18mm roller (SCr420 steel carburized products) A roller pitting test was conducted under the conditions of using R as a counterpart material, contact pressure: 3.7 GPa, slip ratio: -40%, lubricating oil temperature: 80 ° C., and the pitting life was examined. It was a result.
[0048]
Furthermore, by using the disc test piece S 2 shown in FIG. 5, like the diameter of the body portion as shown in FIG. 5 is 8 mm, the radius of the main body tip 100MmR, the diameter of the flange portion is 12mm pins (SK3 of Heat-treated product) When the wear depth was examined by performing a pin-on-disk wear test under the conditions of contact pressure: 150 MPa and sliding speed: 0.28 m / s using P as the counterpart material, the results shown in Table 3 were also obtained. It was.
[0049]
In addition, Comparative Example 11 in Table 1 shows a case where the carburizing / nitriding temperature is low and the renitriding temperature is high, and Comparative Examples 12 and 13 are a high carburizing / nitriding temperature and the renitriding temperature is high. The results are shown in Table 3 when the same evaluation test was performed for these cases.
[0050]
[Table 2]
Figure 0003705462
[0051]
[Table 3]
Figure 0003705462
[0052]
As shown in Tables 2 and 3, in each of Invention Examples 11 to 13, the pitting life was long and the wear depth was small.
[0053]
On the other hand, in Comparative Examples 11 to 13, the pitting life was short and the wear depth was large.
[Brief description of the drawings]
FIG. 1 is a graph schematically showing a relationship between a depth from a surface, a C amount, and an N amount in a gear having a surface hardened structure according to the present invention.
FIG. 2 is a graph schematically showing a relationship between a depth from a surface, a C amount, and an N amount in a gear having a hardened surface structure according to a conventional example.
FIG. 3 is a temperature-time explanatory diagram showing carburizing / nitrogenizing treatment and renitriding treatment conditions.
FIG. 4 is a plan view of a roller pitting test piece (FIG. 4 (a)) and a slope explanatory view (FIG. 4 (b)) showing a roller pitting test procedure.
FIG. 5 is an explanatory front view showing a pin-on-disk type abrasion test procedure.

Claims (1)

機械構造用はだ焼鋼を素材とし、最表面のC量が0.5重量%以上0.9重量%以下であり且つ最表面のN量が0.3重量%以上0.8重量%以下であって、N量をC量並みとすると共に、Nの侵入深さが、硬さHv550が得られる深さである有効硬化深さの少なくとも80%の深さにまで達している表面硬化組織を有する歯車を製造する方法であって、機械構造用はだ焼鋼からなる歯車素材に対し800℃以上950℃以下の温度で浸炭処理と同時に浸窒処理を行ったのち冷却し、さらに800℃以上930℃以下のオーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れすることにより、表面硬化組織が、CのみでなくNをも固溶した緻密なマルテンサイト組織からなっていることを特徴とする歯面強度に優れた歯車の製造方法。  Hardened steel for machine structures is used as the raw material, the amount of C on the outermost surface is 0.5% to 0.9% by weight, and the amount of N on the outermost surface is 0.3% to 0.8% by weight. And the surface hardening structure | tissue which has reached the depth of at least 80% of the effective hardening depth which is the depth by which N amount is made into the amount of C, and N penetration depth is the depth from which hardness Hv550 is obtained A gear material made of case-hardened steel for mechanical structure is cooled at a temperature of 800 ° C. to 950 ° C. and then subjected to a nitriding treatment at the same time as a carburizing treatment, and further to 800 ° C. By reheating to an austenitizing temperature of 930 ° C. or lower and performing nitriding again and then quenching, the surface hardened structure is composed of a dense martensite structure in which not only C but also N is dissolved. Gear with excellent tooth surface strength Manufacturing method.
JP20599997A 1997-07-31 1997-07-31 Manufacturing method of gear with excellent tooth surface strength Expired - Fee Related JP3705462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20599997A JP3705462B2 (en) 1997-07-31 1997-07-31 Manufacturing method of gear with excellent tooth surface strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20599997A JP3705462B2 (en) 1997-07-31 1997-07-31 Manufacturing method of gear with excellent tooth surface strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005162815A Division JP4193145B2 (en) 2005-06-02 2005-06-02 Manufacturing method of gear excellent in tooth surface strength and gear excellent in tooth surface strength

Publications (2)

Publication Number Publication Date
JPH1151155A JPH1151155A (en) 1999-02-23
JP3705462B2 true JP3705462B2 (en) 2005-10-12

Family

ID=16516241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20599997A Expired - Fee Related JP3705462B2 (en) 1997-07-31 1997-07-31 Manufacturing method of gear with excellent tooth surface strength

Country Status (1)

Country Link
JP (1) JP3705462B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482756B (en) * 2009-09-11 2014-09-24 新日铁住金株式会社 Process for production of carbonitrided member
JP6788817B2 (en) * 2015-10-14 2020-11-25 大同特殊鋼株式会社 Manufacturing method of vacuum carburized nitrided parts

Also Published As

Publication number Publication date
JPH1151155A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP4560141B2 (en) Surface hardening machine structural steel and machine structural steel parts
WO2006118243A1 (en) Carburized induction-hardened component
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP3787663B2 (en) Heat treatment method for rolling bearings
KR100208151B1 (en) Heating treatment for steel
JPWO2003056054A1 (en) Carburized and quenched member and manufacturing method thereof
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP3701036B2 (en) High strength gear
JP4193145B2 (en) Manufacturing method of gear excellent in tooth surface strength and gear excellent in tooth surface strength
JP3705462B2 (en) Manufacturing method of gear with excellent tooth surface strength
US8388767B2 (en) Carbonitriding low manganese medium carbon steel
JPH0853711A (en) Surface hardening treating method
JP2001140020A (en) Method for heat-treating carbo-nitriding treated member excellent in pitting resistance
JPH0643604B2 (en) Manufacturing method for machine structural parts
JPS5916948A (en) Soft-nitriding steel
JP2021006659A (en) Steel component and method for producing the same
JP3001946B2 (en) Method of carburizing and quenching steel members
JP3883782B2 (en) Case-hardened steel with excellent pitting resistance
JP3282654B2 (en) Carbonitriding and quenching method and rolling parts
JP3940322B2 (en) Manufacturing method of steel part for machine structure and steel part for machine structure
JP7310723B2 (en) Steel part and its manufacturing method
RU2052536C1 (en) Method for thermochemical treatment of steel products
JPH10204534A (en) Track bushing and its production
JP6881496B2 (en) Parts and their manufacturing methods
US7507303B2 (en) Carbonitrided low manganese carbon steel alloy driveline component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees