JP3705285B2 - Biomagnetic field measurement device - Google Patents

Biomagnetic field measurement device Download PDF

Info

Publication number
JP3705285B2
JP3705285B2 JP2003418909A JP2003418909A JP3705285B2 JP 3705285 B2 JP3705285 B2 JP 3705285B2 JP 2003418909 A JP2003418909 A JP 2003418909A JP 2003418909 A JP2003418909 A JP 2003418909A JP 3705285 B2 JP3705285 B2 JP 3705285B2
Authority
JP
Japan
Prior art keywords
magnetic field
measured
biomagnetic field
signal
biomagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003418909A
Other languages
Japanese (ja)
Other versions
JP2004081894A (en
Inventor
啓二 塚田
豪 宮下
明彦 神鳥
大介 鈴木
宏一 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003418909A priority Critical patent/JP3705285B2/en
Publication of JP2004081894A publication Critical patent/JP2004081894A/en
Application granted granted Critical
Publication of JP3705285B2 publication Critical patent/JP3705285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は,生体の脳の神経活動,心臓の心筋活動等により発生する生体磁場を,高感度な量子干渉素子(SQUID)からなる複数の磁束計を用いて計測する生体磁場計測方法及び生体磁場計測装置に関する。   The present invention relates to a biomagnetic field measurement method and a biomagnetic field that measure a biomagnetic field generated by neural activity of the brain of a living body, myocardial activity of the heart, and the like using a plurality of magnetic flux meters composed of highly sensitive quantum interference elements (SQUIDs) It relates to a measuring device.

従来,生体磁場計測の結果は,計測された磁場成分の時間変化波形,任意の時刻での磁場強度の等しい点を結ぶ等磁場線図により表示されていた。例えば,直交座標でのZ成分(B),又は,極座標での同径成分(B)を計測し,B又はBの値を等磁場線図として表示することことが知られている(H.Hosaka and D.Cohen,J.Electrocardiol.,9−4,426(1976))。また,直交座標ので接線成分(B,B)を計測し,各成分毎に等磁場線図として表示する,あるいは,√{(B,(B}により2次元磁場ベクトルを得て等磁場線図として表示することが知られている(K.Tukada et al.,Review of the Scientific Instruments,66,10(1995))。更に,法線成分Bを計測したのち,Bから接線成分(B,B)と等価的な磁場成分を解析的に求める方法が知られている(T.Miyashita et al.,Proceedings 20th International Conference IEEE/EMBS(Hong Kong),520−523(1998))。 Conventionally, the results of biomagnetic field measurements have been displayed as isomagnetic field diagrams connecting the time-varying waveforms of the measured magnetic field components and the points where the magnetic field strength is equal at an arbitrary time. For example, it is known to measure the Z component (B z ) in orthogonal coordinates or the same diameter component (B r ) in polar coordinates and display the value of B z or B r as an isomagnetic field diagram. (H. Hosaka and D. Cohen, J. Electrocardiol., 9-4, 426 (1976)). In addition, the tangential component (B x , B y ) is measured in orthogonal coordinates and displayed as an isomagnetic field diagram for each component, or a two-dimensional magnetic field is represented by √ {(B x ) 2 , (B y ) 2 }. It is known to obtain vectors and display them as isomagnetic field diagrams (K. Tukada et al., Review of the Scientific Instruments, 66, 10 (1995)). Furthermore, a method is known in which after normal component B z is measured, a magnetic field component equivalent to tangential component (B x , B y ) is analytically obtained from B z (T. Miyashita et al., Proceedings). 20th International Conference IEEE / EMBS (Hong Kong), 520-523 (1998)).

従来,生体磁場成分の解析結果は,磁場の時間波形と等磁場線図を用いて表示されていた。また,任意時刻での生体内の電流源の位置,大きさ,方向等は,逆問題を解き推定し,これらを用いて心臓に於ける不整脈の初期興奮位置や,脳に於ける癲癇の焦点位置等の推定に使用されていた。心臓の心筋の興奮伝播過程や
,脳での神経興奮伝播等のある時間帯での動的な現象を追跡するために,各時間毎の等磁場線図を多数く並べて表示したり,各時間毎に推定した電流源のベクトルの軌跡を一つの図に表示していた(N.Izumida et al.,Japanese Heart Journal,731−742(1998))。
H.Hosaka and D.Cohen,J.Electrocardiol.,9−4,426(1976) K.Tukada et al.,Review of the Scientific Instruments,66,10(1995) T.Miyashita et al.,Proceedings 20th International Conference IEEE N.Izumida et al.,Japanese Heart Journal,731−742(1998)
Conventionally, analysis results of biomagnetic field components have been displayed using magnetic field time waveforms and isomagnetic field diagrams. In addition, the position, size, direction, etc. of the current source in the living body at an arbitrary time are estimated by solving the inverse problem, and using these, the initial excitation position of the arrhythmia in the heart and the focus of the eyelid in the brain It was used for position estimation. In order to track dynamic phenomena in a certain time zone, such as the excitement propagation process of the heart's myocardium and nerve excitement propagation in the brain, many isomagnetic field diagrams for each hour are displayed side by side, The locus of the current source vector estimated every time was displayed in one figure (N. Izumida et al., Japan Heart Journal, 731-742 (1998)).
H. Hosaka and D.H. Cohen, J .; Electrocardiol. , 9-4, 426 (1976) K. Tukada et al. , Review of the Scientific Instruments, 66, 10 (1995) T.A. Miyashita et al. , Proceedings 20th International Conference IEEE N. Izumida et al. , Japan Heart Journal, 731-742 (1998).

多くの等磁場線図を並べて,パターン認識により心臓や脳の動的な興奮伝播を解析するのではなく,パターン認識によらず動的な興奮伝播を行なうための定量化されグラフ表示,図形表示が要求されていた。各瞬間毎に電流源を推定する方法では,電流源が局在している場合はダイポールモデルとして電流源は推定できるが,一般には,電流源は広がりを持って分布している時間帯の方が多い。また,各瞬間毎に於ける逆問題を解く場合,解が収束するまでに多くの演算が必要とされる。特に,推定した電流源が作る計算上の磁場分布と実際に計測された磁場分布との一致度が悪い場合には,電流源の推定値が悪くなってしまう。このため,ある時間帯での個々の瞬間毎で電流源を推定した場合,推定誤差が大きくなり,電流源の位置,大きさ,方向の時間変化の連続性が途切れた解析結果を与えるという問題があった。   Rather than arranging many isomagnetic field diagrams and analyzing dynamic excitation propagation of the heart and brain by pattern recognition, quantified graph display and graphic display for dynamic excitation propagation regardless of pattern recognition Was requested. In the method of estimating the current source at each moment, if the current source is localized, the current source can be estimated as a dipole model. However, in general, the current source is more widely distributed in the time zone. There are many. Moreover, when solving the inverse problem at each moment, many operations are required until the solution converges. In particular, when the degree of coincidence between the calculated magnetic field distribution created by the estimated current source and the actually measured magnetic field distribution is poor, the estimated value of the current source is degraded. For this reason, when the current source is estimated at each moment in a certain time zone, the estimation error becomes large, and an analysis result in which the continuity of the time change of the position, size, and direction of the current source is interrupted is given. was there.

本発明の目的は,ダイポール(磁場源)推定,多数の等磁場線図を表示することなく電気生理学的な興奮の伝播過程を定量化できる生体磁場計測方法及び生体磁場計測装置を提供することにある。   An object of the present invention is to provide a biomagnetic field measurement method and a biomagnetic field measurement apparatus capable of estimating the propagation process of electrophysiological excitation without displaying a dipole (magnetic field source) estimation and a large number of isomagnetic field diagrams. is there.

本発明では,生体磁場計測に於ける座標系として,直交座標系(x,y,z)(磁場成分をB,B,Bとする),極直交座標系(r,θ,φ)が用いられる。計測対象が心臓等である場合には,胸壁をxy平面とする直交座標系(x,y,z)が用いられる。計測対象が脳部等である場合には,頭部が球に近い形状であるため極直交座標系(r,θ,φ)(磁場成分をB,Bθ,Bφとする)が用いられる。頭部の体表面に垂直な磁場成分(法線成分)はB,Bで表わされ,生体の表面に接する面に平行な成分(接線成分)は,B,B,Bθ,Bφで表わされる。 In the present invention, as a coordinate system in biomagnetic field measurement, an orthogonal coordinate system (x, y, z) (magnetic field components are represented as B x , B y , B z ), a polar orthogonal coordinate system (r, θ, φ) ) Is used. When the measurement target is a heart or the like, an orthogonal coordinate system (x, y, z) with the chest wall as the xy plane is used. When the measurement target is the brain or the like, the head has a shape close to a sphere, so the polar orthogonal coordinate system (r, θ, φ) (the magnetic field components are B r , B θ , B φ ) is used. It is done. The magnetic field component (normal component) perpendicular to the body surface of the head is represented by B z and B r , and the component parallel to the surface in contact with the surface of the living body (tangential component) is B x , B y , B θ. , B φ .

以下の説明では,直交座標系(x,y,z)を例にとって説明するが,極直交座標系(r,θ,φ)を用いる場合には,BをBに,BをBにθ,BをBφにそれぞれ読み替えるものとする。 In the following description, the orthogonal coordinate system (x, y, z) will be described as an example. However, when the polar orthogonal coordinate system (r, θ, φ) is used, B z is set to B r and B x is set to B. to theta, to be replaced respectively B y in B phi.

本発明の生体磁場計測装置では,1組のセンサアレイを使用して,異なる多方向から生体磁場を計測する。この時,多方向から生体磁場の計測結果を解析するために,(1)各方向での生体磁場の計測と同時に,生体信号計測装置として,心電計,心音計,脈波計,脳波計等の何れかを使用し,心電波形,心音波形,脈波形,脳波形等の何れかの,生体磁場信号以外の周期的に発生する生体信号を,生体磁場の信号と対として計測して収集する,あるいは,(2)電気刺激装置により生体の一部を電気刺激して神経系を刺激する,音刺激装置により音を発生し聴覚神経系を刺激する,匂い刺激装置により匂いを発生し嗅覚神経系を刺激する,視覚刺激装置により光信号又は色信号を発生し視覚神経系を刺激する,触覚刺激装置により皮膚を刺激し触覚神経系を刺激する等の,何れかの刺激信号の印加の開始と同期する同期信号を,各方向での生体磁場の信号と対として収集する。   In the biomagnetic field measurement apparatus of the present invention, a biomagnetic field is measured from different directions using a set of sensor arrays. At this time, in order to analyze the measurement results of biomagnetic fields from multiple directions, (1) simultaneously with the measurement of biomagnetic fields in each direction, as a biosignal measurement device, an electrocardiograph, a heart sound meter, a pulse wave meter, an electroencephalograph Measure the biological signal generated periodically other than the biomagnetic field signal as a pair with the biomagnetic field signal, such as the electrocardiogram waveform, electrocardiogram, pulse waveform, brain waveform, etc. Or (2) Stimulate the nervous system by electrically stimulating a part of a living body with an electrical stimulator, generate sound with a sound stimulator and stimulate the auditory nervous system, generate odor with an odor stimulator Application of any stimulation signal, such as stimulating the olfactory nervous system, generating a light or color signal with a visual stimulator to stimulate the visual nervous system, or stimulating the skin with a tactile stimulator to stimulate the tactile nervous system A synchronization signal synchronized with the start of To the collection as a signal and a pair.

胸部から発する生体磁場(以下,心磁場という)を,例えば,胸面,背面の2方向から,又は,胸面,背面,胸部の右側面,及び左側面の4方向から計測する。勿論,これらの方向以外から胸部から発する生体磁場を計測しても良い。   A biomagnetic field emitted from the chest (hereinafter referred to as a cardiac magnetic field) is measured from, for example, two directions of the chest surface and back surface, or from four directions of the chest surface, back surface, right side surface of the chest, and left side surface. Of course, you may measure the biomagnetic field emitted from a chest other than these directions.

上記した何れかの刺激により頭部(脳)から発する生体磁場(以下,脳磁場という)を,例えば,頭部の前方,後方の2方向から,又は,頭部の前方,後方の頭部の右側方,及び左側方の4方向から,あるいは,頭部の前方,後方の頭部の右側方,及び左側方,頭頂方向からの5方向から計測する。勿論,これの方向以外から頭部から発する生体磁場を計測しても良い。   A biomagnetic field (hereinafter referred to as a brain magnetic field) generated from the head (brain) by any one of the above stimuli, for example, from two directions, the front and rear of the head, or the front and rear of the head Measure from four directions from the right and left sides, or from five directions from the right and left sides of the head at the front and rear of the head and from the top of the head. Of course, you may measure the biomagnetic field emitted from a head from other than this direction.

tを時間変数,直交座標系(x,y,z)に於いて,x,yをセンサアレイの個々のセンサが配置される座標位置,生体の表面に接する面に平行な面をxy面,生体の表面に接する面に垂直な軸をzとする。   t is a time variable, and in the Cartesian coordinate system (x, y, z), x and y are coordinate positions where the individual sensors of the sensor array are arranged, a plane parallel to the surface in contact with the surface of the living body, xy plane, Let z be the axis perpendicular to the surface in contact with the surface of the living body.

異なる多方向から計測された生体磁場波形に対して,各方向毎に以下の処理を行なう。周期的に発生する生体信号を,生体磁場の信号と対として計測して収集する場合には,時間変数をtとして,m=1,2,…,Mの複数方向から計測された生体信号の波形W(t)の時間軸が,共通の原点(t=0)を持つように,計測された各生体信号の波形W(t)(m=1,2,…,M)の時間軸に対して変換T(m=1,2,…,M)を行なう。生体信号W(t)と対をなす生体磁場の信号の波形F(m=1,2,…,M)の時間軸に対して変換T(m=1,2,…,M)変換を行なう。刺激信号の印加の開始に同期する同期信号を,生体磁場の信号と対として収集する場合には,m=1,2,…,Mの複数方向から計測された生体磁場の信号の波形F(m=1,2,…,M)の時間軸が
,上記の同期信号が収集された時点で共通の原点(t=0)を持つように,時間軸の変換T’(m=1,2,…,M)を行なう。上記の変換T,T’(m=1,2,…,M)は,時間軸の平行移動の変換である。
For biomagnetic field waveforms measured from different directions, the following processing is performed for each direction. When a biological signal generated periodically is measured and collected as a pair with a biomagnetic field signal, the biological signal measured from a plurality of directions m = 1, 2,. The time of the waveform W m (t) (m = 1, 2,..., M) of each measured biological signal so that the time axis of the waveform W m (t) has a common origin (t = 0). A transformation T m (m = 1, 2,..., M) is performed on the axis. Transform T m (m = 1, 2,..., M) with respect to the time axis of the waveform F m (m = 1, 2,..., M) of the biomagnetic field signal paired with the biological signal W m (t) Perform the conversion. When the synchronization signal synchronized with the start of application of the stimulation signal is collected as a pair with the biomagnetic field signal, the waveform Fm of the biomagnetic field signal measured from a plurality of directions of m = 1, 2 ,. The time axis conversion T m ′ (m = 1) so that the time axes of (m = 1, 2,..., M) have a common origin (t = 0) at the time when the synchronization signal is collected. , 2, ..., M). The above transformations T m , T m ′ (m = 1, 2,..., M) are transformations of parallel movement of the time axis.

共通の原点(t=0)を持つ,複数の各方向から計測された生体磁場(心磁場又は脳磁場)の信号の波形に対してそれぞれ,以下の演算処理を行なう。   The following arithmetic processing is performed for each of the waveforms of the biomagnetic field (cardiac magnetic field or brain magnetic field) measured from a plurality of directions having a common origin (t = 0).

生体磁場として,生体の表面に接する面に垂直な磁場成分B(x,y,t)を計測する場合には,垂直な磁場成分B(x,y,t)のx方向の変化量,∂B(x,y,t)/∂xと,B(x,y,t)のy方向の変化量,∂B(x,y,t)/∂yとを求め,(数1),(数2)により,2乗和の平方根,即ち,2次元磁場ベクトルI(x,y,t)の大きさ(以下,単に,ベクトル強度という)とその位相θ(x,y,t)を求める演算処理をそれぞれ行なう。 When measuring the magnetic field component B z (x, y, t) perpendicular to the surface in contact with the surface of the living body as the biomagnetic field, the amount of change in the x direction of the perpendicular magnetic field component B z (x, y, t) , ∂B z (x, y, t) / ∂x and the amount of change in the y direction of B z (x, y, t), ∂B z (x, y, t) / ∂y, According to the equations (1) and (2), the square root of the sum of squares, that is, the magnitude of the two-dimensional magnetic field vector I (x, y, t) (hereinafter simply referred to as vector intensity) and its phase θ (x, y , T) are respectively calculated.

I(x,y,t)=√{(∂B(x,y,t)/∂x)+(∂B(x,y,t)/∂y)} …(数1) I (x, y, t) = √ {(∂B z (x, y, t) / ∂x) 2 + (∂B z (x, y, t) / ∂y) 2 } (Equation 1)

θ(x,y,t)=−tan−1{(−∂B(x,y,t)/∂x)/(∂B(x,y,t)/∂y)} …(数2)
生体から発する磁場の接線成分(生体の表面に接する面に平行な成分)B,Bを計測する場合には,(数3),(数4)により,接線成分BとBの2
乗和の平方根からベクトル強度I(x,y,t)とその位相θ(x,y,t)を求める演算処理をそれぞれ行なう。
θ (x, y, t) = − tan −1 {(−∂B z (x, y, t) / ∂x) / (∂B z (x, y, t) / ∂y)} (number 2)
Tangential component of the magnetic field emanating from the living body (a component parallel to the surface in contact with the surface of the living body) B x, when measuring the B y is (number 3), the equation (4), the tangential components B x and B y 2
Arithmetic processing for obtaining the vector intensity I (x, y, t) and its phase θ (x, y, t) from the square root of the sum of multiplication is performed.

I(x,y,t)=√{(B(x,y,t))+(B(x,y,t))
…(数3)
I (x, y, t) = √ {(B x (x, y, t)) 2 + (B y (x, y, t)) 2 }
(Equation 3)

θ(x,y,t)=−tan−1{−B(x,y,t)/B(x,y,t)}
…(数4)
次に,計測された生体磁場(心磁場又は脳磁場)の各時間tに於ける最大ベクトル強度Imax(x,y,t)とその位相θ(x,y,t)を求める。時間tに於いて,センサのi番目のx座標位置,j番目のy座標位置に於いて,即ち,(i,j)チャネルに於いて,ベクトル強度I(x,y,t)が最大を与える。求められた各時間tに於ける最大ベクトル強度Imax(x,y,t)とその位相θ(x,y,t)を時間変数tに対して表示する。この表示を,時間−強度プロット(t−Imax),時間−位相プロット(t−θ)という。
θ (x, y, t) = − tan −1 {−B x (x, y, t) / B y (x, y, t)}
... (Equation 4)
Next, the maximum vector intensity I max (x i , y j , t) and the phase θ (x i , y j , t) at each time t of the measured biomagnetic field (cardiac magnetic field or brain magnetic field) are calculated. Ask. At time t, at the i-th x coordinate position of the sensor, the j-th y coordinate position, ie, in the (i, j) channel, the vector intensity I (x, y, t) is maximized. give. The maximum vector intensity I max (x i , y j , t) and the phase θ (x i , y j , t) at each time t obtained are displayed for the time variable t. This display is referred to as a time-intensity plot (t-I max ) and a time-phase plot (t-θ).

以上の結果,複数の各方向から計測され,共通の共通の時間原点(t=0)を持つ生体磁場(心磁場又は脳磁場)の信号の波形から,時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ)が得られる。この結果,生体磁場の各計測面毎に時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ)を比較表示できる。 As a result, a time-intensity plot (t-I max ) is obtained from a waveform of a biomagnetic field (cardiac magnetic field or brain magnetic field) signal measured from a plurality of directions and having a common common time origin (t = 0). , And a time-phase plot (t-θ). As a result, the time-intensity plot (t-I max ) and the time-phase plot (t-θ) can be compared and displayed for each measurement surface of the biomagnetic field.

また,複数の各方向から計測され,共通の共通の時間原点(t=0)を持つ生体磁場(心磁場又は脳磁場)の信号の波形から得られる,全てのセンサの位置(x,y),即ち,全チャネルに於ける,ベクトル強度I(x,y,t)とその位相θ(x,y,t)を同一の表示画面に表示することもできる。この表示を時間−位相・強度プロット(t−θ・I)という。この表示では,位相θ(x,y,t)を時間変数tに対してプロットし,ベクトル強度I(x,y,t)は,プロットする色,プロットする色の濃淡,又は,プロットする記号の大きさを,ベクトル強度I(x,y,t)に対応して変化させて表示する。 In addition, the positions (x i , y) of all sensors obtained from the waveform of the signal of the biomagnetic field (cardiac magnetic field or brain magnetic field) measured from a plurality of directions and having a common common time origin (t = 0). j ), that is, the vector intensity I (x, y, t) and its phase θ (x, y, t) in all channels can be displayed on the same display screen. This display is referred to as a time-phase / intensity plot (t-θ · I). In this display, the phase θ (x, y, t) is plotted against the time variable t, and the vector intensity I (x, y, t) is the plotted color, the shade of the plotted color, or the plotted symbol. Is changed in accordance with the vector intensity I (x, y, t) and displayed.

以上のようにして,ダイポール推定をすることなく,また,多数の等磁場線図を表示することなく,心磁場又は脳磁場を複数方向から計測することにより,電気生理学的な興奮の伝播過程を定量化して表示できる。   As described above, the electrophysiological excitation propagation process can be measured by measuring the cardiac magnetic field or the brain magnetic field from multiple directions without performing dipole estimation or displaying many isomagnetic field diagrams. Can be quantified and displayed.

本発明の生体磁場計測装置によれば,ベクトル強度とその位相を使用するので,逆問題を解いてダイポール(磁場源)推定することなく,また,多数の等磁場線図を表示することなく,電気生理学的な興奮の伝播過程を定量化でき,個人毎の疾患,異常を客観的,定量的に把握できる。   According to the biomagnetic field measurement apparatus of the present invention, since the vector intensity and its phase are used, without solving the inverse problem and estimating the dipole (magnetic field source), and without displaying many isomagnetic field diagrams, Electrophysiological excitement propagation process can be quantified, and individual diseases and abnormalities can be grasped objectively and quantitatively.

本発明の実施例の生体磁場計測装置では,複数のSQUID磁束計により生体から発生する生体磁場を計測する。この時,生体磁場以外の周期的に発生する生体信号を計測して収集する生体信号計測装置,あるいは,各種の神経系の何れかを刺激する刺激信号とこの刺激信号の印加の開始に同期する同期信号を発生する刺激装置を,使用する。   In the biomagnetic field measurement apparatus according to the embodiment of the present invention, a biomagnetic field generated from a living body is measured by a plurality of SQUID magnetometers. At this time, a biological signal measuring device that measures and collects biological signals generated periodically other than the biological magnetic field, or a stimulation signal that stimulates any of the various nervous systems and the start of application of this stimulation signal are synchronized. Use a stimulator that generates a synchronization signal.

複数方向から対として同時に計測され収集された生体磁場の信号及び生体信号,あるいは,刺激信号の印加の開始に同期する同期信号と対として,複数方向から計測され収集された生体磁場の信号は,演算処理装置により演算処理され,演算処理結果が表示装置に表示される。   Biomagnetic field signals and biosignals that are simultaneously measured and collected as pairs from multiple directions, or biomagnetic field signals that are measured and collected from multiple directions as a pair with a synchronization signal synchronized with the start of application of a stimulus signal, The arithmetic processing unit performs arithmetic processing, and the arithmetic processing result is displayed on the display device.

演算処理装置は,複数方向から計測され収集された生体磁場の信号が,共通原点(t=0)をもつように,生体磁場の信号の時間軸の平行移動を行なう時間軸変換を行ない,共通原点(t=0)をもつ生体磁場の信号に対して演算処理を行なう。   The arithmetic processing unit performs time axis conversion for translating the time axis of the biomagnetic field signal so that the biomagnetic field signals measured and collected from a plurality of directions have a common origin (t = 0). Arithmetic processing is performed on a biomagnetic field signal having an origin (t = 0).

生体信号計測装置を使用する場合には,時間軸変換は,時間変数をtとして,複数方向から計測された生体信号の波形の時間軸が共通原点(t=0)を持つように,各生体信号の波形の時間軸の変換を行なう,この時,生体信号と対をなす生体磁場の信号の波形の時間軸に対しても,同一の変換を行なう。刺激装置を使用する場合には,複数方向から計測された生体磁場の信号の時間軸が,同期信号が収集された時点で共通の原点(t=0)を持つように,時間軸変換が実行される。   When the biological signal measuring device is used, the time axis conversion is performed so that the time axis of the biological signal measured from a plurality of directions has a common origin (t = 0) with the time variable t. Conversion of the time axis of the signal waveform is performed. At this time, the same conversion is performed for the time axis of the waveform of the biomagnetic field signal paired with the biosignal. When using a stimulator, time axis conversion is performed so that the time axis of the biomagnetic field signal measured from multiple directions has a common origin (t = 0) when the synchronization signal is collected. Is done.

また,本発明の他の実施例では,演算処理装置は,共通原点(t=0)をもつ生体磁場(心磁場又は脳磁場)の信号を用いて,生体の表面に接する面に垂直な方向をz方向,z方向に直交し生体の表面に接する面に水平な方向をx方向及びy方向とし,生体磁場の各計測点(x,y)で2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を求める。表示装置に,2次元磁場ベクトルの大きさ及び/又は角度の,共通原点(t=0)を原点とする時間変化が表示される。   In another embodiment of the present invention, the arithmetic processing unit uses a signal of a biomagnetic field (cardiac magnetic field or brain magnetic field) having a common origin (t = 0) in a direction perpendicular to the surface in contact with the surface of the living body. Are the z direction, the x direction and the y direction are the directions perpendicular to the z direction and in contact with the surface of the living body, and the magnitude of the two-dimensional magnetic field vector and / or xy at each measurement point (x, y) of the biomagnetic field An angle representing the direction on the surface is obtained. On the display device, the time change of the magnitude and / or angle of the two-dimensional magnetic field vector with the common origin (t = 0) as the origin is displayed.

本発明の他の実施例の生体磁場計測装置は,生体の胸部又は頭部から発生する生体磁場(心磁場又は脳磁場)の信号を計測する複数のSQUID磁束計と,生体磁場の信号の演算処理を行なう演算処理装置と,演算処理の結果を表示する表示装置とを具備する。   A biomagnetic field measurement apparatus according to another embodiment of the present invention includes a plurality of SQUID magnetometers that measure a biomagnetic field (cardiac magnetic field or brain magnetic field) signal generated from the chest or head of a living body, and calculation of the biomagnetic field signal. An arithmetic processing device that performs processing and a display device that displays the result of the arithmetic processing are provided.

演算処理装置は,生体の表面に接する面に垂直な方向をz方向,z方向に直交し生体の表面に接する面に水平な方向をx方向及びy方向として,生体磁場の信号から生体磁場の各計測点(x,y)に於ける2次元磁場ベクトルを求め,複数の計測点(x,y)に於ける2次元磁場ベクトルのうち最大の2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を,生体磁場が計測された複数の時点で求める。そして,表示装置に,最大の2次元磁場ベクトルの大きさ及び/又は角度の時間変化が表示される。   The arithmetic processing unit determines the direction of the biomagnetic field from the biomagnetic field signal, with the direction perpendicular to the surface in contact with the surface of the living body as the z direction and the direction perpendicular to the z direction and horizontal to the surface in contact with the surface of the living body as the x direction and y direction. A two-dimensional magnetic field vector at each measurement point (x, y) is obtained, and the magnitude and / or xy plane of the maximum two-dimensional magnetic field vector among the two-dimensional magnetic field vectors at a plurality of measurement points (x, y). The angle representing the direction at is obtained at a plurality of time points when the biomagnetic field is measured. And the magnitude | size of the largest two-dimensional magnetic field vector and / or time change of an angle are displayed on a display apparatus.

別の実施例では,各計測点(x,y)に於ける上記の2次元磁場ベクトルの大きさ及び角度を,生体磁場が計測された複数の時点で求める。そして,表示装置に,各計測点(x,y)に於ける2次元磁場ベクトルの大きさ及びxy面での方向を表わす角度の時間変化が,2次元磁場ベクトルの大きさをプロット点の大きさに比例させて,又は,カラーで区別して表示される。   In another embodiment, the magnitude and angle of the two-dimensional magnetic field vector at each measurement point (x, y) are obtained at a plurality of time points when the biomagnetic field is measured. Then, the time change of the angle representing the direction on the xy plane and the magnitude of the two-dimensional magnetic field vector at each measurement point (x, y) is displayed on the display device. It is displayed in proportion to the depth or by color.

また,本発明の別の実施例の生体磁場計測装置は,生体の頭部から発生する生体磁場の信号を計測する複数のSQUID磁束計と,生体を刺激する信号と生体を刺激する信号の発生の開始に同期する同期信号を発生する刺激装置と,生体の頭部の複数方向から計測された生体磁場(脳磁場)の信号の演算処理を行なう演算処理装置と,演算処理の結果を表示する表示装置とを具備する。   A biomagnetic field measurement apparatus according to another embodiment of the present invention includes a plurality of SQUID magnetometers that measure a biomagnetic field signal generated from the head of a living body, a signal that stimulates the living body, and a signal that stimulates the living body. A stimulator that generates a synchronization signal that is synchronized with the start of the signal, an arithmetic processing device that performs arithmetic processing on signals of the biomagnetic field (brain magnetic field) measured from multiple directions of the head of the living body, and displays the results of the arithmetic processing A display device.

演算処理装置は,生体の表面に接する面に垂直な方向をz方向,z方向に直交し生体の表面に接する面に水平な方向をx方向及びy方向とし,時間変数をtとして,複数方向から計測された生体信号の波形の時間軸が共通原点(t=0)を持つように,同期信号に基づいて複数方向から計測された生体信号の波形の時間軸の変換を行なう。   The arithmetic processing unit has a direction perpendicular to the surface in contact with the surface of the living body in the z direction, a direction orthogonal to the z direction and horizontal to the surface in contact with the surface of the living body in the x direction and the y direction, and a time variable as t. The time axis of the waveform of the biological signal measured from a plurality of directions is performed based on the synchronization signal so that the time axis of the waveform of the biological signal measured from 1 has a common origin (t = 0).

更に,生体磁場を計測した複数方向について,共通原点(t=0)をもつ生体磁場の信号から生体磁場の各計測点(x,y)に於ける2次元磁場ベクトルを求め,複数の計測点(x,y)に於ける2次元磁場ベクトルのうち最大の2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を,共通原点(t=0)を原点とする時間軸の各点で求める。そして,表示装置に,最大の2次元磁場ベクトルの大きさ及び/又は角度の時間変化が,生体磁場を計測した複数方向について表示される。
(第1の実施例)
図1は,本発明の第1の実施例の生体磁場計測装置の概略構成を説明する斜視図である。心臓から発する磁場(心磁場)の計測(以下,心磁場計測という)を行なう生体磁場計測装置は,量子干渉素子(SQUID)からなる複数の磁場センサを用いる。環境磁場雑音の影響を除去するために,心磁場計測は磁場シールドルーム1の内部で行なわれる。被検体2はベッド4に横たわる。
Further, for a plurality of directions in which the biomagnetic field is measured, a two-dimensional magnetic field vector at each measurement point (x, y) of the biomagnetic field is obtained from a biomagnetic field signal having a common origin (t = 0), and a plurality of measurement points are obtained. The angle representing the magnitude of the maximum two-dimensional magnetic field vector and / or the direction on the xy plane among the two-dimensional magnetic field vectors at (x, y) is represented on the time axis with the common origin (t = 0) as the origin. Find at each point. Then, the maximum two-dimensional magnetic field vector magnitude and / or angle change over time is displayed on the display device in a plurality of directions in which the biomagnetic field is measured.
(First embodiment)
FIG. 1 is a perspective view illustrating a schematic configuration of a biomagnetic field measurement apparatus according to a first embodiment of the present invention. A biomagnetic field measurement apparatus that measures a magnetic field (cardiac magnetic field) generated from the heart (hereinafter referred to as a cardiac magnetic field measurement) uses a plurality of magnetic field sensors composed of quantum interference elements (SQUIDs). In order to remove the influence of environmental magnetic field noise, the cardiac magnetic field measurement is performed inside the magnetic field shield room 1. The subject 2 lies on the bed 4.

ここで,xy面がベッドの面となるように直交座標系(x,y,z)を設定する。被検体2の上方に,SQUIDとそのSQUIDに接続した検出コイルとが一体化された磁場センサを複数個収納し,液体Heを満たしたデュワ3が配置される。デュワ3はガントリ5により床に固定されている。磁場センサからの出力は,検出コイルが検出した磁場強度に比例する電圧を出力するFLL(Flux Locked Loop)回路8に入力される。   Here, the orthogonal coordinate system (x, y, z) is set so that the xy plane becomes the plane of the bed. A dewar 3 that houses a plurality of magnetic field sensors in which a SQUID and a detection coil connected to the SQUID are integrated and filled with liquid He is disposed above the subject 2. The dewar 3 is fixed to the floor by a gantry 5. The output from the magnetic field sensor is input to an FLL (Flux Locked Loop) circuit 8 that outputs a voltage proportional to the magnetic field intensity detected by the detection coil.

FFL回路8は,SQUIDの出力を一定に保つようSQUIDに入力された生体磁場の変化を帰還コイルを介してキャンセルしている。帰還コイルに流した電流を電圧に変換することにより,生体磁場の信号の変化に比例した電圧出力が得られる。この電圧出力は,アンプフィルタ回路9の増幅器により増幅され,フイルター回路により周波数帯域が選択され,データ収録解析装置(演算処理装置)10でAD変換されデータ収録される。   The FFL circuit 8 cancels the change of the biomagnetic field input to the SQUID through the feedback coil so as to keep the output of the SQUID constant. By converting the current passed through the feedback coil into a voltage, a voltage output proportional to the change in the biomagnetic field signal can be obtained. This voltage output is amplified by the amplifier of the amplifier filter circuit 9, the frequency band is selected by the filter circuit, and AD-converted by the data recording analysis device (arithmetic processing device) 10 to record the data.

データ収録解析装置10では,各種の演算処理が実行され,演算処理結果がデイスプレイ11に表示され,更に,プリンタにより出力される。心磁場の計測と同時に心電図の計測も行なう。被検体2の手首,足首に心電計用電極6を貼りつけ,四肢誘導による電位が心電計7に導かれる。心電計7の出力は,生体磁場計測装置のアンプフィルタ回路9に入力され,増幅,周波数帯域が選択され,心磁場と同様に演算処理され,心電波形がデイスプレイ11に表示される。心磁場の計測を正面,及び背面から計測する時は,被検体は,それぞれ仰向け,うつ伏せの状態となり,心磁場が計測される。   In the data recording / analyzing apparatus 10, various arithmetic processes are executed, and the arithmetic processing results are displayed on the display 11 and further output by a printer. Electrocardiograms are measured simultaneously with the measurement of the electrocardiogram. Electrocardiograph electrodes 6 are attached to the wrist and ankle of the subject 2, and the electric potential due to limb induction is guided to the electrocardiograph 7. The output of the electrocardiograph 7 is input to the amplifier filter circuit 9 of the biomagnetic field measurement device, the amplification and frequency band are selected, and the arithmetic processing is performed in the same manner as the electrocardiogram, and the electrocardiogram waveform is displayed on the display 11. When the measurement of the cardiac magnetic field is performed from the front and back, the subject is in a supine and prone state, and the cardiac magnetic field is measured.

図2は,本発明の第1の実施例に於ける磁場センサの配置を説明する斜視図である。生体磁場の法線成分を検出するコイルはz方向に垂直な面を持つ。磁場センサ20−i(i=11,12,…,18;i=21,22,…,28;i=31,32,…,38;i=41,42,…,48;i=51,52,…,58;i=61,62,…,68;i=71,72,…,78;i=81,82,…,88)はデュワ内部の底部から垂直に立位で設置される。各センサ間の距離は,生体磁場の法線成分のx方向,y方向での変化量を正確に求めるように,x方向,y方向で等間隔(25mm)に配置した。センサを,x方向,y方向にそれぞれ8個,正方格子状に配置し,64チャンネルとした。   FIG. 2 is a perspective view for explaining the arrangement of the magnetic field sensors in the first embodiment of the present invention. The coil for detecting the normal component of the biomagnetic field has a plane perpendicular to the z direction. Magnetic field sensor 20-i (i = 11, 12,..., 18; i = 21, 22,..., 28; i = 31, 32,..., 38; i = 41, 42,. , 58; i = 61, 62, ..., 68; i = 71, 72, ..., 78; i = 81, 82, ..., 88) are vertically installed from the bottom inside the dewar. . The distances between the sensors were arranged at equal intervals (25 mm) in the x and y directions so as to accurately determine the amount of change in the normal component of the biomagnetic field in the x and y directions. Eight sensors each in the x and y directions were arranged in a square lattice pattern to provide 64 channels.

図3は,本発明の第1の実施例に於ける生体磁場の法線成分を検出する磁場センサの構成を説明する斜視図である。磁場センサ20は,体表面に対して垂直な成分Bを計測するセンサであり,超伝導線(NbーTi線)で作製されるコイルはz方向に垂直な面を持つ。このコイルは2つの逆向きのコイルを組み合わせたものであり,生体に近い位置に配置される検出コイル22と,生体から遠い位置に配置され,外部磁場雑音を除去する参照コイル23とにより一次微分コイルを形成している。検出コイル22,及び参照コイル23の各コイル径を20mmφ,検出コイル22,及び参照コイル23の各コイル間の距離(ベースライン)を50mmとした。 FIG. 3 is a perspective view for explaining the configuration of the magnetic field sensor for detecting the normal component of the biomagnetic field in the first embodiment of the present invention. The magnetic field sensor 20 is a sensor that measures a component Bz perpendicular to the body surface, and a coil made of a superconducting wire (Nb-Ti wire) has a surface perpendicular to the z direction. This coil is a combination of two coils facing in opposite directions. The first derivative is formed by a detection coil 22 disposed at a position close to the living body and a reference coil 23 disposed at a position far from the living body to remove external magnetic field noise. A coil is formed. The coil diameters of the detection coil 22 and the reference coil 23 were 20 mmφ, and the distance (baseline) between the coils of the detection coil 22 and the reference coil 23 was 50 mm.

外部磁場雑音は生体より遠い信号源から生じており,これらは検出コイル22及び参照コイル23により同じように検出される。一方,生体内の磁場源はコイルに近いため,生体磁場は検出コイル22によりより強く検出される。検出コイル22により生体磁場の信号と外部磁場雑音が検出され,参照コイル23では外部磁場雑音のみが検出される。従って,両者のコイルで検出された磁場の差からよりS/Nの高い計測ができる。一次微分コイルはSQUID21を実装した実装基板の超伝導配線を介してSQUIDのインプットコイルに接続され,コイルで検出された生体磁場の信号はSQUIDに伝達される。   External magnetic field noise is generated from a signal source far from the living body, and these are detected in the same manner by the detection coil 22 and the reference coil 23. On the other hand, since the magnetic field source in the living body is close to the coil, the biological magnetic field is detected more strongly by the detection coil 22. The detection coil 22 detects a biomagnetic field signal and external magnetic field noise, and the reference coil 23 detects only external magnetic field noise. Therefore, measurement with a higher S / N can be performed from the difference between the magnetic fields detected by both coils. The primary differential coil is connected to the input coil of the SQUID via the superconducting wiring of the mounting substrate on which the SQUID 21 is mounted, and the biomagnetic field signal detected by the coil is transmitted to the SQUID.

磁場センサを内蔵したデュワは,ベッドに横たわった被検体の上方に配置され,心臓から発生する心磁場が計測される。ここで,体軸の方向をy軸とし,y軸に直交するx軸とする。   A dewar with a built-in magnetic field sensor is placed above the subject lying on the bed, and the cardiac magnetic field generated from the heart is measured. Here, the direction of the body axis is the y-axis, and the x-axis is orthogonal to the y-axis.

図4は,本発明の第1の実施例に於ける磁場センサの配置と被検体2の胸部の正面,背面との位置関係を説明する図である。図4に於いて,白丸は,磁場センサが8×8のアレイ状に配列される位置,即ち,磁場の計測点30示す。被検体2の胸部の正面での計測基準点31と背面の計測基準点31’はxy座標上で同じ点とする。図4に示す例では,正面での計測基準点31は計測面の下から2行,左から3列に位置する磁場センサに対応し,背面では計測基準点は2行,6列に位置する磁場センサに対応する。但し,背面での座標系はx座標を正面での座標系とは逆にとる。例えば,正面での1行,1列に位置する磁場センサは,背面での1行,8列に位置する磁場センサに対応し,正面での8行,8列に位置する磁場センサは,背面での8行,1列に位置する磁場センサに対応する。   FIG. 4 is a diagram for explaining the positional relationship between the arrangement of the magnetic field sensor and the front and back of the chest of the subject 2 in the first embodiment of the present invention. In FIG. 4, white circles indicate positions where magnetic field sensors are arranged in an 8 × 8 array, that is, magnetic field measurement points 30. The measurement reference point 31 on the front of the chest of the subject 2 and the measurement reference point 31 ′ on the back are the same on the xy coordinates. In the example shown in FIG. 4, the measurement reference points 31 on the front face correspond to the magnetic field sensors located in the second row and the third column from the left on the measurement surface, and the measurement reference points are located in the second row and the sixth column on the back surface. Corresponds to magnetic field sensor. However, the coordinate system on the back surface takes the x coordinate opposite to the coordinate system on the front surface. For example, a magnetic field sensor located in one row and one column on the front corresponds to a magnetic field sensor located in one row and eight columns on the back, and a magnetic field sensor located on eight rows and eight columns on the front is Corresponds to a magnetic field sensor located in 8 rows and 1 column.

図5は,本発明の第1の実施例に於ける磁場センサの配置と人体の胸部との位置を合わせを行なう方法を説明する斜視図である。センサアレイの計測基準点31と被検体の基準点40とを合わせるための各種の機構,方法が知られている。図5に示す例では,直交座標系のxz面に平行な面内に扇状に広がるx軸ライン形成用ビーム43を発生するx方向レーザ光源41,直交座標系のyz面に平行な面内に扇状に広がるy軸ライン形成用ビーム44を発生するy方向レーザ光源42が,位置合わせのために使用される。デュワ3の外周面には,直交座標系のxz面の位置を示すxz標識(マーク)45,直交座標系のyz面の位置を示すyz標識(マーク)46が印されている。   FIG. 5 is a perspective view for explaining a method of aligning the arrangement of the magnetic field sensor and the position of the human chest in the first embodiment of the present invention. Various mechanisms and methods for aligning the measurement reference point 31 of the sensor array with the reference point 40 of the subject are known. In the example shown in FIG. 5, an x-direction laser light source 41 that generates a fan-shaped x-axis line forming beam 43 in a plane parallel to the xz plane of the orthogonal coordinate system, and a plane parallel to the yz plane of the orthogonal coordinate system. A y-direction laser light source 42 that generates a fan-shaped y-axis line forming beam 44 is used for alignment. On the outer peripheral surface of the dewar 3, an xz mark (mark) 45 indicating the position of the xz plane of the orthogonal coordinate system and a yz mark (mark) 46 indicating the position of the yz plane of the orthogonal coordinate system are marked.

x軸ライン形成用ビーム43が,被検体2及びデュワ3の外周面に照射され,被検体の体表に設定された基準点40とデュワ3のxz標識(マーク)45とを照射するように,x方向レーザ光源41の位置を調整する。同様にして,y軸ライン形成用ビーム44が,被検体2及びデュワ3の外周面に照射され,被検体の体表に設定された基準点40とデュワ3のyz標識(マーク)46とを照射するように,y方向レーザ光源42の位置を調整する。これによりセンサと生体の位置とを調整できる。ビーム43,44は交差してz軸に平行な交差線49を形成する。   The x-axis line forming beam 43 is irradiated on the outer peripheral surfaces of the subject 2 and the dewar 3 so as to irradiate the reference point 40 set on the body surface of the subject and the xz mark (mark) 45 of the dewar 3. The position of the x direction laser light source 41 is adjusted. Similarly, the y-axis line forming beam 44 is applied to the outer peripheral surfaces of the subject 2 and the dewar 3, and the reference point 40 set on the body surface of the subject and the yz mark (mark) 46 of the dewar 3 are displayed. The position of the y-direction laser light source 42 is adjusted so as to irradiate. Thereby, a sensor and the position of a biological body can be adjusted. The beams 43 and 44 intersect to form an intersecting line 49 parallel to the z-axis.

図6は,本発明の第1の実施例に於ける生体磁場の計測,計測された信号の解析の流れを説明する図である。図6に示す解析では,計測された心磁場の各時間に於ける最大ベクトルを選択する。まず始めに,正面,及び背面の2方向から心磁場計測を行なう。心磁場の法線成分Bを計測する。心磁場計測と同時に心電図も計測を行なう。次に,正面,及び背面からの心磁場計測と同時に計測された心電図の波形が,同じ時間で同一波形になるように,時間軸を調整する。即ち,各心電図の時間軸を平行移動して,計測された各心電図での同じ時相が同じ時間になるようにする。この各心電図で調整した時間軸の平行移動を対応する心磁場の計測データについても適用して,心電図データに基づく心磁場の計測データ(以下,心磁場波形という)の時間軸の設定を行なう。 FIG. 6 is a diagram for explaining the flow of measurement of the biomagnetic field and analysis of the measured signal in the first embodiment of the present invention. In the analysis shown in FIG. 6, the maximum vector at each time of the measured cardiac magnetic field is selected. First, the magnetocardiogram is measured from the front and back directions. Measuring the normal component B z of the cardiac magnetic field. Electrocardiograms are measured simultaneously with the measurement of the magnetocardiogram. Next, the time axis is adjusted so that the waveforms of the electrocardiogram measured simultaneously with the measurement of the magnetocardiogram from the front and back surfaces become the same waveform at the same time. That is, the time axis of each electrocardiogram is translated so that the same time phase in each measured electrocardiogram becomes the same time. The time axis of the measurement data of the electrocardiogram based on the electrocardiogram data (hereinafter referred to as the electrocardiogram waveform) is set by applying the parallel movement of the time axis adjusted for each electrocardiogram to the corresponding electrocardiogram measurement data.

次に,図4で説明したように正面,背面での心磁場の計測データの対応をつけるため,背面でのx座標を反転してセンサアレイの位置と計測データとの対応を変える。次に,計測された生体面に垂直な磁場成分B(x,y,t)のx方向での変化量∂B(x,y,t)/∂xと,B(x,y,t)の方向での変化量∂B(x,y,t)/∂yを計算により求め,正面,及び背面でそれぞれ計測された観測点64点に於けるベクトル強度I(x,y,t)を(数1)に基づいて,ベクトル位相θ(x,y,t)を(数2)に基づいてそれぞれ求める。 Next, as described with reference to FIG. 4, in order to correlate the measurement data of the magnetocardiogram on the front and back, the x coordinate on the back is inverted to change the correspondence between the position of the sensor array and the measurement data. Next, the amount of change ∂B z (x, y, t) / ∂x in the x direction of the magnetic field component B z (x, y, t) perpendicular to the measured biological surface, and B z (x, y , T) in the direction of change ∂B z (x, y, t) / ∂ y is obtained by calculation, and the vector intensity I (x, y at 64 observation points measured on the front and back sides, respectively. , T) based on (Equation 1) and vector phase θ (x, y, t) based on (Equation 2).

次に,心磁場の各計測面(正面,背面)毎の各時間t毎にベクトル強度I(x,y,t)の最大ベクトルを抽出する。即ち,正面,及び背面のそれぞれでの心磁場の計測データから求められたベクトル強度I(x,y,t)の各時間tに於ける,最大ベクトル強度Imax(x,y,t)とその位相θ(x,y,t)を求める。次に,求められた各時間tに於ける最大ベクトル強度Imax(x,y,t)とその位相θ(x,y,t)を時間変数tに対して表示する。即ち,心磁場の各計測面(正面,背面)毎に時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ)を表示する。以下,図6の流れ図に基づいて得られた具体例について説明する。 Next, the maximum vector of the vector intensity I (x, y, t) is extracted at each time t for each measurement surface (front, back) of the cardiac magnetic field. That is, the maximum vector intensity I max (x i , y j , t at each time t of the vector intensity I (x, y, t) obtained from the measurement data of the cardiac magnetic field on each of the front and back surfaces. ) And its phase θ (x i , y j , t). Next, the maximum vector intensity I max (x i , y j , t) and its phase θ (x i , y j , t) at each time t obtained are displayed for the time variable t. That is, a time-intensity plot (t-I max ) and a time-phase plot (t-θ) are displayed for each measurement surface (front and back) of the cardiac magnetic field. Hereinafter, a specific example obtained based on the flowchart of FIG. 6 will be described.

図7は,健常者を被検体として,正面,及び背面から計測された心磁場波形と,心磁場波形の計測と同時に計測された心電図波形の例を示す図である。図7では,心磁場波形を,64チャンネルの全ての時間波形を重ね合わせ表示しており,心電図波形は第II誘導の波形を示している。正面,及び背面から計測された心磁場波形の時間軸を調整するため,正面からの心磁場計測時に計測された心電波形のQRS波と呼ばれる心室が脱分極した時間帯の開始点の時間T1を0に設定する。次に,背面からの心磁場計測時に計測された心電波形のQRS波の開始点の時間T2を0に設定し,2つの心電波形の時間軸を合わせる。正面からの心磁場波形の時間原点はt=T1=0に,背面からの心磁場波形の時間原点はt=T2=0に,それぞれ設定する。   FIG. 7 is a diagram showing an example of the electrocardiogram waveform measured from the front and the back, and the electrocardiogram waveform measured simultaneously with the measurement of the electrocardiogram waveform, with a healthy subject as the subject. In FIG. 7, the cardiac magnetic field waveform is displayed by superimposing all the time waveforms of 64 channels, and the electrocardiogram waveform shows the waveform of the second induction. In order to adjust the time axis of the magnetocardiogram waveform measured from the front and back, the time T1 of the start point of the time zone in which the ventricle called the QRS wave of the electrocardiogram measured during the electrocardiogram measurement from the front is depolarized Is set to 0. Next, the time T2 of the start point of the QRS wave of the electrocardiogram waveform measured at the time of measuring the magnetocardiogram from the back is set to 0, and the time axes of the two electrocardiogram waveforms are aligned. The time origin of the magnetocardiogram waveform from the front is set to t = T1 = 0, and the time origin of the magnetocardiogram waveform from the back is set to t = T2 = 0.

図8は,本発明の第1の実施例に於いて,正面から計測された健常者の心磁場波形の心室が脱分極する過程であるQRS波の開始点から30ms経過後の時間での電流アロー図,及び最大電流ベクトルを示す図である。64点の計測点での各矢印の大きさは,(数1)に基づくベクトル強度を示し,位相は(数2)に基づいて計算する。64個のベクトルの中のもっとも大きいベクトルを最大ベクトルとして選択する。   FIG. 8 shows the current at the time after 30 ms from the start point of the QRS wave, which is the process of depolarizing the ventricle of the heart magnetic field waveform of the healthy subject measured from the front in the first embodiment of the present invention. It is an arrow figure and a figure showing a maximum current vector. The size of each arrow at 64 measurement points indicates the vector intensity based on (Equation 1), and the phase is calculated based on (Equation 2). The largest vector among the 64 vectors is selected as the maximum vector.

図9は,本発明の第1の実施例に於いて,最大ベクトルの位相θの基準を示す図である。図9に於いて,x軸の正方向(右方向)をθ=0度として,時計周りを位相のプラス方向,反時計周りを位相のマイナス方向とする。   FIG. 9 is a diagram showing a reference for the phase θ of the maximum vector in the first embodiment of the present invention. In FIG. 9, the positive direction (right direction) of the x-axis is θ = 0 degrees, the clockwise direction is the positive direction of the phase, and the counterclockwise direction is the negative direction of the phase.

図10は,本発明の第1の実施例に於いて,正面,及び背面から計測された健常者の心磁場波形の心室が脱分極する過程であるQRS波の開始点から200msまでの時間帯での時間−強度プロット(t−Imax)と,時間−位相プロット(t−θ)の表示例を示す図である。正面,背面から計測された心磁波形から得られた最大ベクトル強度(pT/cm),及び,位相の時間変化は異なるパターンを示している。しかし,最大ベクトル強度(pT/cm)は,QRS波の開始点から約20msから約100msの時間帯で大きな値を持つパターンを示す点では共通する。 FIG. 10 shows a time period from the start point of QRS wave to 200 ms, which is the process of depolarizing the ventricle of the heart magnetic field waveform of a healthy person measured from the front and back in the first embodiment of the present invention. time in - the intensity plot (t-I max), time - is a view showing a display example of a phase plot (t-θ). The maximum vector intensity (pT / cm) obtained from the magnetocardiogram waveforms measured from the front and back surfaces, and the phase change over time show different patterns. However, the maximum vector intensity (pT / cm) is common in that it shows a pattern having a large value in a time zone from about 20 ms to about 100 ms from the start point of the QRS wave.

次に,心室に刺激伝導障害がある脚ブロックのうち右脚ブロックの患者に関する計測例を説明する。   Next, the measurement example regarding the patient of the right leg block among the leg blocks having stimulation conduction disorder in the ventricle will be described.

図11は,本発明の第1の実施例に於いて,正面,及び背面から計測された右脚ブロックの患者の心磁波形の心室が脱分極する過程であるQRS波の開始点から200msまでの時間帯での時間−強度プロット(t−Imax)と,時間−位相プロット(t−θ)の表示例を示す図である。図10に示す健常者の場合の結果と異なり,正面から計測された心磁場波形から得られたベクトル強度が,QRS波の開始点から約60ms経過後から約160msの長い時間帯わたり大きな値を示しており,心臓の活動時間も長いことが分かる。また,正面から計測された心磁場波形から得られた位相の時間変化を,図10に示す健常者の場合と比較すると,QRS波の開始点から初期の時間帯での変化が,健常者の場合に比べて小さいことが分かる。このように,心臓の興奮伝播の異常が,本発明により容易に判別できるようになった。
(第2の実施例)
本発明の第2の実施例では,心磁場の各計測面(正面,背面)毎に時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ)の表示に加えて,
64チャンネルの全ての心磁場波形のデータを表示する。
FIG. 11 shows the first embodiment of the present invention, from the start of the QRS wave, which is the process of depolarizing the ventricle of the magnetocardiogram waveform of the right leg block patient measured from the front and back to 200 ms. the time in hours - the intensity plot (t-I max), time - is a view showing a display example of a phase plot (t-θ). Unlike the case of the healthy person shown in FIG. 10, the vector intensity obtained from the cardiac magnetic field waveform measured from the front shows a large value over a long time period of about 160 ms after about 60 ms from the QRS wave start point. It can be seen that the heart activity time is also long. In addition, when the time change of the phase obtained from the cardiac magnetic field waveform measured from the front is compared with the case of the healthy person shown in FIG. 10, the change in the initial time zone from the start point of the QRS wave is It can be seen that it is smaller than the case. Thus, abnormalities in the propagation of excitement of the heart can be easily discriminated by the present invention.
(Second embodiment)
In the second embodiment of the present invention, in addition to the display of the time-intensity plot (t-I max ) and the time-phase plot (t-θ) for each measurement surface (front, back) of the cardiac magnetic field,
Data of all the magnetocardiographic waveforms of 64 channels are displayed.

本発明の第2の実施例に於いて64チャンネルの全ての各チャンネルの各時間でのベクトルの時間−位相・強度プロット(t−θ・I)を行なう場合の,生体磁場の計測,計測された信号の解析の流れを説明する図である。図12に示す流れ図では,各計測点(チャネル)でのベクトル強度及びその位相を求める処理までは,図6と同じである。図12に示す流れ図では,最大ベクトルを選択せずにそのまま,正面,及び背面から計測された心磁場のデータからそれぞれ得られた,64チャンネルの全てのチャネルに於けるベクトルの時間−位相・強度プロット(t−θ・I)を表示する。   In the second embodiment of the present invention, the biomagnetic field is measured and measured when performing the time-phase / intensity plot (t-θ · I) of the vector at each time of all 64 channels in the second embodiment of the present invention. It is a figure explaining the flow of an analysis of the received signal. In the flowchart shown in FIG. 12, the processing up to obtaining the vector intensity and the phase at each measurement point (channel) is the same as in FIG. In the flowchart shown in FIG. 12, the time-phase / intensity of vectors in all 64 channels obtained directly from the cardiac magnetic field data measured from the front and back without selecting the maximum vector. A plot (t−θ · I) is displayed.

図13は,本発明の第2の実施例に於いて,健常者の正面から計測された心磁場波形の心室が脱分極する過程であるQRSの開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図である。   FIG. 13 shows 64 channels in the time zone from the QRS start point to 200 ms, which is the process of depolarizing the ventricle of the cardiac magnetic field waveform measured from the front of the healthy subject in the second embodiment of the present invention. It is a figure which shows the example of a display of the time-phase intensity | strength plot of the vector of all the channels.

図14は,本発明の第2の実施例に於いて,健常者の背面から計測された心磁場波形の心室が脱分極する過程であるQRSの開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図である。   FIG. 14 shows 64 channels in the time zone from the QRS start point to 200 ms, which is the process of depolarizing the ventricle of the cardiac magnetic field waveform measured from the back of the healthy subject in the second embodiment of the present invention. It is a figure which shows the example of a display of the time-phase intensity | strength plot of the vector of all the channels.

図15は,本発明の第2の実施例に於いて,正面から計測された右脚ブロックの患者の心磁波形の心室が脱分極する過程であるQRS波の開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図である。図15のプロットのパターンと図13のプロットのパターンとは一見して大きな差が認められる。   FIG. 15 shows a time period from the start point of the QRS wave to 200 ms, which is the process of depolarizing the ventricle of the magnetocardiogram waveform of the right leg block patient measured from the front in the second embodiment of the present invention. It is a figure which shows the example of a display of the time-phase intensity | strength plot of the vector of all the channels of 64 channels. A large difference can be recognized at a glance between the plot pattern of FIG. 15 and the plot pattern of FIG.

図16は,本発明の第2の実施例に於いて,背面から計測された右脚ブロックの患者の心磁波形の心室が脱分極する過程であるQRS波の開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図である。図16のプロットのパターンと図14のプロットのパターンとは一見して大きな差が認められる。   FIG. 16 shows a time period from the start point of the QRS wave to 200 ms, which is the process of depolarizing the ventricle of the magnetocardiogram waveform of the right leg block patient measured from the back in the second embodiment of the present invention. It is a figure which shows the example of a display of the time-phase intensity | strength plot of the vector of all the channels of 64 channels. A large difference can be recognized at a glance between the plot pattern of FIG. 16 and the plot pattern of FIG.

図13から図16では,各時間に於ける64点の各計測点でのベクトル強度を表示するプロット点の濃度で区別して,位相を縦軸として表示しているので,容易に表示されたパターンの相違を識別できる。ベクトル強度の表示として,プロット点の濃淡で表示する他に,プロット点の色の違い(カラースケール)や,プロット点の大きさで表示することも可能である。このようなプロットにより,健常者との相違点を容易に検出できる。
(第3の実施例)
第3の実施例では,生体磁場のx方向,及びy方向の磁場成分を計測する。
In FIG. 13 to FIG. 16, the pattern is displayed easily because the phase is displayed as the vertical axis by distinguishing by the density of the plot points that display the vector intensity at each of the 64 measurement points at each time. Can be identified. In addition to displaying the intensity of the plot points as vector intensity, it is also possible to display the difference in color (color scale) of the plot points and the size of the plot points. With such a plot, it is possible to easily detect a difference from a healthy person.
(Third embodiment)
In the third embodiment, magnetic field components in the x direction and y direction of the biomagnetic field are measured.

図17は,本発明の第3の実施例に於いて使用する生体磁場の接線成分B,及びB成分を検出する磁場センサの構成例の概略を説明する図である。図17に示す磁場センサ20’は,平面型のコイルを使用している。 Figure 17 is a diagram for explaining a third tangential components B x biomagnetic field to be employed in the Examples, and outline of a configuration example of a magnetic field sensor for detecting the B y component of the present invention. A magnetic field sensor 20 ′ shown in FIG. 17 uses a planar coil.

x方向の磁場を計測するセンサは検出コイル22’−1と参照コイル23’−1とが一つの平面に並んで配置され,x方向の磁場を計測する一次微分コイルを構成している。検出コイル22’−1,参照コイル23’−1のコイルの大きさを20mm×20mmの正方形とし,検出コイル22’−1,参照コイル23’−1の各コイルの中心間の距離(ベースライン)を50mmとした。x方向の磁場を計測する一次微分コイルはSQUID21−1’を実装した実装基板の超伝導配線を介してSQUIDのインプットコイルに接続され,コイルで検出された生体磁場の信号はSQUIDに伝達される。   In the sensor for measuring the magnetic field in the x direction, the detection coil 22'-1 and the reference coil 23'-1 are arranged side by side on one plane, and constitute a primary differential coil for measuring the magnetic field in the x direction. The size of the coils of the detection coil 22′-1 and the reference coil 23′-1 is a square of 20 mm × 20 mm, and the distance between the centers of the respective coils of the detection coil 22′-1 and the reference coil 23′-1 (baseline ) Was 50 mm. The primary differential coil for measuring the magnetic field in the x direction is connected to the SQUID input coil via the superconducting wiring of the mounting board on which SQUID 21-1 'is mounted, and the biomagnetic field signal detected by the coil is transmitted to the SQUID. .

y方向の磁場を計測するセンサは検出コイル22’−2と参照コイル23’−2とが一つの平面に並んで配置され,y方向の磁場を計測する一次微分コイルを構成している。検出コイル22’−2,参照コイル23’−2のコイルの大きさを20mm×20mmの正方形とし,検出コイル22’−2,参照コイル23’−2の各コイルの中心間の距離(ベースライン)を50mmとした。y方向の磁場を計測する一次微分コイルはSQUID21−2’を実装した実装基板の超伝導配線を介してSQUIDのインプットコイルに接続され,コイルで検出された生体磁場の信号はSQUIDに伝達される。   In the sensor for measuring the magnetic field in the y direction, the detection coil 22'-2 and the reference coil 23'-2 are arranged side by side on one plane to constitute a primary differential coil for measuring the magnetic field in the y direction. The size of the coils of the detection coil 22′-2 and the reference coil 23′-2 is a square of 20 mm × 20 mm, and the distance between the centers of the coils of the detection coil 22′-2 and the reference coil 23′-2 (baseline ) Was 50 mm. The primary differential coil for measuring the magnetic field in the y direction is connected to the SQUID input coil via the superconducting wiring of the mounting substrate on which SQUID 21-2 ′ is mounted, and the biomagnetic field signal detected by the coil is transmitted to the SQUID. .

4角柱の支持体の互いに直交する2面に,上記のx成分検出用の磁場センサとy成分検出用の磁場センサを張り付けることにより,生体磁場のx成分,及びy成分を計測できる磁場センサを形成している。図17に示すような4角柱の形状を持つ磁場センサは,図2に示すようにセンサアレイ状に配置される。計測された接線成分B,Bからベクトル強度I(x,y,t)を(数3)に基づいて,その位相θ(x,y,t)を(数4)に基づいて求める。 A magnetic field sensor capable of measuring the x-component and y-component of the biomagnetic field by attaching the x-component detection magnetic field sensor and the y-component detection magnetic field sensor to two orthogonal surfaces of a quadrangular prism support. Is forming. Magnetic field sensors having a quadrangular prism shape as shown in FIG. 17 are arranged in a sensor array as shown in FIG. Based on the measured tangential components B x and B y , the vector intensity I (x, y, t) is obtained based on (Equation 3), and the phase θ (x, y, t) is obtained on the basis of (Equation 4).

図6,及び図12で説明したように生体磁場の法線成分のx方向及びy方向での微分を求める代わりに,計測された2つの接線成分から(数3),(数4)に基づいて求めたベクトル強度I(x,y,t)とその位相θ(x,y,t)を用いて,先に説明した第1実施例,第2の実施例と同様にして,最大ベクトルの時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ),あるいは,64チャンネルの全てのチャンネルについての時間−位相・強度プロット(t−θ・I)を求め,表示できる。
(第4の実施例)
第4の実施例では,平面型微分コイルを用いて法線成分のx方向,及びy方向の一次微分成分を直接計測して解析する。
As described with reference to FIGS. 6 and 12, instead of obtaining the differential in the x direction and the y direction of the normal component of the biomagnetic field, it is based on (Equation 3) and (Equation 4) from the two measured tangential components. Using the vector intensity I (x, y, t) and the phase θ (x, y, t) obtained in the same manner as in the first and second embodiments described above, the maximum vector Time-intensity plot (t-I max ) and time-phase plot (t-θ), or time-phase / intensity plot (t-θ · I) for all 64 channels can be obtained and displayed. .
(Fourth embodiment)
In the fourth embodiment, the first-order differential components of the normal component in the x direction and the y direction are directly measured and analyzed using a planar differential coil.

図18は,本発明の第4の実施例に於いて使用する,コイルに同一の方向から磁場が入射したとき,互いに逆向きの電流が流れる直線部分を持つ半円形状のコイルが並んで形成され,コイル全体として円の形状を持つ微分コイル50の形状の例を示す図である。図18に示す平面微分型磁場センサ20”では,互いに逆向きの電流が流れる直線部分と直交する方向で磁場が微分された値が検出できる。微分コイル50は,SQUID21”を実装した実装基板の超伝導配線を介してSQUIDのインプットコイルに接続され,微分コイルで検出された生体磁場の信号はSQUIDに伝達される。互いに逆向きの電流が流れる直線部分を,x方向に持つ平面型微分コイルとy方向に持つ平面型微分コイルを準備する。   FIG. 18 shows a semicircular coil formed side by side with linear portions through which currents flow in opposite directions when a magnetic field is incident on the coil from the same direction, which is used in the fourth embodiment of the present invention. FIG. 5 is a diagram showing an example of the shape of the differential coil 50 having a circular shape as a whole coil. 18 can detect a value obtained by differentiating a magnetic field in a direction orthogonal to a straight line portion through which currents flowing in opposite directions flow. A differential coil 50 is provided on a mounting board on which SQUID 21 ″ is mounted. The biomagnetic field signal detected by the differential coil is connected to the SQUID input coil via the superconducting wiring and transmitted to the SQUID. A plane type differential coil having a straight line portion in which currents flowing in opposite directions flow in the x direction and a plane type differential coil having in the y direction are prepared.

図2に示すようなセンサアレイの各計測点に,x方向,y方向の微分成分を検出する平面型微分コイルを重ねて配置することにより,64点の各計測点で生体磁場の法線成分のx方向,y方向での微分値が直接計測できる。計測されたx方向,y方向での微分値から,(数1)に基づいてベクトル強度I(x,y,t)を求め,(数2)に基づいてその位相θ(x,y,t)を求める。先に説明した第1の実施例〜第3の実施例と同様にして,最大ベクトルの時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ),あるいは,64チャンネルの全てのチャンネルについての時間−位相・強度プロット(t−θ・I)を求め,表示できる。
(第5の実施例)
図19は,本発明の第5の実施例に於いて使用する,正面,及び背面の方向から同時に心磁場計測を行なう生体磁場計測装置の構成例の概略を説明する図である。第5の実施例の生体磁場計測装置の構成例では,被検体2が,正面,背面の方向から心磁場を計測するために姿勢を変える必要がなく,一度に同時に2方向から心磁場を計測できる。上部デュワ3’−1と下部デュワ3’−2の2つデュワを備え,それぞれに,第1の実施例〜第4の実施例で説明したような何れかのセンサアレイが配置される。上部デュワ3’−1と下部デュワ3’−2はガントリ5’に保持されている。ベッド4’の脚には,水平方向に移動が可能な滑車13が付けられている。被検体2がベッド4’に乗った後,レール12に沿って,上部デュワ3’−1と下部デュワ3’−2との間の定位置に,ベッド4’を移動させる。心電図等の周期的な生体信号を計測することなく,被検体2の上下に配置されるセンサアレイより,心磁場が2方向から同時に計測できるので,2方向から計測された心磁場のデータの時間軸を調整する必要がない。
(第6の実施例)
第6の実施例では,音の刺激により聴性誘発される磁場(脳磁場)を計測する。 図20は,本発明の第6の実施例に於いて聴性誘発された脳磁場を計測する生体磁場計測装置の構成例を説明する斜視図である。被検体はベッド4に横たわり,デュワ3の底面に計測しようとする頭部の面を近づけて,脳磁場は計測される。
By arranging a planar differential coil for detecting differential components in the x and y directions at each measurement point of the sensor array as shown in FIG. 2, the normal component of the biomagnetic field at each of the 64 measurement points. The differential values in the x and y directions can be directly measured. From the measured differential values in the x and y directions, the vector intensity I (x, y, t) is obtained based on (Equation 1), and the phase θ (x, y, t) is obtained based on (Equation 2). ) Similar to the first to third embodiments described above, the maximum vector time-intensity plot (t-I max ) and time-phase plot (t-θ), or 64 channels Time-phase / intensity plots (t-θ · I) for all channels can be obtained and displayed.
(Fifth embodiment)
FIG. 19 is a diagram for explaining an outline of a configuration example of a biomagnetic field measurement apparatus that performs cardiac magnetic field measurement simultaneously from the front and back directions used in the fifth embodiment of the present invention. In the configuration example of the biomagnetic field measurement apparatus of the fifth embodiment, it is not necessary for the subject 2 to change the posture in order to measure the cardiac magnetic field from the front and back directions, and the cardiac magnetic field is measured from two directions at the same time. it can. Two dewars, an upper dewar 3′-1 and a lower dewar 3′-2, are provided, and each sensor array as described in the first to fourth embodiments is arranged. The upper dewar 3′-1 and the lower dewar 3′-2 are held by the gantry 5 ′. A pulley 13 that can move in the horizontal direction is attached to the leg of the bed 4 '. After the subject 2 gets on the bed 4 ′, the bed 4 ′ is moved along the rail 12 to a fixed position between the upper dewar 3′-1 and the lower dewar 3′-2. Since the cardiac magnetic field can be measured simultaneously from two directions from the sensor array disposed above and below the subject 2 without measuring periodic biological signals such as an electrocardiogram, the time of the data of the cardiac magnetic field measured from the two directions There is no need to adjust the axis.
(Sixth embodiment)
In the sixth embodiment, a magnetic field (brain magnetic field) induced by auditory sensation by sound stimulation is measured. FIG. 20 is a perspective view for explaining a configuration example of a biomagnetic field measuring apparatus for measuring an auditory-induced brain magnetic field in the sixth embodiment of the present invention. The subject lies on the bed 4, the surface of the head to be measured is brought close to the bottom surface of the dewar 3, and the cerebral magnetic field is measured.

図20に示す構成では,1kHzで50ms保持時間幅を持つトーンバースト音を音刺激装置183によって生成する。音刺激の間隔は0.3Hz(約3.3秒に1回の頻度)で行なう。音刺激の印加のタイミングに合わせて同期信号184を発生して,データ収録解析装置(演算処理装置)10へ同期信号184が入力される。入力された同期信号184を利用して,脳磁場の波形の時間軸を一致させた後,加算平均化処理を行ない信号雑音比を向上させる。   In the configuration shown in FIG. 20, a tone burst sound having a 50 ms holding time width at 1 kHz is generated by the sound stimulator 183. The interval between sound stimuli is 0.3 Hz (frequency about once every 3.3 seconds). A synchronization signal 184 is generated in accordance with the application timing of the sound stimulus, and the synchronization signal 184 is input to the data recording analysis device (arithmetic processing device) 10. Using the input synchronization signal 184, the time axis of the brain magnetic field waveform is matched, and then the averaging process is performed to improve the signal-to-noise ratio.

音刺激装置183によって生成されたトーンバースト音はエアーチューブ182とアダプタ181を通して左耳に入力される。図20に図示しないが,右耳にホワイト雑音の音を常時与えて外来からの音による影響がないように計測を行なう。脳磁場はデュワ3内の磁場センサによって計測される。磁場センサはFLL回路8にって駆動され,FLL回路8の出力はアンプフィルタ回路9を通ってデータ収録解析装置10にデジタルデータとして収集され記録される。データ収録解析装置10,FLL回路8,アンプフィルタ回路9等を制御するための画面やデータ解析結果を表示する画面等は,ディスプレイ11に表示される。図20に示すベッド4,デュワ3以外の構成要素は,図1に示す磁場シールドルーム1の外部に配置することが望ましい。   The tone burst sound generated by the sound stimulator 183 is input to the left ear through the air tube 182 and the adapter 181. Although not shown in FIG. 20, measurement is performed so that white noise is always given to the right ear and there is no influence from the sound from the outside. The brain magnetic field is measured by a magnetic field sensor in the dewar 3. The magnetic field sensor is driven by the FLL circuit 8, and the output of the FLL circuit 8 is collected and recorded as digital data in the data recording / analyzing apparatus 10 through the amplifier filter circuit 9. A screen for controlling the data recording / analyzing apparatus 10, the FLL circuit 8, the amplifier filter circuit 9 and the like, a screen for displaying the data analysis result, and the like are displayed on the display 11. Components other than the bed 4 and the dewar 3 shown in FIG. 20 are desirably arranged outside the magnetic field shield room 1 shown in FIG.

図21は,本発明の第6の実施例に於ける磁場センサの配置と人体の頭部との位置関係を説明する図である。図21は,脳磁場の計測範囲(175mm×175mm)を,磁場センサが配置される計測点30により示している。被検体2の左側頭から脳磁場を計測する場合の計測範囲を上部に示し,下部に右側頭から脳磁場計測する場合の計測範囲を示す。図21では,聴性誘発される脳磁場を計測するので,耳のやや上部にも計測点30を配置する。   FIG. 21 is a diagram for explaining the positional relationship between the arrangement of the magnetic field sensor and the human head in the sixth embodiment of the present invention. FIG. 21 shows the measurement range (175 mm × 175 mm) of the cerebral magnetic field by the measurement point 30 where the magnetic field sensor is arranged. The measurement range when measuring the cerebral magnetic field from the left side of the subject 2 is shown at the top, and the measurement range when measuring the cerebral magnetic field from the right side at the bottom is shown. In FIG. 21, since the auditory-induced brain magnetic field is measured, a measurement point 30 is also arranged slightly above the ear.

図22は,本発明の第6の実施例に於ける脳磁場の計測の手順を説明する流れ図である。最初に左側頭から脳磁場を計測するため,被検体2の頭部とデュワ3との位置合わせを行ない,最初に右耳刺激(対側側の音刺激)を8分間行ない,連続して左耳刺激(同側側の音刺激)を8分間行なう。続いて,右側頭から脳磁場を計測するために,被検体2は左肩を下にしてベッド2に横たわり,位置合わせを行なう。位置合わせ終了後,左耳刺激(対側側の音刺激)を8分間行ない,連続して右耳刺激(同側側の音刺激)を8分間行なう。   FIG. 22 is a flowchart for explaining the procedure for measuring the cerebral magnetic field in the sixth embodiment of the present invention. First, in order to measure the cerebral magnetic field from the left side of the head, the head of the subject 2 and the dewar 3 are aligned, first the right ear stimulation (contralateral sound stimulation) is performed for 8 minutes, and then left Ear stimulation (ipsilateral sound stimulation) is performed for 8 minutes. Subsequently, in order to measure the cerebral magnetic field from the right temporal region, the subject 2 lies on the bed 2 with the left shoulder down and performs alignment. After the alignment, the left ear stimulation (opposite sound stimulation) is performed for 8 minutes, and the right ear stimulation (ipsilateral sound stimulation) is continuously performed for 8 minutes.

図23は,本発明の第6の実施例に於いて,健常者の脳磁場の計測結果の表示例と,最大ベクトルの抽出する原理を説明する図である。図23の上部に,左耳刺激した場合の脳磁場の計測結果例を示し,図23の下部に右耳刺激した場合の脳磁場の計測結果を示す。計測された脳磁場の波形212,214は70回の加算処理を行った後に,音刺激の前の時間帯で基線補正を行なった64チャネル全てのチャネルの計測された脳磁場の波形を重ねて表示している。   FIG. 23 is a diagram for explaining a display example of the measurement result of the cerebral magnetic field of a healthy person and the principle of extracting the maximum vector in the sixth embodiment of the present invention. 23 shows an example of the measurement result of the cerebral magnetic field when the left ear is stimulated, and the bottom of FIG. 23 shows the measurement result of the cerebral magnetic field when the right ear is stimulated. The measured cerebral magnetic field waveforms 212 and 214 are obtained by superposing the measured cerebral magnetic field waveforms of all 64 channels subjected to baseline correction in the time zone before the sound stimulation after 70 times of addition processing. it's shown.

電流アローマップ211,213は,ぞれぞれ,計測された脳磁場の波形212,214の最大ピークが出現する時刻(N100mと呼ばれるピーク)での電流アローマップを示す。電流アローマップ211内の最大電流アローから強度Icontralateral(対側側刺激の強度)(以下,Iと略記する)と最大電流アローの傾きθ1とを計算する。同様にして,電流アローマップ213内の最大電流アローから強度Iipsilateral(同側側刺激の強度)(以下,Iと略記する)と最大電流アローの傾きθ2とを計算する。これらの最大電流アローの強度比I/I(同側側刺激の強度/対側側刺激の強度)と位相差|Δθ|=|θ1−θ2|とを求める計算を行なう。右側頭から脳磁場を計測する場合にも,I(対側側刺激の強度)は,左耳刺激による脳磁場の波形のピーク時の最大電流アローを用い,I(同側側刺激の強度)は,右耳刺激による脳磁場の波形のピーク時の最大電流アローを用いる。 The current arrow maps 211 and 213 respectively indicate current arrow maps at times (peaks called N100m) at which the maximum peaks of the measured brain magnetic field waveforms 212 and 214 appear. Current (intensity of contralateral side stimulus) intensity Icontralateral from the maximum current arrow in arrow map 211 (hereinafter, abbreviated as I c) and calculates the inclination θ1 of the maximum current arrow. Similarly, an intensity I ipsilateral (intensity of ipsilateral stimulation) (hereinafter abbreviated as I i ) and a gradient θ 2 of the maximum current arrow are calculated from the maximum current arrow in the current arrow map 213. Calculation is performed to obtain the intensity ratio I i / I c (intensity of the ipsilateral stimulus / intensity of the contralateral stimulus) and the phase difference | Δθ | = | θ1−θ2 |. When measuring the cerebral magnetic field from the right temporal region, I c (intensity of contralateral stimulation) uses the maximum current arrow at the peak of the cerebral magnetic field waveform by left ear stimulation, and I i (ipsilateral stimulation) For intensity, the maximum current arrow at the peak of the waveform of the cerebral magnetic field due to right ear stimulation is used.

図24は,本発明の第6の実施例に於いて得られた最大電流ベクトルの強度比I/I(同側側刺激の強度/対側側刺激の強度)の結果例を示す図である。 FIG. 24 is a diagram showing an example of the result of the intensity ratio I i / I c (intensity of ipsilateral stimulation / intensity of contralateral stimulation) obtained in the sixth embodiment of the present invention. It is.

図25は,本発明の第6の実施例に於いて得られた位相差|Δθ|の結果例を示す図である。   FIG. 25 is a diagram showing a result example of the phase difference | Δθ | obtained in the sixth embodiment of the present invention.

図26は,本発明の第6の実施例に於いて得られたN100mが出現した時間(潜時)を各側頭毎にまとめた結果例を示す図である。   FIG. 26 is a diagram showing a result example in which the time (latency) when N100m obtained in the sixth embodiment of the present invention appears is summarized for each temporal region.

健常者4例,右半球梗塞患者5例,慢性めまいの患者2例,脳血流に障害が観測されたモヤモヤ病患者2例についての解析結果を,図24〜図26を使用して説明する。但し,右半球梗塞患者のうち5例中2例については,梗塞範囲が広域であっため右側頭での脳磁波形が検出されなかった。   The analysis results for 4 healthy subjects, 5 right hemisphere infarction patients, 2 patients with chronic dizziness, and 2 patients with moyamoya disease in which disturbances in cerebral blood flow were observed will be described with reference to FIGS. . However, in 2 out of 5 patients with right hemisphere infarction, the magnetoencephalogram was not detected in the right temporal region because the infarct range was wide.

図24に示すように,健常者では両側頭共に電流比が1より小さく,対側側の電流アロー強度が強いことが分かる。一方,右半球梗塞(右側脳梗塞)の1例と慢性めまいの患者1例では,電流比が1より大きい症例があることが分かる。モヤモヤ病の患者2例は,健常者と変わらず電流比が1以下であった。   As shown in FIG. 24, it can be understood that the current ratio is smaller than 1 in both sides of a healthy person, and the current arrow strength on the opposite side is strong. On the other hand, in one case of right hemisphere infarction (right cerebral infarction) and one patient with chronic vertigo, it can be seen that there are cases where the current ratio is greater than one. Two patients with moyamoya disease had a current ratio of 1 or less, which was the same as that of healthy subjects.

図25に示すように,健常者では両側頭共に位相差は20度以下であり,最大ベクトルの方向が良く一致していることが分かる。一方,右側脳梗塞患者の6例中3例で20度を超える位相差が観測され,慢性めまいの患者1例とモヤモヤ病患者1例でも,位相差が他のケースと大幅に異なる結果が得られた。   As shown in FIG. 25, it can be seen that the phase difference of both sides of a healthy person is 20 degrees or less, and the directions of the maximum vectors are in good agreement. On the other hand, a phase difference of over 20 degrees was observed in 3 out of 6 right-sided cerebral infarction patients, and the phase difference was significantly different from the other cases in 1 chronic vertigo patient and 1 moyamoya disease patient. It was.

図26に示すように,健常者の右側頭では,対側音刺激(左耳刺激)の潜時が有意に短い結果となっているが,左側頭では,特に何れにも有意性が認められない。右半球梗塞の左側側頭では健常者に比べて,6例中3例で同側側の音刺激(左耳刺激)で潜時が延長する結果が見られた。右半球梗塞の右側側頭では,健常者に比べて,対側側の音刺激(左耳刺激)が延長する傾向が見られ,同側側の音刺激(右耳刺激)に於いても,3例中1例では延長していることが分かった。   As shown in FIG. 26, the latency of contralateral sound stimulation (stimulation of the left ear) is significantly shorter in the right side of a healthy subject, but in the left side of the head, significance is particularly recognized in any case. Absent. In the left temporal region of right hemisphere infarction, the latency was prolonged in 3 out of 6 cases due to ipsilateral sound stimulation (stimulation of the left ear) in comparison with healthy subjects. In the right temporal region of right hemisphere infarction, the contralateral sound stimulation (left ear stimulation) tended to be longer than in healthy subjects, and even in the ipsilateral sound stimulation (right ear stimulation), It was found that one of the three cases was extended.

慢性めまいの患者では,2例中1例で左側頭の潜時が延長する結果が得られた。一方,モヤモヤ病の患者では,両側頭共に潜時に健常者との有意な差は認められなかった。   In patients with chronic dizziness, one out of two cases showed a prolonged left temporal latency. On the other hand, in patients with moyamoya disease, there was no significant difference in the latency of both sides from healthy subjects.

なお,詳細な説明は省略するが,生体に印加する光,音等の刺激信号の印加の開始に同期する同期信号を,脳磁場の信号と対として収集し,複数方向から計測された脳磁場の波形の時間軸が,同期信号が収集された時点で共通の原点(t=0)を持つように,時間軸の変換,即ち,時間軸の平行移動する変換を行なう。次に,第1の実施例〜第4の実施例と同様にして,ベクトル強度I(x,y,t)とその位相θ(x,y,t)を求め,最大ベクトルの時間−強度プロット(t−Imax),及び時間−位相プロット(t−θ),あるいは,全てのチャンネルについての時間−位相・強度プロット(t−θ・I)を求め,表示できる。 Although detailed explanation is omitted, a synchronization signal synchronized with the start of application of a stimulus signal such as light and sound applied to a living body is collected as a pair with a brain magnetic field signal, and a brain magnetic field measured from a plurality of directions. The time axis is converted, that is, the time axis is translated so that the time axis of the waveform has a common origin (t = 0) when the synchronization signal is collected. Next, similarly to the first to fourth embodiments, the vector intensity I (x, y, t) and its phase θ (x, y, t) are obtained, and the time-intensity plot of the maximum vector is obtained. (T-I max ) and time-phase plot (t-θ), or time-phase / intensity plot (t-θ · I) for all channels can be obtained and displayed.

以上,説明した本発明の各実施例では,心磁場,又は,脳磁場の計測された磁場波形から得られるベクトル強度とその位相を使用するので,従来技術のように生体部位の各時刻に於ける状態を表わす多数の図(マップ)を用いて生体現象を解析することなく,従来技術で使用されていた数よりもはるかに少数の図(マップ)を用いて,心臓や脳に於ける生体の電気生理学的な興奮の時間変化を詳細に把握できる。   In each of the embodiments of the present invention described above, the vector intensity and the phase obtained from the measured magnetic field waveform of the cardiac magnetic field or the brain magnetic field are used. Without analyzing the biological phenomena using a large number of figures (maps) that represent the state of aging, using a much smaller figure (map) than the number used in the prior art, The time change of electrophysiological excitement can be grasped in detail.

本発明の第1の実施例の生体磁場計測装置の概略構成を説明する斜視図。The perspective view explaining schematic structure of the biomagnetic field measuring device of the 1st example of the present invention. 本発明の第1の実施例に於ける磁場センサの配置を説明する斜視図。The perspective view explaining arrangement | positioning of the magnetic field sensor in 1st Example of this invention. 本発明の第1の実施例に於ける生体磁場の法線成分を検出する磁場センサの構成を説明する斜視図。The perspective view explaining the structure of the magnetic field sensor which detects the normal line component of the biomagnetic field in 1st Example of this invention. 本発明の第1の実施例に於ける磁場センサの配置と人体の胸部の正面,背面との位置関係を説明する図。The figure explaining the positional relationship with arrangement | positioning of the magnetic field sensor in the 1st Example of this invention, and the front of a human body, and the back. 本発明の第1の実施例に於ける磁場センサの配置と人体の胸部との位置を合わせを行なう方法を説明する斜視図。The perspective view explaining the method of aligning arrangement | positioning of the magnetic field sensor in 1st Example of this invention, and the position with the chest of a human body. 本発明の第1の実施例に於ける生体磁場の計測,計測された信号の解析の流れを説明する図。The figure explaining the flow of the measurement of the biomagnetic field in the 1st Example of this invention, and the analysis of the measured signal. 本発明の第1の実施例に於いて,健常者を被検体として,正面,及び背面から計測された心磁場波形と,心磁場波形の計測と同時に計測された心電図波形の例を示す図。The figure which shows the example of the electrocardiogram waveform measured simultaneously with the measurement of the electrocardiogram waveform measured from the front and the back, and the electrocardiogram waveform in the first embodiment of the present invention with the healthy subject as the subject. 本発明の第1の実施例に於いて,正面から計測された健常者の心磁場波形のQRS波の開始点から30ms経過後の時間での電流アロー図,及び最大電流ベクトルを示す図。In the 1st Example of this invention, the current arrow figure in the time after 30 ms progress from the starting point of QRS wave of the healthy person's cardiac magnetic field waveform measured from the front, and the figure which shows the maximum current vector. 本発明の第1の実施例に於いて,最大ベクトルの位相の基準を示す図。The figure which shows the reference | standard of the phase of the largest vector in 1st Example of this invention. 本発明の第1の実施例に於いて,正面,及び背面から計測された健常者の心磁場波形のQRS波の開始点から200msまでの時間帯での時間−強度プロット(t−Imaxx)と,時間−位相プロット(t−θ)の表示例を示す図。In the first embodiment of the present invention, the time-intensity plot (t-I max x) in the time zone from the start point of the QRS wave of the cardiac magnetic field waveform of the healthy subject measured from the front and back to 200 ms. ) And a display example of a time-phase plot (t-θ). 本発明の第1の実施例に於いて,正面,及び背面から計測された右脚ブロックの患者の心磁波形のQRS波の開始点から200msまでの時間帯での時間−強度プロット(t−Imax)と,時間−位相プロット(t−θ)の表示例を示す図。In the first embodiment of the present invention, the time-intensity plot (t-) in the time zone from the start point of the QRS wave of the magnetocardiogram waveform of the right leg block patient measured from the front and back to 200 ms. The figure which shows the example of a display of Imax) and a time-phase plot (t-theta). 本発明の第2の実施例に於いて64チャンネルの全ての各チャンネルの各時間でのベクトルの時間−位相・強度プロットを行なう場合の,生体磁場の計測,計測された信号の解析の流れを説明する図。Flow of measurement of biomagnetic field and analysis of measured signal when performing time-phase / intensity plot of vector at each time of all 64 channels in the second embodiment of the present invention. Illustration to explain. 本発明の第2の実施例に於いて,健常者の正面から計測された心磁場波形のQRSの開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図。In the second embodiment of the present invention, the time-phase intensity plot of the vectors of all 64 channels in the time zone from the QRS start point of the cardiac magnetic field waveform measured from the front of the healthy subject to 200 ms is shown. The figure which shows the example of a display. 本発明の第2の実施例に於いて,健常者の背面から計測された心磁場波形のQRSの開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図。In the second embodiment of the present invention, the time-phase intensity plot of the vectors of all 64 channels in the time zone from the QRS start point of the cardiac magnetic field waveform measured from the back of the healthy subject to 200 ms is shown. The figure which shows the example of a display. 本発明の第2の実施例に於いて,正面から計測された右脚ブロックの患者の心磁波形のQRS波の開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図。In the second embodiment of the present invention, the time of the vectors of all 64 channels in the time zone from the start of the QRS wave of the magnetocardiogram waveform of the right leg block patient measured from the front to 200 ms− The figure which shows the example of a display of a phase intensity plot. 本発明の第2の実施例に於いて,背面から計測された右脚ブロックの患者の心磁波形のQRS波の開始点から200msまでの時間帯での64チャンネルの全チャンネルのベクトルの時間−位相強度プロットの表示例を示す図。In the second embodiment of the present invention, the time of the vectors of all the channels of 64 channels in the time zone from the start point of the QRS wave of the magnetocardiogram waveform of the right leg block patient measured from the back to 200 ms− The figure which shows the example of a display of a phase intensity plot. 本発明の第3の実施例に於いて使用する生体磁場の接線成分B,及びB成分を検出する磁場センサの構成例の概略を説明する図。Third tangential components B x biomagnetic field to be employed in the embodiment, and a schematic diagram for explaining the structural example of the magnetic field sensor for detecting the B y component of the present invention. 本発明の第4の実施例に於いて使用する,コイル全体として円の形状を持つ微分コイルの例を示す図。The figure which shows the example of the differential coil which has the shape of a circle as a whole coil used in the 4th Example of this invention. 本発明の第5の実施例に於いて使用する,正面,及び背面の方向から同時に心磁場計測を行なう生体磁場計測装置の構成例の概略を説明する図。The figure explaining the outline of the structural example of the biomagnetic field measuring apparatus which performs a cardiac magnetic field measurement simultaneously from the direction of the front and back used in the 5th Example of this invention. 本発明の第6の実施例に於いて聴性誘発された脳磁場を計測する生体磁場計測装置の構成例を説明する斜視図。The perspective view explaining the structural example of the biomagnetic field measuring apparatus which measures the cerebral magnetic field induced in auditory in the 6th Example of this invention. 本発明の第6の実施例に於ける磁場センサの配置と人体の頭部との位置関係を説明する図。The figure explaining the positional relationship of arrangement | positioning of the magnetic field sensor and head of a human body in the 6th Example of this invention. 本発明の第6の実施例に於ける脳磁場の計測の手順を説明する流れ図。The flowchart explaining the procedure of the measurement of the brain magnetic field in the 6th Example of this invention. 本発明の第6の実施例に於いて,健常者の脳磁場の計測結果の表示例と,最大ベクトルの抽出する原理を説明する図。The figure explaining the display example of the measurement result of a cerebral magnetic field of a healthy subject, and the principle which extracts a maximum vector in the 6th Example of this invention. 本発明の第6の実施例に於いて得られた最大電流ベクトルの強度比I/I(同側側刺激の強度/対側側刺激の強度)の結果例を示す図。6 illustrates an example of a result of the intensity ratio I i / I c of the maximum current vector obtained in the practice example (intensity of the intensity / contralateral side stimulation of ipsilateral stimulus) of the present invention. 本発明の第6の実施例に於いて得られた位相差|Δθ|の結果例を示す図。The figure which shows the example of a result of phase difference | (DELTA) (theta) | obtained in the 6th Example of this invention. 本発明の第6の実施例に於いて得られたN100mが出現した時間(潜時)を各側頭毎にまとめた結果例を示す図。The figure which shows the example of a result which put together the time (latency) when N100m obtained in the 6th Example of this invention appeared for every temporal region.

符号の説明Explanation of symbols

1…磁場シールドルーム,2…被検体,3…デュワ,3’−1…上部デュワ,3’−2…下部デュワ,4,4’…ベッド,5,5’…ガントリ,6…心電計用電極,7…心電計,8…FLL回路,9…アンプフィルター回路,10…データ収録解析装置,11…ディスプレイ(表示装置),12…レール,13…滑車,20,20−i(i=11,12,…,18;i=21,22,…,28;i=31,32,…,38;i=41,42,…,48;i=51,52,…,58;i=61,62,…,68;i=71,72,…,78;i=81,82,…,88),20’,20”…磁場センサ,21,21−1’,21−2’21”…SQUID,22,22’−1,22’−2…検出コイル,23,23’−1,23’−2…参照コイル,30…計測点,31,31’…計測基準点,40…被検体の基準点,41…x方向レーザ光源,42…y方向レーザ光源,43…x軸ライン形成用ビーム,44…y軸ライン形成用ビーム,45…xz標識(マーク),46…yz標識(マーク),49…交差線,50…微分コイル,181…アダプタ,182…エアーチューブ,183…音刺激装置,184…同期信号,211,213…電流アローマップ,212,214…計測された脳磁場の波形。
DESCRIPTION OF SYMBOLS 1 ... Magnetic field shield room, 2 ... Subject, 3 ... Dewar, 3'-1 ... Upper dewar, 3'-2 ... Lower dewar, 4, 4 '... Bed, 5, 5' ... Gantry, 6 ... Electrocardiograph Electrode, 7 ... Electrocardiograph, 8 ... FLL circuit, 9 ... Amplifier filter circuit, 10 ... Data recording analysis device, 11 ... Display (display device), 12 ... Rail, 13 ... Pulley, 20, 20-i (i = 11, 12, ..., 18; i = 21, 22, ..., 28; i = 31, 32, ..., 38; i = 41, 42, ..., 48; i = 51, 52, ..., 58; = 61, 62, ..., 68; i = 71, 72, ..., 78; i = 81, 82, ..., 88), 20 ', 20 "... magnetic field sensors, 21, 21-1', 21-2 ' 21 "... SQUID, 22, 22'-1, 22'-2 ... detection coil, 23, 23'-1, 23'-2 ... reference coil, 30 ... total Point, 31, 31 '... measurement reference point, 40 ... subject reference point, 41 ... x-direction laser light source, 42 ... y-direction laser light source, 43 ... x-axis line forming beam, 44 ... y-axis line forming beam , 45 ... xz mark (mark), 46 ... yz mark (mark), 49 ... crossing line, 50 ... differential coil, 181 ... adapter, 182 ... air tube, 183 ... sound stimulator, 184 ... synchronization signal, 211, 213 ... Current arrow map, 212, 214 ... Measured brain magnetic field waveform.

Claims (7)

生体から発生する生体磁場を計測する複数のSQUID磁束計と,
前記生体磁場以外の周期的に発生する生体信号を計測して収集する生体信号計測装置と,
計測された前記生体磁場の信号及び前記生体信号の演算処理を行なう演算処理装置と,
演算処理の結果を表示する表示装置とを有し,
前記生体磁場の計測と前記生体信号の計測を同時に行なうことを,複数方向から行ない,
前記演算処理装置は,
時間変数をtとして,前記複数方向で計測された前記生体信号を用いて,前記複数方向で計測された前記生体磁場の信号が共通原点(t=0)を持つように時間軸の変換を行ない,
前記生体信号と同時に計測された前記生体磁場信号の波形の時間軸に対して前記変換と同一の変換を行い、
前記生体の表面に接する面に垂直な方向をz方向,該z方向に直交し前記生体の表面に接する面に水平な方向をx方向及びy方向とし,前記共通原点(t=0)をもつ前記生体磁場の信号を用いて,前記生体磁場の各計測点(x,y)で2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を求め,
複数の前記計測点(x,y)における前記二次元磁場ベクトルのうち、最大の前記二次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を、前記共通原点(t=0)を原点とする時間軸の各点で求め、
前記表示装置に,前記最大の前記2次元磁場ベクトルの大きさ及び/又は前記角度時間変化が、前記生体磁場を計測した前記複数方向の各方向について表示されることを特徴とする生体磁場計測装置。
A plurality of SQUID magnetometers for measuring a biomagnetic field generated from a living body;
A biological signal measuring device for measuring and collecting biological signals generated periodically other than the biomagnetic field;
An arithmetic processing unit that performs arithmetic processing of the measured biomagnetic field signal and the biomedical signal;
A display device for displaying the result of the arithmetic processing;
Performing the measurement of the biomagnetic field and the biosignal simultaneously from a plurality of directions;
The arithmetic processing unit is:
Using the biological signal measured in the plurality of directions as a time variable, the time axis is converted so that the biomagnetic field signal measured in the plurality of directions has a common origin (t = 0). ,
Performing the same transformation as the transformation on the time axis of the waveform of the biomagnetic signal measured simultaneously with the biosignal,
The direction perpendicular to the surface that contacts the surface of the living body is the z direction, and the direction that is orthogonal to the z direction and that is horizontal to the surface that contacts the surface of the living body is the x direction and y direction, and has the common origin (t = 0) Using the biomagnetic field signal, obtain the magnitude of the two-dimensional magnetic field vector and / or the angle representing the direction in the xy plane at each measurement point (x, y) of the biomagnetic field,
Among the two-dimensional magnetic field vectors at the plurality of measurement points (x, y), an angle representing the maximum magnitude of the two-dimensional magnetic field vector and / or the direction on the xy plane is defined as the common origin (t = 0). At each point on the time axis with
The biomagnetic field measurement , wherein the display device displays the maximum magnitude of the two-dimensional magnetic field vector and / or the time change of the angle in each of the plurality of directions in which the biomagnetic field is measured. apparatus.
請求項1に記載の生体磁場計測装置に於いて,前記表示装置に,前記最大の前記2次元磁場ベクトルの大きさ及び/又は角度の時間変化が,前記生体磁場を計測した前記各方向について同一の時間軸を用いて表示されることを特徴とする生体磁場計測装置。   2. The biomagnetic field measurement apparatus according to claim 1, wherein the time change of the maximum two-dimensional magnetic field vector and / or the angle is the same for each direction in which the biomagnetic field is measured. A biomagnetic field measurement apparatus characterized by being displayed using the time axis. 請求項1に記載の生体磁場計測装置に於いて,前記表示装置に,前記最大の前記2次元磁場ベクトルの大きさ及び/又は角度の時間変化が,前記生体磁場を計測した前記各方向について異なるカラーで同一の時間軸を用いて表示されることを特徴とする生体磁場計測装置。   2. The biomagnetic field measurement apparatus according to claim 1, wherein a time change in the magnitude and / or angle of the maximum two-dimensional magnetic field vector is different in each direction in which the biomagnetic field is measured. A biomagnetic field measuring apparatus which is displayed in color and using the same time axis. 生体の心臓から発生する生体磁場を計測する複数のSQUID磁束計と,生体信号として,心電波形,心音波形,脈波形の何れかを計測する生体信号計測装置と,計測された前記生体磁場の信号及び前記生体信号の演算処理を行なう演算処理装置と,演算処理の結果を表示する表示装置とを有し,前記生体磁場の計測と前記生体信号の計測を同時に行なうことを,前記生体の胸面及び背面の2方向から行ない,前記演算処理装置は,前記生体の表面に接する面に垂直な方向をz方向,該z方向に直交し前記生体の表面に接する面に水平な方向をx方向及びy方向とし,時間変数をtとして,前記2方向から計測された前記生体信号の波形の時間軸が共通原点(t=0)を持つように,前記2方向から計測された前記生体信号の波形の時間軸の変換を行ない,前記生体信号と同時に計測された前記生体磁場の信号の波形の時間軸に対して前記変換と同一の変換を行ない,前記生体磁場を計測した前記2方向について,前記共通原点(t=0)をもつ前記生体磁場の信号から前記生体磁場の各計測点(x,y)に於ける2次元磁場ベクトルを求め,複数の前記計測点(x,y)に於ける前記2次元磁場ベクトルのうち最大の前記2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を,前記共通原点(t=0)を原点とする時間軸の各点で求め,前記表示装置に,前記最大の前記2次元磁場ベクトルの大きさ及び/又は角度の時間変化が,前記生体磁場を計測した前記2方向について表示されることを特徴とする生体磁場計測装置。   A plurality of SQUID magnetometers for measuring a biomagnetic field generated from the heart of a living body, a biosignal measuring device for measuring any one of an electrocardiogram waveform, a heart waveform, and a pulse waveform as a biosignal, and the measured biomagnetic field A signal processing unit that performs arithmetic processing on the signal and the biological signal, and a display device that displays a result of the arithmetic processing, and performing the measurement of the biomagnetic field and the measurement of the biological signal simultaneously. The calculation processing device is operated in two directions, ie, a surface and a back surface. The arithmetic processing unit is configured such that the direction perpendicular to the surface in contact with the surface of the living body is the z direction, and the direction perpendicular to the z direction and horizontal to the surface in contact with the surface of the living body And the y direction, the time variable t, and the time axis of the waveform of the biological signal measured from the two directions has a common origin (t = 0), the biological signal measured from the two directions. Waveform time axis Performing the same transformation as the transformation on the time axis of the waveform of the biomagnetic field signal measured simultaneously with the biomedical signal, and the common origin (t = 0), a two-dimensional magnetic field vector at each measurement point (x, y) of the biomagnetic field is obtained from the signal of the biomagnetic field having 0), and the two-dimensional magnetic field at a plurality of measurement points (x, y). An angle representing the magnitude of the maximum two-dimensional magnetic field vector and / or the direction on the xy plane among the vectors is obtained at each point on the time axis with the common origin (t = 0) as the origin, and the display device The biomagnetic field measurement apparatus, wherein the time change of the maximum magnitude and / or angle of the maximum two-dimensional magnetic field vector is displayed in the two directions in which the biomagnetic field is measured. 請求項4に記載の生体磁場計測装置に於いて,前記角度が0°となる方向を前記生体の体軸に垂直な左水平方向とし,前記角度が0°から180°の範囲,及び,0°から−180°の範囲で表示されることを特徴とする生体磁場計測装置。   5. The biomagnetic field measurement apparatus according to claim 4, wherein a direction in which the angle is 0 ° is a left horizontal direction perpendicular to the body axis of the living body, the angle is in a range of 0 ° to 180 °, and 0 A biomagnetic field measuring apparatus, characterized in that it is displayed in the range of ° to -180 °. 請求項4に記載の生体磁場計測装置に於いて,前記心臓の脚ブロック伝導障害に関する情報を検出することを特徴とする生体磁場計測装置。   5. The biomagnetic field measurement apparatus according to claim 4, wherein information on the leg block conduction disorder of the heart is detected. 生体の頭部から発生する生体磁場を計測する複数のSQUID磁束計と,前記生体を刺激する信号と前記刺激する信号の発生の開始に同期する同期信号を発生する刺激装置と,計測された前記生体磁場の信号及び前記同期信号の演算処理を行なう演算処理装置と,演算処理の結果を表示する表示装置とを有し,前記生体の頭部の複数方向の各方向から前記同期信号の計測と前記生体磁場の計測を行ない,前記演算処理装置は,前記生体の表面に接する面に垂直な方向をz方向,該z方向に直交し前記生体の表面に接する面に水平な方向をx方向及びy方向とし,時間変数をtとして,前記複数方向から計測された前記生体磁場の波形の時間軸が共通原点(t=0)を持つように,前記複数方向の各方向で計測された前記同期信号を前記共通原点(t=0)として,前記複数方向から計測された前記生体磁場の波形の時間軸の変換を行ない,前記生体磁場を計測した前記複数方向について,前記共通原点(t=0)をもつ前記生体磁場の信号から前記生体磁場の各計測点(x,y)に於ける2次元磁場ベクトルを求め,複数の前記計測点(x,y)に於ける前記2次元磁場ベクトルのうち最大の前記2次元磁場ベクトルの大きさ及び/又はxy面での方向を表わす角度を,前記共通原点(t=0)を原点とする時間軸の各点で求め,前記表示装置に,前記最大の前記2次元磁場ベクトルの大きさ及び/又は角度の時間変化が,前記生体磁場を計測した前記複数方向について表示されることを特徴とする生体磁場計測装置。   A plurality of SQUID magnetometers that measure a biomagnetic field generated from the head of the living body, a signal that stimulates the living body, and a stimulation device that generates a synchronization signal synchronized with the start of generation of the stimulating signal, and the measured An arithmetic processing unit that performs arithmetic processing of a biomagnetic field signal and the synchronization signal; and a display device that displays a result of the arithmetic processing; and measurement of the synchronization signal from each of a plurality of directions of the head of the living body The bio-magnetic field is measured, and the arithmetic processing unit is configured such that the direction perpendicular to the surface in contact with the surface of the living body is the z direction, the direction perpendicular to the z direction and horizontal to the surface in contact with the surface of the living body is the x direction, and The synchronization measured in each of the plurality of directions so that the time axis of the biomagnetic field waveform measured from the plurality of directions has a common origin (t = 0), where y is the time variable and t is the time variable. Signal to the common source (T = 0) The time axis of the waveform of the biomagnetic field measured from the plurality of directions is converted, and the living body having the common origin (t = 0) in the plurality of directions in which the biomagnetic field is measured. A two-dimensional magnetic field vector at each measurement point (x, y) of the biomagnetic field is obtained from the magnetic field signal, and the maximum 2 of the two-dimensional magnetic field vectors at the plurality of measurement points (x, y). An angle representing the magnitude of the dimensional magnetic field vector and / or the direction on the xy plane is obtained at each point on the time axis with the common origin (t = 0) as the origin, and the maximum two-dimensional A biomagnetic field measurement apparatus, wherein a time change of the magnitude and / or angle of a magnetic field vector is displayed for the plurality of directions in which the biomagnetic field is measured.
JP2003418909A 2003-12-17 2003-12-17 Biomagnetic field measurement device Expired - Lifetime JP3705285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418909A JP3705285B2 (en) 2003-12-17 2003-12-17 Biomagnetic field measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418909A JP3705285B2 (en) 2003-12-17 2003-12-17 Biomagnetic field measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001044424A Division JP3582495B2 (en) 2001-02-21 2001-02-21 Biomagnetic field measurement device

Publications (2)

Publication Number Publication Date
JP2004081894A JP2004081894A (en) 2004-03-18
JP3705285B2 true JP3705285B2 (en) 2005-10-12

Family

ID=32064792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418909A Expired - Lifetime JP3705285B2 (en) 2003-12-17 2003-12-17 Biomagnetic field measurement device

Country Status (1)

Country Link
JP (1) JP3705285B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077825B2 (en) * 2008-03-10 2012-11-21 横河電機株式会社 Marker coil and magnetic field detection system using the same
JP5105364B2 (en) * 2008-03-28 2012-12-26 学校法人金沢工業大学 Superconducting biomagnetic measuring device
JP6393173B2 (en) * 2014-12-02 2018-09-19 株式会社日立ハイテクノロジーズ Position estimation method and position estimation system

Also Published As

Publication number Publication date
JP2004081894A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3582495B2 (en) Biomagnetic field measurement device
US6665553B2 (en) Biomagnetic field measuring apparatus using squid magnetometers for evaluating a rotational property of a current in a subject
US6735460B2 (en) Biomagnetic field measuring method and apparatus
Hämäläinen et al. Magnetoencephalographic (MEG) characterization of dynamic brain activation
JP2007029401A (en) Motor function measuring instrument
Parkkonen Instrumentation and data preprocessing
JP2002125946A (en) Biological magnetic field measuring instrument
JP2019515757A (en) Device for measuring biomagnetic field
JP3067728B2 (en) Biomagnetic field measurement device
Moshage et al. Progress in biomagnetic imaging of heart arrhythmias
JP3705285B2 (en) Biomagnetic field measurement device
JP3518493B2 (en) Calculation method of isometric diagram of biomagnetic field
JP3196770B2 (en) Biomagnetic field measurement device
JP3231710B2 (en) A method for estimating the tangent component of a biomagnetic field parallel to a biological surface
JP3196769B2 (en) Biomagnetic field measurement device
JP3196771B2 (en) Magnetic field source analysis method
JP4078821B2 (en) Biomagnetic field measurement device
JP3525873B2 (en) Initial value estimation method in magnetic field source analysis method
JP3233127B2 (en) Biomagnetic field measurement device
Körber et al. Simultaneous measurements of somatosensory evoked AC and near-DC MEG signals
JP3196768B2 (en) Biomagnetic field measurement device
JP2004073894A (en) Calculating method for isofield contour map of biomagnetic field
Kandori et al. Two-dimensional mapping of impedance magnetocardiograms
Levin et al. Magnetoencephalography for localizing and characterizing the epileptic focus
Katila the beginning of biomagnetism research and magnetoencephalography in finland in the 1970s

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R151 Written notification of patent or utility model registration

Ref document number: 3705285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term