JP3196771B2 - Magnetic field source analysis method - Google Patents
Magnetic field source analysis methodInfo
- Publication number
- JP3196771B2 JP3196771B2 JP2000244019A JP2000244019A JP3196771B2 JP 3196771 B2 JP3196771 B2 JP 3196771B2 JP 2000244019 A JP2000244019 A JP 2000244019A JP 2000244019 A JP2000244019 A JP 2000244019A JP 3196771 B2 JP3196771 B2 JP 3196771B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- equation
- living body
- isomagnetic
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004458 analytical method Methods 0.000 title claims description 9
- 238000010586 diagram Methods 0.000 claims description 83
- 230000008859 change Effects 0.000 claims description 37
- 210000004556 brain Anatomy 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 26
- 238000011156 evaluation Methods 0.000 claims description 9
- 241000238366 Cephalopoda Species 0.000 claims description 6
- 238000005259 measurement Methods 0.000 description 72
- 239000013598 vector Substances 0.000 description 27
- 238000001514 detection method Methods 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 16
- 230000000747 cardiac effect Effects 0.000 description 15
- 238000009826 distribution Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 230000010354 integration Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 238000013213 extrapolation Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 210000000038 chest Anatomy 0.000 description 7
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 208000010125 myocardial infarction Diseases 0.000 description 6
- 210000004165 myocardium Anatomy 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000028161 membrane depolarization Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 230000002336 repolarization Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 241000375392 Tana Species 0.000 description 1
- 230000002763 arrhythmic effect Effects 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical compound CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は,生体の脳の神経活
動,心臓の心筋活動等により発生する生体磁場を,高感
度な量子干渉素子(SQUID:superconducting quant
um interferencedevice)からなる複数の磁束計を用い
て計測する生体磁場計測方法及び生体磁場計測装置に於
ける磁場源解析方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly sensitive quantum interference device (SQUID: superconducting quant
The present invention relates to a method of measuring a biomagnetic field using a plurality of magnetometers including a um interference device and a method of analyzing a magnetic field source in a biomagnetic measurement apparatus.
【0002】[0002]
【従来技術】本発明は,生体の脳の神経活動,心臓の心
筋活動等により発生する生体磁場を,高感度な量子干渉
素子(SQUID:superconducting
quantum interference devi
ce)からなる複数の磁束計を用いて計測する生体磁場
計測方法及び生体磁場計測装置に関する。2. Description of the Related Art The present invention relates to a highly sensitive quantum interference device (SQUID: superconducting device) that converts a biomagnetic field generated by neural activity of the brain of a living body, cardiac muscle activity of the heart, and the like.
quantum interference devi
The present invention relates to a biomagnetic field measurement method and a biomagnetic field measurement apparatus for performing measurement using a plurality of magnetometers comprising ce).
【0003】生体磁場としては,電流ダイポールが作り
出す磁場の他,生体内を流れる体積電流による磁場があ
る。生体磁場の法線成分(Bz(直交座標系でのZ成
分)又はBr(極座標系での動径成分))の計測は,体
積電流の影響を受けにくいと考えられている。従来技術
では,生体表面に対してSQUIDに接続した検出コイ
ルの面を平行に配置して,生体表面に垂直な法線成分で
あるBz又はBrを計測していた。生体磁場計測の結果
は,測定された磁場成分の時間変化を表わす波形,測定
された磁場成分の任意の時点での強度の等しい点を結ぶ
等磁場線図(コンターマップ)により表示されていた。
また,得られた等磁場線図から,生体磁場を発生してい
る磁場源を解析する種々の解析方法が提案されている
が,代表的な解析方法では磁場源を電流ダイポールに置
き換えて解析を行なっていた。The biomagnetic field includes a magnetic field generated by a current dipole and a magnetic field caused by a volume current flowing in a living body. It is considered that the measurement of the normal component (B z (Z component in the orthogonal coordinate system) or Br (radial component in the polar coordinate system)) of the biomagnetic field is hardly affected by the volume current. In the prior art, the surface of the detection coil connected to the SQUID to a living body surface is disposed in parallel, was measured B z or B r is a perpendicular normal component to the surface of the living body. The result of the biomagnetic field measurement was displayed as a waveform representing the time change of the measured magnetic field component and an isomagnetic field map (contour map) connecting points of the measured magnetic field component having the same intensity at an arbitrary point in time.
In addition, various analysis methods have been proposed to analyze the magnetic field source that is generating the biomagnetic field from the obtained isomagnetic field map. In a typical analysis method, the analysis is performed by replacing the magnetic field source with a current dipole. I was doing.
【0004】電流ダイポールが作る磁場の法線成分(B
z又はBr)の等磁場線図は,磁場源(電流ダイポール)
を中心として分離した位置に磁場の沸き出し極,磁場の
吸い込み極を持つパターンとなる。この2つの極での磁
場強度,2つの極の間の距離により,磁場源(電流ダイ
ポール)の大きさ,位置,方向等が解析されている。The normal component (B) of the magnetic field created by the current dipole
z or Br ) is a magnetic field source (current dipole)
Is a pattern having a magnetic field starting pole and a magnetic field suction pole at positions separated from the center. The size, position, direction, and the like of the magnetic field source (current dipole) are analyzed based on the magnetic field strength at the two poles and the distance between the two poles.
【0005】第1の従来技術(H.Hosaka an
d D.Cohen,J.Electrocardio
l.,9(4),426−432(1976))では,
心筋内の電流の方向や強さを見易くするため,計測され
た法線成分Bzの等磁場線図を用いて,心筋に分布する
電流源を表示する方法として,(数1)で定義される電
流ベクトル〈J(x,y)〉を各計測点上に矢印で表現
するアローマップが考案されている。なお以下の説明で
は,括弧〈 〉は〈 〉内の記号がベクトルであること
を示し,例えば,〈J〉はJがベクトルであることを表
わす。[0005] The first prior art (H. Hosaka an
d D. Cohen, J .; Electrocardio
l. , 9 (4), 426-432 (1976))
For clarity the direction and intensity of the current in the myocardium, with the isomagnetic field of the measured normal component B z, as a method for displaying a current source distributed in the myocardium, is defined by (Equation 1) An arrow map has been devised in which a current vector <J (x, y)> is expressed on each measurement point by an arrow. In the following description, parentheses <> indicate that the symbol in <> is a vector, for example, <J> indicates that J is a vector.
【0006】[0006]
【数1】 〈J(x,y)〉 =(∂Bz(x,y)/∂y)〈ex〉−(∂Bz(x,y)/∂x)〈ey〉 …(数1) (数1)に於いて,〈ex〉はx方向の単位ベクトル,
〈ey〉はy方向の単位ベクトルである。しかし,複数
の電流源が存在する時には,法線成分Bzの等磁場線図
から個々の電流源を判別しにくいという問題があった。[Number 1] <J (x, y)> = (∂B z (x, y) / ∂y) <e x> - (∂B z (x, y) / ∂x) <e y> ... ( number 1) (in Equation 1), <e x> is the x-direction of the unit vector,
<E y > is a unit vector in the y direction. However, when a plurality of current sources are present, there is a problem that the isomagnetic field of the normal component B z difficult to determine the individual current sources.
【0007】第2の従来技術(K.Tukada et
al.,Reveiw of the Scient
ific Instruments,66(10)50
85−5091(1995))では,分布する複数の電
流源を可視化するために,法線成分(Bz又はBr)を計
測するのではなく,検出コイルの面を生体表面に対して
垂直に配置して,接線成分Bx及びByを計測している。
計測された接線成分Bx,Byを各成分毎に等磁場線図と
して表示している。従来技術2で計測された接線成分B
x,Byは体積電流の影響が考えられるものの,(数2)
に従って,時刻tに於いて計測されたBx及びByを合成
した2次元ベクトル強度Bxyの等磁場線図では,常に電
流ダイポールの直上にピークが得られることから,複数
の電流ダイポールが存在する場合でも,各電流ダイポー
ルを分離して可視化できる。A second prior art (K. Tukada et. Al.)
al. , Revive of the Scient
ific Instruments, 66 (10) 50
In 85-5091 (1995)), in order to visualize a plurality of current sources distributed, rather than measure the normal component (B z or B r), perpendicular surfaces of the detection coil with respect to the living body surface arranged to, measures the tangential components B x and B y.
It measured tangential components B x, and a B y displayed as isomagnetic field for each component. Tangent component B measured in prior art 2
x, although B y is considered the influence of the volume current, (Equation 2)
Accordingly the isomagnetic field of a two-dimensional vector magnitude B xy obtained by combining the measured B x and B y at time t, always from a peak immediately above the current dipole can be obtained, there are a plurality of current dipoles In this case, each current dipole can be separated and visualized.
【0008】[0008]
【数2】 │Bxy(x,y,t)│ =√{(Bx(x,y,t))2+(By(x,y,t))2} …(数2) 第3の従来技術(Y.Yoshida et al.,
Tenth International Confe
rence on Biomagnetism,San
tana Fe,New Mexico,Feb.20
(1996))では,コイルの面がそれぞれ直交した3
つの検出コイルからなるベクトル磁場センサを用いて生
体磁場の法線成分と2つの接線成分を検出し,磁場成分
の検出結果を直交座標系に変換して,直交座標系の成分
Bx,By,Bzを求め,法線成分Bz及び2次元ベクトル
強度Bxyの等磁場線図をそれぞれ表示している。| B xy (x, y, t) | = ((B x (x, y, t)) 2 + (B y (x, y, t)) 2 } (Equation 2) 3 prior art (Y. Yoshida et al.,
Tenth International Confes
rence on Biomagnetism, San
tana Fe, New Mexico, Feb. 20
(1996)), the three planes of the coil were orthogonal to each other.
One of using vector magnetic field sensor comprising a detecting coil to detect the normal component and two tangential components of the biomagnetic field, converts the detection result of the magnetic field components in orthogonal coordinate system, an orthogonal coordinate system of the component B x, B y , Bz are obtained, and isomagnetic field diagrams of the normal component Bz and the two-dimensional vector intensity Bxy are displayed.
【0009】第4の従来技術(K.Tsukada,e
t.al.,Tenth International
Conference on Biomagneti
sm,Santana Fe,New Mexico,
Feb.20(1996))では,生体磁場の2つの接
線成分Bx,Byを検出し,|Bxy|=|Bx+By|に基
づく等磁場線図と法線成分Bzに基づく等磁場線図との
比較を行なっている。A fourth prior art (K. Tsukada, e)
t. al. , Tenth International
Conference on Biomagneti
sm, Santana Fe, New Mexico,
Feb. 20 (1996)), the two tangential components B x biomagnetic field to detect B y, | B xy | = | B x + B y | in based like magnetic field diagrams and the like magnetic field based on the normal component B z Comparison with the diagram is performed.
【0010】生体内の電気的生理学現象の計測結果を表
す図として,脳波計により計測して得る脳波図(ME
G,magnetoencephalogram),心電計により計測して得
る心電図(ECG,electrocardiogram)がある。心電
図の計測に於いて,複数の電極を用いて心電図形をマッ
ピングする体表面心電図(body surface potential map)
は周知の技術である。これらの脳波図,又は体表面心電
図は,等しい電位点を結ぶ等電位線図として表示されて
いた。An electroencephalogram (ME) obtained by measuring with an electroencephalograph as a diagram showing a result of measurement of an electrophysiological phenomenon in a living body.
G, magnetoencephalogram) and an electrocardiogram (ECG, electrocardiogram) obtained by measuring with an electrocardiograph. A body surface potential map that maps an electrocardiogram using multiple electrodes in the measurement of an electrocardiogram
Is a well-known technique. These electroencephalograms or body surface electrocardiograms were displayed as equipotential maps connecting equal potential points.
【0011】第5の従来技術(T.J.Montagu
e et al.,Circulation 63,N
o.5,pp1166−1172(1981))では,
複数の電極の各電極の出力の時間変化を表わす波形を任
意の時間区間で積分した等積分図(isointegral map)
を,体表面心電図として表示している。A fifth prior art (TJ Montagu)
e et al. , Circulation 63, N
o. 5, pp1166-1172 (1981))
Isointegral map that integrates the waveform representing the time change of the output of each electrode of multiple electrodes in an arbitrary time interval
Is displayed as a body surface electrocardiogram.
【0012】[0012]
【発明が解決しようとする課題】以下の説明では,「生
体磁場」は「生体磁場から発する磁場」を意味し,「心
磁場計測」は,「心臓から発する磁場の計測」を意味
し,「心磁波形」は,「心磁場計測により得た心磁図
(MCG,Magnetocardiogram)が表わす波形」を意味
する。また,「脳磁場計測」は,「脳から発する磁場の
計測」を意味し,「脳磁波形」は,「脳磁場計測により
得た脳磁図(MEG,Magnetoencephalogram)が表わす
波形」を意味する。In the following description, "biomagnetic field" means "magnetic field generated from biomagnetic field", "cardiac magnetic field measurement" means "measurement of magnetic field generated from heart", and " The “magnetocardiogram waveform” means “a waveform represented by a magnetocardiogram (MCG, Magnetocardiogram) obtained by measuring a magnetocardiogram”. “Measurement of brain magnetic field” means “measurement of magnetic field generated from the brain”, and “magnetoencephalogram waveform” means “waveform represented by MEG (Magnetoencephalogram) obtained by brain magnetic field measurement”.
【0013】従来技術に於ける各成分毎の等磁場線図は
それぞれ特徴があり,単一電流ダイポールが存在する時
には,法線成分Bzの等磁場線図では,電流源の位置,
大きさ,方向等が容易に解析できる。一方,接線成分B
x,Byの計測結果から得る2次元ベクトル強度Bxyの等
磁場線図では,複数の電流ダイポールが存在する時で
も,容易に各電流ダイポールを判別できる特徴がある。
しかし,磁場を検出するコイルの数はx,y方向それぞ
れに必要であるため,法線成分Bzのみの検出に比べて
コイル数が2倍になる。また,Bx,By,Bzの全ての
成分を計測するベクトル計測では,法線成分Bzのみの
検出に比べて3倍の数のコイルが必要となる。このた
め,検出コイルとSQUIDからなる磁場センサの数は
増加し,更に,信号処理回路等も増加し,生体磁場計測
システムは高価なシステムとなってしまうという問題が
あった。また,第1の従来技術では,各計測点上にアロ
ーを表示するだけであり,電流源の詳細な分布状態が識
別しにくいという問題があった。[0013] isomagnetic field for each in the prior art component is characterized respectively, when a single current dipole exists, the isomagnetic field of the normal component B z, of the current source position,
Size, direction, etc. can be easily analyzed. On the other hand, the tangent component B
x, in isomagnetic field of a two-dimensional vector magnitude B xy obtained from the measurement results of B y, even when the plurality of current dipoles are present, is characterized readily determine each current dipole.
However, the number of coils for detecting a magnetic field x, because it is required in the y-direction, respectively, the number of coils is doubled as compared with the detection of the normal component B z only. Also, B x, B y, the vector measurement for measuring all the components B z, it is necessary to 3 times the number of coils in comparison to the detection of the normal component B z only. For this reason, the number of magnetic field sensors including the detection coil and the SQUID increases, and further, the number of signal processing circuits and the like increases, and there is a problem that the biomagnetic field measurement system becomes an expensive system. Further, in the first conventional technique, there is a problem that only an arrow is displayed on each measurement point, and it is difficult to identify a detailed distribution state of the current source.
【0014】生体磁場成分で表わした等磁場線図によ
り,任意の時点での生体内の電流源の位置,大きさ,方
向等を解析でき詳細な電流源の位置,大きさ,方向等の
情報の変化を知ることができる。従来技術では,装置に
表示,又は出力された多数の図を用いて各種情報のダイ
ナミックな変化をとらえ疾患等の診断を行っていた。し
かし,従来技術では,診断のために各種情報を表す多数
の図を必要とし,各種情報の変化の異常を経験的に行っ
ていた。この様に従来技術では,どの生体部位でどのよ
うな大きさの電流が流れたか,又は異常な生体電流が流
れている領域がどこであるか等を表わす総合的な情報を
1つの図として表示するための処理は実行されていなか
った。また,体表面心電図では,任意の時間間隔(Q,
R,Sの各波の発生する期間,S波からT波の発生する
期間等)での積分値の等しい点を示す等積分図では,連
続する各時刻での等電位線図を複数必要とせず,1つの
心電図形で心臓の情報を得ることができる。しかし,等
電位線図では心臓内の電流源を1つの電流ダイポールと
仮定しておくと,電流ダイポールの直上ではなく電流ダ
イポールの直上から離れた位置に陽極のピークと陰極の
ピークが存在する図形となってしまうという問題があ
る。更に,電流ダイポールの位置が変化せず電流ダイポ
ールの方向が変化すると陽極及び陰極のピーク位置が変
化してしまい,電位を積分する時に電流源と積分値のピ
ークとが対応しなくなるという問題があった。また,生
体磁場計測により得る生体磁場の成分を単に積分して
も,心電図の場合と同様に,生体磁場成分のピーク位置
と電流源の位置が対応しないという問題があった。ま
た,心電図から得る等積分図のみでは,臓器の位置,大
きさ等の個人差があり単純に等積分図から疾患等の異常
を正確に判断することが困難であるという問題があっ
た。The position, size, direction, etc. of the current source in the living body at any time can be analyzed from the isomagnetic field diagram represented by the biomagnetic field component, and detailed information on the position, size, direction, etc. of the current source can be analyzed. You can know the change. In the related art, a diagnosis of a disease or the like is performed by capturing a dynamic change of various information using a large number of figures displayed or output on an apparatus. However, in the related art, a large number of diagrams representing various information are required for diagnosis, and abnormal changes in various information are empirically performed. As described above, in the related art, comprehensive information indicating which magnitude of current flows in which part of the living body, or where an abnormal biocurrent is flowing is displayed as one diagram. Has not been executed. In the body surface electrocardiogram, arbitrary time intervals (Q,
In the isointegral diagram showing the points where the integral values are equal in the period in which the R and S waves are generated, the period in which the S wave is generated in the T wave, etc., it is necessary to have a plurality of equipotential diagrams at each successive time. Instead, heart information can be obtained with one electrocardiogram. However, assuming that the current source in the heart is a single current dipole in the equipotential diagram, a diagram in which the anode peak and the cathode peak exist not directly on the current dipole but at a position distant from the current dipole There is a problem that it becomes. Furthermore, if the position of the current dipole does not change and the direction of the current dipole changes, the peak positions of the anode and the cathode change, and there is a problem that the peak of the current source does not correspond to the peak of the integrated value when integrating the potential. Was. Further, even if the components of the biomagnetic field obtained by the biomagnetic field measurement are simply integrated, there is a problem that the position of the peak of the biomagnetic field component does not correspond to the position of the current source as in the case of the electrocardiogram. In addition, there is a problem that it is difficult to accurately determine an abnormality such as a disease simply from the isointegral diagram due to individual differences in the position, size, and the like of an organ only with the isointegral diagram obtained from the electrocardiogram.
【0015】本発明の目的は,従来技術で必要としてい
た図(マップ)の数よりもはるかに少数の図(マップ)
を用いて,生体部位の全体の状態を把握できる生体磁場
計測方法及び生体磁場計測装置を提供することにある。An object of the present invention is to reduce the number of diagrams (maps) much more than required in the prior art.
It is an object of the present invention to provide a biomagnetic field measuring method and a biomagnetic field measuring apparatus which can grasp the entire state of a living body part using the method.
【0016】本発明の他の目的は,検出コイルの数を増
加させることなく,生体磁場の垂直成分Bzを計測して
磁場源の解析を可能とする生体磁場計測方法及び生体磁
場計測装置を提供することにある。Another object of the present invention is to provide a biomagnetic field measuring method and a biomagnetic field measuring apparatus which can measure a vertical component Bz of a biomagnetic field and analyze a magnetic field source without increasing the number of detection coils. To provide.
【0017】[0017]
【課題を解決するための手段】本発明の生体磁場計測方
法では,(1)量子干渉素子(SQUID)からなり,
生体の外部に配置される複数の磁束計を用いて,生体か
ら発する生体磁場の生体の面に垂直な第1方向の磁場成
分の時間変化を計測する第1の工程と,第1方向と交叉
する第2方向及び第3方向に於ける第1方向の磁場成分
の変化率の2乗和の平方根に比例する値の時間変化を表
わす波形を求める第2の工程と,この第2の工程で得る
波形を所定の期間で積分し積分値を求める第3の工程
と,この第3の工程の工程で得る積分値を表示する第4
の工程とを有することに特徴があり,更に,(2)量子
干渉素子(SQUID)からなり,生体の外部に配置さ
れる複数の磁束計を用いて,生体から発する生体磁場の
生体の面に平行な第1,第2方向の磁場成分の時間変化
を計測する第1の工程と,第1,第2方向の磁場成分の
2乗和の平方根に比例する値の時間変化を表わす波形を
求める第2の工程と,この第2の工程で得る波形を所定
の期間で積分し積分値を求める第3の工程と,この第3
の工程の工程で得る積分値を表示する第4の工程とを有
することに特徴がある。また上記(1),(2)の特徴
を有する生体磁場計測方法に於いて,上記の積分値を用
いて,内挿,外挿により,上記の第4の工程で積分値が
等しい点を結ぶ等積分図を表示すること,上記の第3の
工程に於いて,上記の第2の工程で得る上記の波形を所
定の期間で積分し積分値を求めることを,複数の所定の
期間で行ない積分値を複数個求め,この複数個の積分値
の間での,比,等加重を含む和又は差の何れかを求める
演算を行なうことにも特徴がある。なお,直交座標系
(x,y,z)に於いて,生体表面に垂直な方向をz軸
とし,第1方向をz方向,第2方向をx方向,第3方向
をy方向とする。また,極座標系(r,θ,φ)におい
て,生体表面に垂直な方向をr軸とし,第1方向をr方
向,第2方向をθ方向,第3方向をφ方向とする。According to the biomagnetic field measuring method of the present invention, (1) a quantum interference device (SQUID)
A first step of measuring a temporal change of a magnetic field component of a biomagnetic field emitted from the living body in a first direction perpendicular to the surface of the living body using a plurality of magnetometers disposed outside the living body, and intersecting the first direction. A second step of obtaining a waveform representing a time change of a value proportional to the square root of the sum of squares of the change rate of the magnetic field component in the first direction in the second direction and the third direction; A third step of integrating the obtained waveform in a predetermined period to obtain an integrated value, and a fourth step of displaying the integrated value obtained in the step of the third step.
And (2) a quantum interferometer (SQUID), and a plurality of magnetometers arranged outside the living body are used to apply a biomagnetic field generated from the living body to the surface of the living body. A first step of measuring the time change of the magnetic field components in the parallel first and second directions, and obtaining a waveform representing a time change of a value proportional to the square root of the sum of squares of the magnetic field components in the first and second directions; A second step, a third step of integrating the waveform obtained in the second step for a predetermined period to obtain an integrated value, and a third step of
And a fourth step of displaying an integrated value obtained in the step of the above step. Further, in the biomagnetic field measuring method having the features of the above (1) and (2), the points where the integral values are equal in the fourth step are connected by interpolation and extrapolation using the above integral values. Displaying an isointegral diagram and, in the third step, integrating the waveform obtained in the second step in a predetermined period to obtain an integral value are performed in a plurality of predetermined periods. It is also characterized in that a plurality of integrated values are obtained, and an operation for obtaining any of a sum or a difference including a ratio, equal weight, and the like among the plurality of integrated values is performed. In the orthogonal coordinate system (x, y, z), the direction perpendicular to the surface of the living body is set as the z-axis, the first direction is set as the z direction, the second direction is set as the x direction, and the third direction is set as the y direction. In the polar coordinate system (r, θ, φ), a direction perpendicular to the surface of the living body is defined as an r axis, a first direction is defined as an r direction, a second direction is defined as a θ direction, and a third direction is defined as a φ direction.
【0018】本発明の生体磁場計測装置では,(1)量
子干渉素子(SQUID)からなり生体から発する生体
磁場を信号として検出する,生体の外部に配置される複
数の磁束計と,信号の演算処理を行なう演算処理手段
と,演算処理結果を表示する表示手段とを有し,生体磁
場分布を計測する生体磁場計測装置に於いて,磁束計
は,生体磁場の生体の面に垂直な第1方向の磁場成分の
時間変化を検出し,演算処理手段は,第1方向と交叉す
る第2方向及び第3方向に於ける第1方向の磁場成分の
変化率の2乗和の平方根に比例する値の時間変化を表わ
す波形を求める演算と,この波形を所定の期間で積分し
積分値を求める演算とを行ない,表示手段に積分値を表
示することに特徴があり,更に,(2)同上の生体磁場
計測装置に於いて,磁束計は,生体磁場の生体の面に平
行な第1,第2方向の磁場成分の時間変化を検出し,演
算処理手段は,第1,第2方向の磁場成分の2乗和の平
方根に比例する値の時間変化を表わす波形を求める演算
と,この波形を所定の期間で積分し積分値を求める演算
とを行ない,表示手段に積分値を表示することに特徴が
ある。また,上記(1),(2)の特徴を有する生体磁
場計測装置に於いて,表示手段に,内挿,外挿により積
分値の等しい点を結ぶ等積分図が表示されること,演算
処理手段は,上記波形を所定の期間で積分し積分値を求
めることを,複数の所定の期間で行ない積分値を複数個
求め,この複数個の積分値の間での,比,等加重を含む
和又は差の何れかを求める演算を行なうこと,複数の磁
束計が,生体の面に等間隔に配置されることにも特徴が
ある。本発明の生体磁場計測装置では,心臓から発する
磁場の,胸面に対する法線(垂直)成分,接線(平行)
成分の同時表示が可能である。なお,直交座標系(x,
y,z)に於いて,生体表面に垂直な方向をz軸とし,
第1方向をz方向,第2方向をx方向,第3方向をy方
向とする。また,極座標系(r,θ,φ)において,生
体表面に垂直な方向をr軸とし,第1方向をr方向,第
2方向をθ方向,第3方向をφ方向とする。According to the biomagnetic field measuring apparatus of the present invention, (1) a plurality of magnetometers, which are composed of quantum interference devices (SQUIDs) and detect a biomagnetic field emitted from a living body as a signal, and are arranged outside the living body, In a biomagnetic field measuring apparatus for measuring a biomagnetic field distribution, the magnetometer includes a calculation processing means for performing a process and a display means for displaying a calculation processing result. The time change of the magnetic field component in the direction is detected, and the arithmetic processing means is proportional to the square root of the sum of squares of the change rate of the magnetic field component in the first direction in the second direction and the third direction crossing the first direction. It is characterized by performing a calculation for obtaining a waveform representing a time change of a value and a calculation for integrating the waveform over a predetermined period to obtain an integrated value, and displaying the integrated value on a display means. Magnetic field measurement device The meter detects the time change of the magnetic field components in the first and second directions parallel to the surface of the living body of the biomagnetic field, and the arithmetic processing means is proportional to the square root of the sum of squares of the magnetic field components in the first and second directions. It is characterized in that a calculation for obtaining a waveform representing a time change of the value to be performed and a calculation for integrating the waveform over a predetermined period to obtain an integrated value are performed, and the integrated value is displayed on the display means. Further, in the biomagnetic field measuring apparatus having the features of the above (1) and (2), the display means displays an isointegral diagram connecting points having the same integral value by interpolation and extrapolation. The means integrates the waveform over a predetermined period to obtain an integrated value over a plurality of predetermined periods, obtains a plurality of integrated values, and includes a ratio and an equal weight among the plurality of integrated values. It is also characterized in that the calculation for obtaining either the sum or the difference is performed, and a plurality of magnetometers are arranged at equal intervals on the surface of the living body. In the biomagnetic field measurement apparatus of the present invention, the normal (vertical) component and the tangent (parallel) of the magnetic field generated from the heart with respect to the chest surface
Simultaneous display of components is possible. Note that a rectangular coordinate system (x,
y, z), the direction perpendicular to the living body surface is the z axis,
The first direction is the z direction, the second direction is the x direction, and the third direction is the y direction. In the polar coordinate system (r, θ, φ), a direction perpendicular to the surface of the living body is defined as an r axis, a first direction is defined as an r direction, a second direction is defined as a θ direction, and a third direction is defined as a φ direction.
【0019】本発明の本質的な特徴は,生体表面に垂直
な方向を直交座標(x,y,z)のz軸とし,生体表面
に平行な面を(x,y)平面とする時,生体磁場の生体
表面に垂直な法線成分Bz(x,y)を検出し,生体磁場
の生体表面に平行な接線成分Bx,Byをそれぞれ,法線
成分Bzのx方向,y方向に於ける変化率から推定する
ことに特徴がある。An essential feature of the present invention is that when a direction perpendicular to the surface of a living body is set as the z-axis of rectangular coordinates (x, y, z) and a plane parallel to the surface of the living body is set as an (x, y) plane, perpendicular normal component to the living body surface of the biomagnetic field B z (x, y) is detected and tangential component parallel to the biological surface of the biomagnetic field B x, B y, respectively, x-direction of the normal component B z, y The feature is that it is estimated from the rate of change in the direction.
【0020】本発明によれば,接線成分Bx,Byを測定
する検出コイルを必要とすることなく,生体の磁場分布
を2次元(x,y)平面に投影した等磁場線図を得るこ
とができ,等磁場線図のピークパターンから生体内の電
流源を判別でき,複数の電流ダイポールの(x,y)座
標での位置を知ることができる。According to the invention, obtained tangential components B x, without the need for a detection coil for measuring the B y, the magnetic field distribution of the living body 2D (x, y) the isomagnetic field projected on a plane The current source in the living body can be determined from the peak pattern of the isomagnetic field map, and the positions of a plurality of current dipoles at (x, y) coordinates can be known.
【0021】以下,本発明に於ける演算処理手段(複数
の磁束計により計測された信号を収集し,信号に対して
以下の演算処理を行なうパソコン等の計算機,又は専用
的にハードウエア化され演算処理を行なう電子回路)に
て行なう演算処理の内容に付いて説明する。Hereinafter, the arithmetic processing means of the present invention (a computer such as a personal computer that collects signals measured by a plurality of magnetometers and performs the following arithmetic processing on the signals, or a dedicated hardware The contents of the arithmetic processing performed by the electronic circuit for performing the arithmetic processing) will be described.
【0022】量子干渉素子(SQUID)からなる複数
の磁束計を用いて,生体表面の位置(x,y)に於いて
生体から発する磁場の接線成分(生体の面に平行な成
分)Bx(x,y,t),By(x,y,t)を計測する
場合には(但し,直交座標系(x,y,z)に於いて生
体の面に平行な面をxy面,生体の面に垂直な軸をzと
する),接線成分Bx(x,y,t)とBy(x,y,
t)の2乗和の平方根から2次元ベクトル強度│B
xy(x,y)│(以下,│ │は絶対値を表わす)を
(数3)により求める。Using a plurality of magnetometers composed of quantum interference devices (SQUIDs), a tangential component (a component parallel to the surface of the living body) of a magnetic field emitted from the living body at a position (x, y) on the surface of the living body, B x ( x, y, t), B y (x, y, in the case of measuring the t) (where the orthogonal coordinate system (x, y, z) xy plane parallel to the plane of the living body at the biological of the z axis perpendicular to the plane), the tangential component B x (x, y, t ) and B y (x, y,
t) From the square root of the sum of squares of two-dimensional vector intensity | B
xy (x, y) | (hereinafter, | │ represents an absolute value) is obtained by (Equation 3).
【0023】[0023]
【数3】 │Bxy(x,y,t)│=√{(Bx(x,y,t))2 +(By(x,y,t))2} …(数3) 次いで,各点(x,y)について任意の期間での波形│
Bxy(x,y,t)│の積分値I1(x,y)を(数
4)により求め,内挿,外挿により各点(x,y)での
積分値I1(x,y)が同じ値の点を結ぶ等積分図を求
めて,等積分図を表示画面に表示する。| B xy (x, y, t) | = {(B x (x, y, t)) 2 + (B y (x, y, t)) 2 } (Equation 3) , Waveform at an arbitrary period for each point (x, y) |
B xy (x, y, t ) │ integrated value I 1 (x, y) and calculated by equation (4), the interpolation, the integral value I 1 at each point by extrapolation (x, y) (x, y) obtains an isointegral diagram connecting points having the same value, and displays the isointegral diagram on the display screen.
【0024】[0024]
【数4】 I1(x,y)=∫│Bxy(x,y,t)│dt …(数4) 以下,計測された生体の面に垂直な磁場成分Bz(x,
y,t)(法線成分)から,接線成分Bx,Byを推定す
ること説明する。I 1 (x, y) = ∫ | B xy (x, y, t) | dt (Equation 4) Hereinafter, the measured magnetic field component B z (x,
The estimation of the tangent components B x and B y from (y, t) (normal component) will be described.
【0025】生体磁場の体表面に平行な接線成分は,体
表面直下を流れる電流を最もよく反映していることを利
用すると,電流の流れる向きと磁場の向きの関係から,
計測された磁場の接線ベクトル(Bx,By)を反時計回
りに90°回転させることにより,生体内の電流分布を
生体表面に平行な2次元平面に投影して概観できる。即
ち,〈ex〉,〈ey〉をそれぞれx軸方向,y軸方向の
単位ベクトルとして,各計測点に於ける接線成分Bx,
Byから,(数5)に示す電流ベクトク〈J〉を求め,
各計測点(x,y)に於ける電流ベクトル場の分布(ア
ローマップ)として表現することができる。Taking advantage of the fact that the tangential component parallel to the body surface of the biomagnetic field reflects the current flowing directly below the body surface best, the relationship between the current flowing direction and the magnetic field direction is given by
By rotating the tangent vector (B x , B y ) of the measured magnetic field by 90 ° in a counterclockwise direction, the current distribution in the living body can be projected on a two-dimensional plane parallel to the surface of the living body to give an overview. That, <e x>, <e y> the x-axis direction, a unit vector in the y-axis direction, in the tangential component B x in the respective measurement points,
From B y, seek Bekutoku <J> current shown in (5),
It can be expressed as a distribution (arrow map) of a current vector field at each measurement point (x, y).
【0026】[0026]
【数5】 〈J〉=−By〈ex〉+Bx〈ey〉 …(数5) 一方,磁場の生体表面に垂直な法線成分Bzを計測する
場合,(数1)により表現される電流ベクトルを用いた
アローマップが定義されている(第1の従来技術:H,
Hosaka and D.Cohen(197
6))。Equation 5] <J> = - B y < e x> + B x <e y> ... ( 5) On the other hand, when measuring the perpendicular normal component B z to a biological surface of the magnetic field, by (Equation 1) An arrow map using the expressed current vector is defined (first conventional technique: H,
Hosaka and D.S. Cohen (197
6)).
【0027】本願発明の発明者らは,(数1)と(数
5)との比較から,(数6)及び(数7)が成立する可
能性,即ち,計測された磁場の法線成分Bzから接線成
分Bx及びByを導出できる可能性があることを見い出
し,種々の検討を行なった。以下,検討の結果を詳細に
説明する。From the comparison between (Equation 1) and (Equation 5), the inventors of the present invention have a possibility that (Equation 6) and (Equation 7) are satisfied, that is, the normal component of the measured magnetic field. It found that there is a possibility of deriving the tangential components B x and B y of B z, conducted various studies. Hereinafter, the results of the study will be described in detail.
【0028】[0028]
【数6】 Bx=−(∂Bz/∂x) …(数6)B x = − (∂B z / ∂x) (Equation 6)
【0029】[0029]
【数7】 By=−(∂Bz/∂y) …(数7) 図1は,心臓の活動による磁場(心磁場)の発生を,無
限平面導体中の電流ダイポールから発生する磁場により
モデル化して解析するための図である。図1に於いて,
Pは直交座標系(x,y,z)のxy面に表面を持つ無
限平面導体,〈Q〉は位置ベクトル〈r0(x0,y0,
z0)〉で示される位置に存在する電流ダイポールのモ
ーメント,〈r(x,y,z)〉は磁束密度(磁場)
〈B(r)〉を計測する計測点の位置ベクトルを示す。
図1に示すモデルに於いて,無限平面導体Pの外部に生
じる磁場〈B(r)〉は,Sarvas(文献:Phy
s.Med.Biol.,Vol.32,No.1,1
1−22(1987))により定式化されており,(数
8)により表現される。Equation 7] B y = - (∂B z / ∂y) ... ( 7) 1, the generation of the magnetic field (cardiac magnetic field) by activity of the heart, the magnetic field generated from a current dipole in the infinite plane conductor It is a figure for modeling and analyzing. In FIG.
P is an infinite plane conductor having a surface on the xy plane of a rectangular coordinate system (x, y, z), and <Q> is a position vector <r 0 (x 0 , y 0 ,
z 0 )>, the moment of the current dipole existing at the position indicated by <r (x, y, z)> is the magnetic flux density (magnetic field)
It shows the position vector of the measurement point for measuring <B (r)>.
In the model shown in FIG. 1, the magnetic field <B (r)> generated outside the infinite planar conductor P is Sarvas (reference: Phy).
s. Med. Biol. , Vol. 32, no. 1,1
1-22 (1987)) and is expressed by (Equation 8).
【0030】[0030]
【数8】 〈B(r)〉={μ0/(4πK2)}{〈Q〉×〈a〉・〈ez〉∇K −K〈ez〉×〈Q〉} …(数8) (数8)に於いて,μ0は真空の透磁率,〈ez〉はz軸
方向の単位ベクトル,×はベクトル積,・はスカラ積,
∇はgrad=(∂/∂x,∂/∂y,∂/∂z)を表
わし,〈a〉は(数9),aは(数10),Kは(数1
1),∇Kは(数12)により示される。| |は絶対
値を示す。Equation 8] <B (r)> = { μ 0 / (4πK 2)} {<Q> × <a> · <e z> ∇K -K <e z> × <Q>} ... ( number 8 ) In equation (8), μ 0 is the magnetic permeability of vacuum, <e z > is a unit vector in the z-axis direction, × is a vector product, • is a scalar product,
∇ represents grad = (∂ / ∂x, ∂ / ∂y, ∂ / ∂z), <a> is (Equation 9), a is (Equation 10), and K is (Equation 1)
1) and ∇K are represented by (Equation 12). || indicates an absolute value.
【0031】[0031]
【数9】 〈a〉=〈r(x,y,z)〉−〈r0(x0,y0,z0)〉 …(数9)<a> = <r (x, y, z)> − <r 0 (x 0 , y 0 , z 0 )> (Equation 9)
【0032】[0032]
【数10】 a=|〈a〉| …(数10)A = | <a> | (Equation 10)
【0033】[0033]
【数11】 K=a(a+〈a〉・〈ez〉) …(数11)[Number 11] K = a (a + <a> · <e z>) ... ( number 11)
【0034】[0034]
【数12】 ∇K=(2+a-1〈a〉・〈ez〉)〈a〉+a〈ez〉 …(数12) (数8)により示される〈B〉(r)の無限平面導体P
に平行な接線成分Bx及びByと,無限平面導体Pに垂直
なな法線成分Bzは,それぞれ(数13),(数1
4),(数15)により与えられる。Equation 12] ∇K = (2 + a -1 <a> · <e z>) <a> + a <e z> ... ( number 12) infinite plane conductor <B> represented by the equation (8) (r) P
Parallel tangential components B x and B y, the infinite plane conductor perpendicular Do normal component B z to P, respectively (equation 13), (Equation 1
4), given by (Equation 15).
【0035】[0035]
【数13】 Bx={μ0/(4πK2)} ×[{Qx(y−y0)−Qy(x−x0)}(∇K)x+KQy]…(数13)B x = {μ 0 / (4πK 2 )} × [{Q x (y−y 0 ) −Q y (x−x 0 )} (∇K) x + KQ y ] (Expression 13)
【0036】[0036]
【数14】 By={μ0/(4πK2)} ×[{Qy(y−y0)−Qx(x−x0)}(∇K)y+KQx]…(数14)Equation 14] B y = {μ 0 / ( 4πK 2)} × [{Q y (y-y 0) -Q x (x-x 0)} (∇K) y + KQ x] ... ( number 14)
【0037】[0037]
【数15】 BZ={μ0/(4πK2)} ×[{Qx(y−y0)−Qy(x−x0)}(∇K)z] …(数15) 一方,(数13)により示される法線成分BZのx方向
に於ける微分は(数16)により表わされる。B z = {μ 0 / (4πK 2 )} × [{Q x (y−y 0 ) −Q y (x−x 0 )} (∇K) z ] (Equation 15) in differentiation in the x direction of the normal component B Z represented by (Expression 13) is expressed by equation (16).
【0038】[0038]
【数16】 ∂BZ/∂x={μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0)} {−2(∇K)z(∇K)x/K−a-3(x−x0)(z−z0)2+a-1(x−x0 )}−(∇K)zQy] …(数16 ) 同様に,法線成分BZのy方向に於ける微分は(数1
7)により表わされる。∂B Z / ∂x = {μ 0 / (4πK 2 )} × [{Q x (y-y 0 ) -Q y (x-x 0 )} {-2 (∇K) z ( {K) x / K−a −3 (x−x 0 ) (z−z 0 ) 2 + a −1 (x−x 0 )} − (ΔK) z Q y ] (Equation 16) The derivative of the normal component B Z in the y direction is (Equation 1)
7).
【0039】[0039]
【数17】 ∂BZ/∂y=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0) }{2(∇K)z(∇K)y/K+a-3(y−y0)(z−z0)2−a-1(y−y0 )}+(∇K)zQx] …(数1 7) (数16),(数17)に於いて,17B Z / ∂y =-{μ 0 / (4πK 2 )} × [{Q x (y-y 0 ) -Q y (x-x 0 )} {2 (∇K) z ( {K) y / K + a −3 (y−y 0 ) (z−z 0 ) 2 −a −1 (y−y 0 )} + (∇K) z Q x ] (Equation 17) (Equation 16) ), (Equation 17)
【0040】[0040]
【数18】 α=(∇K)z/K …(数18)Α = (∇K) z / K (Equation 18)
【0041】[0041]
【数19】 βx=−a-3(x−x0)(z−z0)2+a-1(x−x0) …(数19)Β x = −a −3 (x−x 0 ) (z−z 0 ) 2 + a −1 (x−x 0 ) (Equation 19)
【0042】[0042]
【数20】 βy=−a-3(y−y0)(z−z0)2+a-1(y−y0) …(数20) と置く時,(数16),(数17)はそれぞれ(数2
1),(数22)により表わされる。[Equation 20] When β y = −a −3 (y−y 0 ) (z−z 0 ) 2 + a −1 (y−y 0 ) (Equation 20), (Equation 16), (Equation 17) ) Is (Equation 2)
1) and (Equation 22).
【0043】[0043]
【数21】 ∂BZ/∂x=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0) }{2α(∇K)x−βx}+αKQy] …(数21 )21B Z / ∂x = − {μ 0 / (4πK 2 )} × [{Q x (y−y 0 ) −Q y (x−x 0 )} {2α (∇K) x − β x } + αKQ y ] (Equation 21)
【0044】[0044]
【数22】 ∂BZ/∂y=−{μ0/(4πK2)}×[{Qx(y−y0)−Qy(x−x0) }{2α(∇K)y−βy}+αKQx] …(数22 ) 簡単のために,(数13),(数21),(数14),
(数22)を共通因子である{μ0/(4πK2)}によ
り規格化して変形を行ない,(数23),(数24),
(数25),(数26)を得る。22B Z / ∂y = − {μ 0 / (4πK 2 )} × [{Q x (y−y 0 ) −Q y (x−x 0 )} {2α (∇K) y − β y } + αKQ x ] (Equation 22) For simplicity, (Equation 13), (Equation 21), (Equation 14),
(Equation 22) is normalized by {μ 0 / (4πK 2 )}, which is a common factor, and transformed, and (Equation 23), (Equation 24),
(Equation 25) and (Equation 26) are obtained.
【0045】[0045]
【数23】 Bx=(∇K)x{Qx(y−y0)−Qy(x−x0)}+KQy …(数23)B x = (∇K) x {Q x (y−y 0 ) −Q y (x−x 0 )} + KQ y (Equation 23)
【0046】[0046]
【数24】 ∂BZ/∂x= −2α(∇K)x{Qx(y−y0)−Qy(x−x0)}−αKQy +βx{Qx(y−y0)−Qy(x−x0)}= −2αBx+αKQy+βx{Qx(y−y0)−Qy(x−x0)} …(数24)24B Z / ∂x = −2α (∇K) x {Q x (y−y 0 ) −Q y (x−x 0 )} − αKQ y + β x {Q x (y−y 0 ) −Q y (x−x 0 )} = − 2αB x + αKQ y + β x {Q x (y−y 0 ) −Q y (x−x 0 )} (Equation 24)
【0047】[0047]
【数25】 By=(∇K)y{Qy(y−y0)−Qx(x−x0)}+KQx …(数25)Equation 25] B y = (∇K) y { Q y (y-y 0) -Q x (x-x 0)} + KQ x ... ( number 25)
【0048】[0048]
【数26】 ∂BZ/∂y= −2α(∇K)y{Qx(y−y0)−Qy(x−x0)}−αKQx] +βy{Qx(y−y0)−Qy(x−x0)}= −2αBy+αKQx+βy{Qx(y−y0)−Qy(x−x0)} …(数26) (数23)と(数24)とから明らかなように,∂BZ
/∂xの値は,接線成分Bxの−2α倍に等しい項に,
2つの付加項を加算した値に等しく,(数25)と(数
26)とから明らかなように,∂BZ/∂yの値は,接
線成分Byの−2α倍に等しい項に,2つの付加項を加
算した値に等しい。26B Z / ∂y = −2α (∇K) y {Q x (y−y 0 ) −Q y (x−x 0 )} − α KQ x ] + β y {Q x (y−y 0 ) −Q y (x−x 0 )} = − 2αB y + αKQ x + β y {Q x (y−y 0 ) −Q y (x−x 0 )} (Equation 26) As is clear from Equation 24), ∂B Z
/ Value of ∂x is the term equal to -2α times the tangential components B x,
Equal to the value obtained by adding two additional sections (number 25) and as apparent from the equation (26), the value of .differential.B Z / ∂y is a term equal to -2α times the tangential component B y, It is equal to the sum of two additional terms.
【0049】ここで,図2に概略位置を示すように,無
限平面導体Pの内部の点〈r0(0,0,−z0)〉,z
0=0.05[m]に,電流ダイポールのモーメント
〈Q〉=(Qx,Qy,0),Qx=Qy=50[nAm]
が存在する場合に,Bx((数13))と−∂BZ/∂x
((数16))を比較する。x0=y0=y=0,Qz=
0を(数13),(数16)に代入して,(数27),
(数28)を得る。Here, as shown schematically in FIG. 2, a point <r 0 (0,0, −z 0 )>, z inside the infinite planar conductor P
At 0 = 0.05 [m], the moment of the current dipole <Q> = (Q x , Q y , 0), Q x = Q y = 50 [nAm]
Exist, B x ((Equation 13)) and −∂B Z / ∂x
((Equation 16)) is compared. x 0 = y 0 = y = 0, Q z =
By substituting 0 into (Equation 13) and (Equation 16), (Equation 27),
(Equation 28) is obtained.
【0050】[0050]
【数27】 Bx(x,0)= {μ0/(4πK2)}{−(∇K)xQyx+KQy} …(数27)B x (x, 0) = {μ 0 / (4πK 2 )} − (∇K) x Q y x + KQ y … (Formula 27)
【0051】[0051]
【数28】 ∂BZ(x,0)/∂x= {μ0/(4πK2)}{2α(∇K)xQyx−αKQy−βxQyx} …(数28) 図3は,無限平面導体Pの上でのBx((数27))及
び−∂BZ/∂x((数28))をそれぞれの最大値で
規格化した相対磁場強度曲線C1,C2で示す。∂B Z (x, 0) / ∂x = {μ 0 / (4πK 2 )} {2α (∇K) x Q y x-α KQ y -β x Q y x} (Equation 28) FIG. 3 shows a relative magnetic field strength curve C 1 , in which B x ((Equation 27)) and −∂B Z / ∂x ((Equation 28)) on the infinite planar conductor P are normalized by their maximum values. It is shown by C 2.
【0052】即ち,曲線C1はBx(x,0)/max|
Bx(x,0)|を,曲線C2は{−∂BZ(x,0)/
∂x}/max|∂BZ(x,0)/∂x|を表わす。
図3から明らかなように,Bx及び−∂BZ/∂xの分布
は何れも電流ダイポールが存在する真上の原点(x=
0)にピークを持ち,何れも共に電流ダイポールが存在
する点の真上に計測点がある時に最大の信号を検出可能
であることを示している。また,曲線C2の方が曲線C1
よりも鋭いピークを与え,−∂BZ/∂x((数1
6))による磁場分布はBx((数13))による磁場
分布よりも空間分解能が高いことを示している。That is, the curve C 1 is represented by B x (x, 0) / max |
B x (x, 0) | and curve C 2 is {−∂B Z (x, 0) /
{X} / max | ∂B Z (x, 0) / ∂x |
As is clear from FIG. 3, the distributions of B x and −∂B Z / ∂x are both the origin (x =
0) has a peak, and both indicate that the maximum signal can be detected when the measurement point is located immediately above the point where the current dipole exists. Curve C 2 is better than curve C 1
Giving a sharper peak than -∂B Z / ∂x ((Equation 1
The magnetic field distribution according to 6)) has a higher spatial resolution than the magnetic field distribution according to B x ((Equation 13)).
【0053】図4に示す磁場強度曲線C3,C4,C5は
それぞれ,−∂BZ(x,0)/∂xの第1項,第2
項,第3項を示す。図4に示す結果から,第3項は第1
項及び第2項に対して無視でき,−∂BZ(x,0)/
∂xの形状は第1項,第2項により決定されていると見
なせ,(数28)は(数29)と近似できる。The magnetic field strength curves C 3 , C 4 and C 5 shown in FIG. 4 are the first term and the second term of −∂B Z (x, 0) / ∂x, respectively.
Item and Item 3 are shown. From the results shown in FIG. 4, the third term is the first
Term and the second term, negligible, −∂B Z (x, 0) /
It can be considered that the shape of に よ り x is determined by the first and second terms, and (Expression 28) can be approximated to (Expression 29).
【0054】[0054]
【数29】 ∂BZ(x,0)/∂x= {μ0/(4πK2)}{2α(∇K)xQyx−αKQy} …(数29) 図5は,(数13),(数16)のそれぞれの第1項と
第2項を規格化の後に比較した相対磁場強度曲線を示す
図である。図5に於いて,曲線C6は{Bx(x,0)の
第1項}/max|Bx(x,0)|,即ち,{−(∇
K)xQyx}/max|Bx(x,0)|を表わし,曲
線C7は{−∂BZ(x,0)/∂xの第1項}/max
|∂BZ(x,0)/∂x|,即ち,{−2α(∇K)x
Qyx}/max|∂BZ(x,0)/∂x|を表わし,
曲線C8は{Bx(x,0)の第2項}/max|B
x(x,0)|,即ち,{KQy}/max|Bx(x,
0)|を表わし,曲線C9は{−∂BZ(x,0)/∂x
の第2項}/max|∂BZ(x,0)/∂x|,即
ち,{αKQy}/max|∂BZ(x,0)/∂x|を
表わす。29B Z (x, 0) / ∂x = {μ 0 / (4πK 2 )} {2α (∇K) x Q y x−α KQ y } (Formula 29) FIG. It is a figure which shows the relative magnetic field strength curve which compared the 1st term and the 2nd term of each of (13) and (Equation 16) after normalization. In FIG. 5, curve C 6 is the first term of {B x (x, 0)} / max | B x (x, 0) |, that is, {− (∇
K) x Q y x} / max | B x (x, 0) |, and curve C 7 is the first term of {− {B Z (x, 0) / {x}} / max
| ∂B Z (x, 0) / ∂x |, that is, {-2α (∇K) x
Q y x} / max | ∂B Z (x, 0) / ∂x |
Curve C 8 is the second term of {B x (x, 0)} / max | B
x (x, 0) |, that is, {KQ y } / max | B x (x,
0) |, and the curve C 9 is represented by {−∂B Z (x, 0) / ∂x
} / Max |} B Z (x, 0) / ∂x |, that is, {αKQ y } / max│∂B Z (x, 0) / ∂x |.
【0055】図5に示す結果から,−∂BZ(x,0)
/∂xの第1項,第2項の分布は共にそれぞれ,B
x(x,0)の第1項,第2項の分布よりも鋭く,分布
の尖鋭度は(数18)で定義されているα=(∇K)z
/Kにより規定されている。From the results shown in FIG. 5, −∂B Z (x, 0)
The distribution of the first and second terms of / ∂x is B
x (x, 0) is sharper than the distribution of the first and second terms, and the sharpness of the distribution is α = (∇K) z defined by (Equation 18)
/ K.
【0056】図6に於いて,磁場曲線C10はα=(∇
K)z/Kを,磁場曲線C11は−{(数28)の第1
項}/{(数27)の第1項},即ち,2α(∇K)x
Qyx/(∇K)xQyx=2αを,磁場曲線C12は−
{(数28)の第2項}/{(数27)の第2項},即
ち,αKQy/KQy=αをそれぞれ示す。図6に示すよ
うに,α=(∇K)z/K(曲線C10)は電流ダイポー
ルが存在する原点にピーク点を有し,ピーク値は2/
(z−z0)である。−∂BZ(x,0)/∂xの大きさ
は,Bx(x,0)の大きさとピーク点で2/(z−
z0)だけ異なる。(z−z0)は電流ダイポールの存在
する深さである。実際の磁場計測からは(z−z0)を
決定することは困難である。(数27)と(数29)と
の比較から(数30)を得る。[0056] In FIG. 6, the magnetic field curve C 10 is alpha = (∇
The K) z / K, the magnetic field curve C 11 is - first {(number 28)
The first term の of the term} / {(Equation 27), that is, 2α (∇K) x
Q y x / (∇K) x Q y x = 2α, and the magnetic field curve C 12 is −
The second term of {(Equation 28)} / the second term of (Equation 27)}, that is, αKQ y / KQ y = α, respectively. As shown in FIG. 6, α = (∇K) z / K (curve C 10 ) has a peak point at the origin where the current dipole exists, and the peak value is 2 /
(Z−z 0 ). -∂B Z (x, 0) / size of ∂x is 2 / in size and the peak point of B x (x, 0) ( z-
z 0 ). (Z-z 0) is the depth of the presence of current dipole. It is difficult to determine (z-z 0 ) from actual magnetic field measurements. (Equation 30) is obtained from a comparison between (Equation 27) and (Equation 29).
【0057】[0057]
【数30】 −∂BZ(x,0)/∂x= {μ0/(4πK2)}{−2α(∇K)xQyx+αKQy} =2αBx(x,0)−{μ0/(4πK)}αQy …(数30) 即ち,(数30)の第2項が第1項に対して小さい場合
には,近似的に(数31)が成立すると見做せる。-{B Z (x, 0) / ∂x = {μ 0 / (4πK 2 )} {-2α (∇K) x Q y x + α KQ y == 2αB x (x, 0)-{μ 0 / (4πK)} αQ y (Equation 30) That is, when the second term of (Equation 30) is smaller than the first term, it can be considered that (Equation 31) is approximately established.
【0058】[0058]
【数31】 −∂BZ(x,0)/∂x=2αBx(x,0) …(数31) 一般化して(数24)に於いて,−2αBx以外の2つ
の付加項が−2αBxに対して小さい場合には,近似的
に(数32)が成立すると見做せる。∂B Z (x, 0) / ∂x = 2αB x (x, 0) (Equation 31) In general, in (Equation 24), two additional terms other than -2αB x are obtained. If it is smaller than −2αB x , it can be considered that Equation 32 is approximately established.
【0059】[0059]
【数32】 ∂BZ/∂x=−2αBx …(数32) 以上では,−∂BZ/∂xとBxの関係について検討した
結果であるが,同様のことが−∂BZ/∂yとByの関係
についても成立し,(数26)から近似的に(数33)
成立すると見做せる。Equation 32] .differential.B Z / ∂x = in -2αB x ... (number 32) above is a result of studying the relationship between -∂B Z / ∂x and B x, the same is -∂B Z / well established relationship between ∂y and B y, approximately from (Expression 26) (number 33)
It can be considered that it holds.
【0060】[0060]
【数33】 ∂BZ/∂y=−2αBy …(数33) 以下,(数32),(数33)からそれぞれ,Bxは−
∂BZ/∂x,Byは−∂BZ/∂yに比例すると仮定し
て,計測された法線成分Bzから接線成分Bx,Byを推
定して等磁場線図を求める手順を詳細に説明する。33B Z / ∂y = −2αB y (Equation 33) From the following (Equation 32) and (Equation 33), B x is −
.Differential.B Z / ∂x, B y is assumed to be proportional to -∂B Z / ∂y, tangential components B x from the measured normal component B z, obtains the isomagnetic field by estimating a B y The procedure will be described in detail.
【0061】生体の面に垂直な磁場成分Bz(x,y,
t)を計測した場合,Bz(x,y,t)のx方向の変
化率∂Bz(x,y,t)/∂xと,Bz(x,y,t)
の方向の変化率∂Bz(x,y,t)/∂yと求め,
(数34)に示すように2乗和の平方根St(x,y,
t)を求める。A magnetic field component B z (x, y,
When t) is measured, the rate of change zB z (x, y, t) / ∂x of B z (x, y, t) in the x direction and B z (x, y, t)
方向 B z (x, y, t) / ∂y
As shown in (Equation 34), the square root S t (x, y,
Find t).
【0062】[0062]
【数34】 St(x,y,t)=√[{∂Bz(x,y,t)/∂x}2 +{∂Bz(x,y,t)/∂y}2] …(数3
4) 次いで,各点(x,y)について任意の期間での波形S
t(t,x,y)の積分値I2(x,y)を(数35)に
より求め,内挿,外挿により各点(x,y)での積分値
I2(x,y)が同じ値の点を結ぶ等積分図を求めて,
等積分図を表示画面に表示する。S t (x, y, t) = √ [{∂B z (x, y, t) / ∂x} 2 + {∂B z (x, y, t) / ∂y} 2 ] … (Equation 3
4) Next, for each point (x, y), the waveform S in an arbitrary period
t (t, x, y) integrated value I 2 of (x, y) and determined by (number 35), the interpolation, the points by extrapolation (x, y) integrated value I 2 at (x, y) Finds an isointegral diagram connecting points with the same value, and
Display the equal integral diagram on the display screen.
【0063】[0063]
【数35】 I2(x,y)=∫│St(x,y,t)│dt …(数35) なお,(数4),(数35)の積分範囲としては,例え
ば,心臓を測定の対象とする時には,Q,R,Sの各波
の発生する期間,Q波からS波の発生するQRS波(QRS
complex)の期間,T波の発生する期間等をとる。更
に,(数4),(数35)の積分範囲として複数の積分
範囲をとり求めた複数の積分値の間での,等加重(加重
をw1,w2とする)を含む和又は差,比を求める等の演
算を行ない,内挿,外挿により演算結果が同じ値の点を
結ぶ等積分図を求めて,等積分図を表示画面に表示す
る。例えば,第1の積分範囲としてQRS波の発生する
期間T1,第2の積分範囲としてT波の発生する期間T2
を設定し,(数4),又は(数35)に従って,期間T
1に関する積分値I1,T1(x,y),I2,T1(x,
y),期間T2に関する積分値I1,T2(x,y),I2,
T2(x,y)をそれぞれを求め,積分値I1,T1(x,
y)と積分値I1,T2(x,y)との間,又は積分値I2,
T1(x,y)と積分値I2,T2(x,y)との間で,等加
重を含む和Isum(x,y),又は差Idif(x,y),
比r(x,y)を,(数36)〜(数37),(数3
8)〜(数39),(数40)〜(数41)に従って求
める。I 2 (x, y) = ∫ | S t (x, y, t) | dt (Equation 35) The integration range of (Equation 4) and (Equation 35) is, for example, heart Is the object of measurement, the QRS wave (QRS) in which the S wave is generated from the Q wave during the period when the Q, R, and S waves are generated
complex), the period during which a T-wave is generated, and the like. Further, a sum or difference including equal weights (weights are w 1 and w 2 ) between a plurality of integrated values obtained by taking a plurality of integration ranges as the integration ranges of (Equation 4) and (Equation 35). , A ratio, and the like, and an isointegral diagram connecting points having the same value of the operation result is obtained by interpolation and extrapolation, and the isointegral diagram is displayed on the display screen. For example, a period T 1 during which a QRS wave is generated as a first integration range, and a period T 2 during which a T wave is generated as a second integration range.
Is set, and the period T is calculated according to (Equation 4) or (Equation 35).
1, I 1 , T 1 (x, y), I 2 , T 1 (x, y
y), the integration value with respect to a period T 2 I 1, T2 (x , y), I 2,
T2 (x, y) are obtained, and the integrated values I 1 , T1 (x, y) are obtained.
y) and the integral values I 1 , T2 (x, y) or the integral values I 2 ,
The sum I sum (x, y) including equal weights or the difference I dif (x, y) between T1 (x, y) and the integral values I 2 , T2 (x, y),
The ratio r (x, y) is expressed by (Equation 36) to (Equation 37), (Equation 3)
8) to (Equation 39) and (Equation 40) to (Equation 41).
【0064】[0064]
【数36】 Isum(x,y)= w1×I1,T1(x,y)+w2×I1,T2(x,y) …(数36)I sum (x, y) = w 1 × I 1 , T 1 (x, y) + w 2 × I 1 , T 2 (x, y) (Expression 36)
【0065】[0065]
【数37】 Isum(x,y)= w1×I2,T1(x,y)+w2×I2,T2(x,y) …(数37)I sum (x, y) = w 1 × I 2 , T 1 (x, y) + w 2 × I 2 , T 2 (x, y) (Expression 37)
【0066】[0066]
【数38】 Idif(x,y)= w2×I1,T2(x,y)−w1×I1,T1(x,y) …(数38)I dif (x, y) = w 2 × I 1 , T 2 (x, y) −w 1 × I 1 , T 1 (x, y) (Expression 38)
【0067】[0067]
【数39】 Idif(x,y)= w2×I2,T2(x,y)−w1×I2,T1(x,y) …(数39)I dif (x, y) = w 2 × I 2 , T 2 (x, y) −w 1 × I 2 , T 1 (x, y) (Expression 39)
【0068】[0068]
【数40】 r(x,y)=I1,T1(x,y)/I1,T2(x,y) …(数40)R (x, y) = I 1 , T 1 (x, y) / I 1 , T 2 (x, y) (Expression 40)
【0069】[0069]
【数41】 r(x,y)=I2,T1(x,y)/I2,T2(x,y) …(数41) (数36)〜(数37),(数38)〜(数39),
(数40)〜(数41)の演算の結果,個人差による等
積分図のばらつきが改善され,疾患等による生体機能の
異常を検出できる。R (x, y) = I 2 , T 1 (x, y) / I 2 , T 2 (x, y) (Formula 41) (Formula 36) to (Formula 37), (Formula 38) (Equation 39),
As a result of the calculations of (Equation 40) to (Equation 41), variations in the isointegral diagram due to individual differences are improved, and abnormalities in biological functions due to diseases and the like can be detected.
【0070】本発明で得られる等積分図によれば,従来
技術で必要としていた生体部位の各時刻に於ける状態を
表わす多数の図(マップ)を用いて生体現象を解析する
ことなく,従来技術で必要としていた図(マップ)の数
よりもはるかに少数の図(マップ)を用いて,生体部位
の全体の状態を把握できる。また,生体磁場の接線成
分,又は法線成分を用いて得られる等積分図のピーク位
置と,生体内で電流が多く流れる部位が一致するので,
等積分図から任意の時間帯での生体内のどの部位で多く
電流が流れたかを判別できる。生体磁場分布は個人差が
大きいが,本発明では,生体磁場の各方向成分の時間変
化を表わす波形から得る任意の時間(期間)での積分値
を用いるので,より定量的な生体磁場分布を少数の図
(マップ)を用いて表示でき,個人毎の疾患,異常を客
観的,定量的に把握できる。According to the isointegral diagram obtained in the present invention, the biological phenomena can be analyzed without analyzing the biological phenomena using a large number of maps (maps) representing the state at each time of the living body part required in the prior art. The entire state of the living body part can be grasped by using a much smaller number of maps (maps) than the number of maps (maps) required by the technology. In addition, since the peak position of the isointegral diagram obtained using the tangential component or normal component of the biomagnetic field matches the site where a large amount of current flows in the living body,
From the isointegral diagram, it is possible to determine at which part in the living body a large amount of current flows in an arbitrary time zone. Although the biomagnetic field distribution has a large individual difference, in the present invention, an integrated value at an arbitrary time (period) obtained from a waveform representing a time change of each direction component of the biomagnetic field is used. It can be displayed using a small number of figures (maps), and can objectively and quantitatively grasp diseases and abnormalities for each individual.
【0071】本発明では,生体の面に垂直な磁場成分B
z(x,y,t)を計測して,BxをBz(x,y,t)
のx方向の変化率∂Bz(x,y,t)/∂xから,By
をBz(x,y,t)の方向の変化率∂Bz(x,y,
t)/∂yから推定して求めるので,隣接する各計測点
(x,y)に共通して存在する背景となる磁場(妨害磁
場)は,x方向,及びy方向で各々キャンセルされるこ
ととなる。In the present invention, the magnetic field component B perpendicular to the surface of the living body
z (x, y, t) by measuring the, B x and B z (x, y, t )
In the x direction of the change rate ∂B z (x, y, t ) / from ∂x, B y
The B z (x, y, t ) the direction of the change rate .differential.B z (x in, y,
t) / ∂y, the background magnetic field (disturbing magnetic field) common to each adjacent measurement point (x, y) is canceled in the x and y directions, respectively. Becomes
【0072】[0072]
【発明の実施の形態】生体磁場計測に於ける座標系とし
て直交座標系(x,y,z)(磁場成分をBx,By,B
zとする)や極直交座標系(r,θ,φ)が用いられ
る。計測対象が心臓等である場合には,胸壁をxy平面
とする直交座標系(x,y,z)が用いられる。計測対
象が脳部等である場合には,頭部が球に近い形状である
ため極座標系(r,θ,φ)(磁場成分をBr,Bθ,
Bφとする)が用いられる。本実施例では,生体表面に
垂直な磁場成分(法線成分)はBz,Brで表わされ,生
体の面に平行な成分(接線成分)は,Bx,By,Bθ,
Bφで表わされる。以下,本実施例では,直交座標系
(x,y,z)を用いて説明するが,極座標系(r,
θ,φ)を用いる場合には,BzをBrに,BxをB
θに,ByをBφにそれぞれ読み替えれば良い。DESCRIPTION OF THE PREFERRED EMBODIMENTS An orthogonal coordinate system (x, y, z) (magnetic field components are represented by B x , B y , B
z ) and a polar orthogonal coordinate system (r, θ, φ) are used. When the measurement target is a heart or the like, an orthogonal coordinate system (x, y, z) using the chest wall as an xy plane is used. When the measurement target is the brain or the like, since the head has a shape close to a sphere, the polar coordinate system (r, θ, φ) (magnetic field components are Br , Bθ ,
B φ ) is used. In this embodiment, magnetic field component perpendicular to the biological surface (normal component) is represented by B z, B r, parallel component (tangential component) in a surface of the living body, B x, B y, B θ,
Represented by B φ. Hereinafter, the present embodiment will be described using the rectangular coordinate system (x, y, z), but the polar coordinate system (r,
θ, φ), B z is B r and B x is B
to theta, it may be read as respectively B y in B phi.
【0073】図7は本発明が実施される生体磁場計測装
置の概略構成を示す。心磁場計測を行なう生体磁場計測
装置は,量子干渉素子(SQUID)からなる複数の磁
場センサを用いる。環境磁場雑音の影響を除去するため
に,心磁場計測は磁場シールドルーム1の内部で行なわ
れる。被検者2はベッド3に横たわり計測する(図11
に示すように,xy面がベッドの面となるように直交座
標系(x,y,z)を設定する)。被検者2の胸部の上
方に,SQUIDとそのSQUIDに接続した検出コイ
ルとが一体化された磁場センサを複数個収納し,液体H
eを満たしたデュワ4が配置される。液体Heは磁場シ
ールドルーム1の外部の自動補給装置5により,連続的
に液体Heが補充されている。FIG. 7 shows a schematic configuration of a biomagnetic field measuring apparatus according to the present invention. A biomagnetic field measurement device that performs a cardiac magnetic field measurement uses a plurality of magnetic field sensors including a quantum interference device (SQUID). In order to remove the influence of the environmental magnetic field noise, the cardiac magnetic field measurement is performed inside the magnetic field shield room 1. The subject 2 lays down on the bed 3 and measures (FIG. 11)
(X, y, z) is set such that the xy plane is the bed plane as shown in FIG. Above the chest of the subject 2, a plurality of magnetic field sensors in which a SQUID and a detection coil connected to the SQUID are integrated are stored.
The dewar 4 satisfying e is arranged. The liquid He is continuously replenished with the liquid He by the automatic replenishing device 5 outside the magnetic field shield room 1.
【0074】磁場センサからの出力は,検出コイルが検
出した磁場強度に比例する電圧を出力するFLL(Flux
Locked Loop)回路6に入力される。このFFL回路は
SQUIDの出力を一定に保つようSQUIDに入力さ
れた生体磁場の変化を帰還コイルを介してキャンセルし
ている。この帰還コイルに流した電流を電圧に変換する
ことにより,生体磁場信号の変化に比例した電圧出力が
得られる。この電圧出力は,増幅器(図示せず)により
増幅され,フイルター回路7により周波数帯域が選択さ
れ,AD変換器で(図示せず)AD変換され,計算機8
に取り込まれる。計算機8では,各種の演算処理が実行
され,演算処理結果がデイスプレイに表示され,更に,
プリンタにより出力される。The output from the magnetic field sensor is FLL (Flux) which outputs a voltage proportional to the magnetic field intensity detected by the detection coil.
Locked Loop) circuit 6. This FFL circuit cancels the change of the biomagnetic field input to the SQUID via the feedback coil so as to keep the output of the SQUID constant. By converting the current flowing through the feedback coil into a voltage, a voltage output proportional to a change in the biomagnetic field signal can be obtained. This voltage output is amplified by an amplifier (not shown), a frequency band is selected by a filter circuit 7, and AD converted (not shown) by an AD converter (not shown).
It is taken in. In the computer 8, various calculation processes are executed, the calculation process results are displayed on a display, and furthermore,
Output by printer.
【0075】磁場の接線成分を検出する検出コイルとし
て,コイル面がx方向,及びy方向を向いた2つのコイ
ルを使用し,磁場の接線成分を検出する検出コイルとす
る。また磁場の法線成分を検出するコイルとしては,z
方向を向いたコイルを使用する。これら磁場センサ(2
0−1,20−2,〜,20−8,21−1,〜,21
−8,22−1,〜,22−8,23−2,〜,23−
8,24−1,〜,24−8,25−1,〜,25−
8,26−1,〜,26−8,27−1,〜,27−
8)の配置図を図8に示す。磁場センサ9はデュワ内部
の底部から垂直の方向に設置し,また各センサ間の距離
はx,y方向における磁場の変化量を正確に捕らえるよ
うにx方向,y方向に等間隔になるようにした。ここ
で,センサ間距離は25mmとし,センサ数は8×8の
64チャンネルとした。As the detection coil for detecting the tangential component of the magnetic field, two coils whose coil surfaces are oriented in the x direction and the y direction are used to detect the tangent component of the magnetic field. As a coil for detecting the normal component of the magnetic field, z
Use oriented coils. These magnetic field sensors (2
0-1, 20-2, ~, 20-8, 21-1, ~, 21
-8, 22-1, ~, 22-8, 23-2, ~, 23-
8, 24-1, ..., 24-8, 25-1, ..., 25-
8, 26-1, ..., 26-8, 27-1, ..., 27-
FIG. 8 shows the layout of 8). The magnetic field sensors 9 are installed in the direction perpendicular to the bottom of the Dewar, and the distance between the sensors is set so as to be equally spaced in the x and y directions so as to accurately capture the amount of change in the magnetic field in the x and y directions. did. Here, the distance between the sensors was 25 mm, and the number of sensors was 64 channels of 8 × 8.
【0076】この配列方法に従って,設置した磁場セン
サの1本の概略図を図9及び図10に示す。図9の磁場
センサは生体表面に対して垂直な成分Bzを測定するセ
ンサで,超伝導線(NbーTi線)で作製したコイルの
面がz方向を向いている。このコイルは2つの逆向きの
コイルを組み合わせたもので生体に近い方を検出コイル
10とし,遠い方のコイルを外部磁場雑音を除去する参
照コイル(reference coil)11とし1次微分コイルを形
成している。ここでコイル径を20mmφ,コイル間の
ベースラインを50mmとした。外部磁場雑音は生体よ
り遠い信号源から生じており,これらは検出コイル及び
参照コイルで同じように検出される。一方,生体からの
信号はコイルに近いため検出コイル10でより強く検出
される。このため,検出コイル10では信号と雑音が検
出され,参照コイル11では雑音のみが検出される。従
って,両者のコイルで捕らえた磁場の差を取ることによ
りS/Nの高い計測ができる。FIGS. 9 and 10 show schematic views of one of the magnetic field sensors installed according to this arrangement method. The magnetic field sensor shown in FIG. 9 is a sensor for measuring a component Bz perpendicular to the surface of a living body, and the surface of a coil made of a superconducting wire (Nb-Ti wire) is oriented in the z direction. This coil is a combination of two oppositely-oriented coils. The coil closer to the living body is used as the detection coil 10, and the coil farther away is used as a reference coil 11 for removing external magnetic field noise to form a primary differential coil. ing. Here, the coil diameter was 20 mm, and the baseline between the coils was 50 mm. External magnetic field noise comes from signal sources that are farther than the living body, and these are similarly detected by the detection coil and the reference coil. On the other hand, since the signal from the living body is close to the coil, it is detected more strongly by the detection coil 10. Therefore, the detection coil 10 detects a signal and noise, and the reference coil 11 detects only noise. Therefore, a high S / N measurement can be performed by taking the difference between the magnetic fields captured by the two coils.
【0077】1次微分コイルはSQUID12を実装し
た実装基板の超伝導配線を介してSQUIDのインプッ
トコイルに接続し,コイルで検出した生体磁場をSQU
IDに伝達する。生体磁場成分の接線成分Bx,Byを検
出する磁場センサの概略図を図10に示す。この磁場セ
ンサは平面型のコイルを使用しており,検出コイル1
0’,10”及び参照コイル11’,11”が1つの平
面に並び,コイル径は20mm×20mm,ベースライ
ンは50mmとした。コイルは法線成分用と同様にSQ
UID12’,12”の実装基板に接続している。4角
柱の支持体の互いに直交する2面に,これらx成分検出
用磁場センサ13とy成分検出用磁場センサ14を張り
付けることにより,x及びy成分を測定できる磁場セン
サを形成している。この4角柱は図8に示すようにアレ
イ状に配置した。The primary differential coil is connected to the input coil of the SQUID via the superconducting wiring of the mounting board on which the SQUID 12 is mounted, and the biomagnetic field detected by the coil is connected to the SQUID.
Notify to ID. Tangential component B x biomagnetic field components, a schematic diagram of a magnetic field sensor for detecting the B y shown in FIG. 10. This magnetic field sensor uses a planar coil, and the detection coil 1
0 ′, 10 ″ and reference coils 11 ′, 11 ″ were arranged in one plane, the coil diameter was 20 mm × 20 mm, and the baseline was 50 mm. The coil is SQ like the normal component
UIDs 12 ′ and 12 ″ are connected to the mounting substrate. The x-component detecting magnetic field sensor 13 and the y-component detecting magnetic field sensor 14 are attached to two mutually orthogonal surfaces of a quadrangular prism support, so that x And a magnetic field sensor capable of measuring the y component.The quadrangular prisms are arranged in an array as shown in FIG.
【0078】磁場センサを内蔵したデュワは,ベットに
横たわった被験者の胸部上方に配置し心臓から発生する
磁場を計測する。ここで,体の横方向をx軸とし,体の
上下方向をy軸とする。磁場センサ(20−1,〜,2
0−8,21−1,〜,21−8,22−1,〜,22
−8,23−2,〜,23−8,24−1,〜,24−
8,25−1,〜,25−8,26−1,〜,26−
8,27−1,〜,27−8)の配置と胸部30との位
置関係を図11に示す。この位置関係で計測した生体磁
場信号を図12(a),(b),(c)に示す。The Dewar with a built-in magnetic field sensor is arranged above the chest of the subject lying on the bed and measures the magnetic field generated from the heart. Here, the horizontal direction of the body is defined as the x-axis, and the vertical direction of the body is defined as the y-axis. Magnetic field sensor (20-1, ~, 2
0-8, 21-1, ..., 21-8, 22-1, ..., 22
-8,23-2, ~, 23-8,24-1, ~, 24-
8, 25-1, ..., 25-8, 26-1, ..., 26-
8, 27-1,..., 27-8) and the positional relationship with the chest 30 are shown in FIG. 12 (a), 12 (b) and 12 (c) show the biomagnetic signal measured in this positional relationship.
【0079】図12(a),(b),(c)は,各磁場
センサ(8×8のアレイ状に並んだ磁場センサ)によ
る,ある健常者の心臓から発する磁場の時間変化を表わ
す波形を示し,各図の中の64個の波形の横軸が時間
軸,縦軸が検出された磁場強度を示している。図12
(a)は接線成分Bx,図12(b)は接線成分By,図
12(c)は法線成分Bz,の各成分の時間(横軸)の
変化を,各磁場成分毎に信号強度の最も大きいチャンネ
ルの絶対値の最大値で規格化して表示している。FIGS. 12 (a), 12 (b) and 12 (c) show waveforms representing the time change of the magnetic field emitted from the heart of a healthy person by each magnetic field sensor (magnetic field sensors arranged in an 8 × 8 array). The horizontal axis of the 64 waveforms in each figure is the time axis, and the vertical axis is the detected magnetic field strength. FIG.
(A) the tangential components B x, FIG. 12 (b) tangential component B y, a change in FIG. 12 (c) normal component B z, each component of the time (horizontal axis), for each magnetic field component The signal is normalized and displayed with the maximum value of the absolute value of the channel having the highest signal strength.
【0080】図13に示す点線,実線は,健常者につい
て計測された特定の2チャンネルに関する接線成分(B
x)の時間変化を表わす波形を実線,点線で示してい
る。心臓の心室が脱分極したQRS波が出現する時間帯
T1でのQ波,R波,及びS波のピーク(極値)を与え
る時点を図13中にそれぞれtQ,tR,tsで示した。
また,心臓の再分極過程であるT波の出現する時間帯T
2とし,ピーク(極値)を与える時点をtTで示した。The dashed line and the solid line shown in FIG. 13 indicate the tangent components (B
The waveform representing the time change of x ) is shown by a solid line and a dotted line. The time points at which the peaks (extreme values) of the Q wave, R wave, and S wave in the time zone T 1 during which the QRS wave in which the ventricle of the heart is depolarized appears are shown in FIG. 13 as t Q , t R , and t s , respectively. Indicated by
Also, the time zone T in which the T wave, which is the process of repolarization of the heart, appears
2, and shows the time at which gives a peak (extreme value) at t T.
【0081】図13に於いて,P波は心房の興奮(脱分
極(depolarization))を示し,Q波,R波,及びS波か
らなるQRS波は心室の興奮(脱分極)を示し,T波は
QRS波に続いて出現するゆるやかなふれであり,心筋
の再分極(repolarization)を示している。脱分極は,は
じめに筋の中を興奮が広がる過程であり,再分極は,興
奮した筋が静止状態に戻る過程である。In FIG. 13, a P wave indicates atrial excitation (depolarization), a QRS wave composed of Q, R and S waves indicates ventricular excitation (depolarization). The wave is a gradual shake that appears following the QRS wave, indicating cardiac repolarization. Depolarization is the process by which the excitement initially spreads through the muscle, and repolarization is the process by which the excited muscle returns to a resting state.
【0082】図14(a),(b),(c)は,tQ,
tR,tsの時点での心磁場の強度の等しい点を線で結ん
だ等磁場線図を示す。図14(a),(b),(c)
は,(数4)の│Bxy(x,y,t)│で示され,64
個所で計測された接線成分Bx,Byを合成した2次元の
ベクトル強度分布を示している。更に,図14(a),
(b),(c)中の矢印は,64個所の各測定点での電
流源が各測定点での磁場を作っているものとして仮定し
た時の2次元の電流ベクトルを示している。この電流ベ
クトルにより心臓内での電流方向及び分布が推定でき
る。図14(a),(b),(c)の各図の横軸x,縦
軸yは磁場センサが配置されている座標を示す。図14
(a)に示すように,Q波のピーク時では,心臓内を流
れる電流は心室中隔で右下方向に流れ,図14(b)に
示すように,R波のピーク時では,左心室全体で斜め下
方向に電流が大きく流れ,図14(c)に示すように,
S波のピーク時では,心室基部の方向の左斜め上方向に
電流が流れ,心室の脱分極過程が終了することが分か
る。このように,図14(a),(b),(c)の等磁
場線図により各時間での心臓内の活動部位及び電流方向
が可視化できることが分かる。FIGS. 14A, 14B and 14C show t Q ,
FIG. 4 shows an isomagnetic field diagram in which points having equal strengths of the magnetocardiograms at times t R and t s are connected by lines. FIG. 14 (a), (b), (c)
Is represented by | B xy (x, y, t) | in (Equation 4), and 64
Tangential component B x which is measured at the point, shows a two-dimensional vector intensity distribution obtained by combining the B y. Further, FIG.
Arrows in (b) and (c) indicate two-dimensional current vectors when it is assumed that current sources at 64 measurement points generate a magnetic field at each measurement point. With this current vector, the current direction and distribution in the heart can be estimated. In each of FIGS. 14A, 14B, and 14C, the horizontal axis x and the vertical axis y indicate coordinates where the magnetic field sensor is arranged. FIG.
As shown in (a), at the time of the peak of the Q wave, the current flowing in the heart flows in the lower right direction in the septum of the ventricle, and as shown in FIG. As a whole, a large current flows obliquely downward, and as shown in FIG.
It can be seen that at the peak of the S-wave, a current flows in a diagonally upper left direction in the direction of the base of the ventricle, and the depolarization process of the ventricle ends. Thus, it can be seen that the active site and current direction in the heart at each time can be visualized by the isomagnetic field diagrams of FIGS. 14 (a), (b) and (c).
【0083】図15は,心磁波形のQ波からS波までの
QRS波が出現する時間帯T1に於いて検出された2つ
の接線成分Bx,Byから得た2次元ベクトル強度│Bxy
(x,y,t)│を各点(x,y)について,(数4)
の積分を行ない,同じ積分値の点を結んだ等積分図であ
る。図15のx軸,y軸は,生体表面に配置された磁場
センサの座標を表し,等積分図の各曲線の黒丸の近傍に
示した数値はその曲線のもつ積分値を示す。図15か
ら,QRS波の時間帯に心筋に流れた電流の多くは心筋
の厚みが大きい左心室で流れたことが分かり,等積分図
でのピーク位置と心臓に流れる電流量の多い部位とがよ
く対応することが分かった。[0083] Figure 15, the two tangential components detected at a time zone T 1 which QRS wave from the Q wave of the magnetocardiogram waveforms until S wave appears B x, 2-dimensional vector magnitude obtained from B y │ B xy
(X, y, t) | for each point (x, y), (Equation 4)
Is an integral diagram obtained by integrating the points and connecting points having the same integral value. The x-axis and the y-axis in FIG. 15 represent the coordinates of the magnetic field sensor arranged on the surface of the living body, and the numerical values shown near the black circles of the respective curves in the isointegral diagram indicate the integrated values of the curves. From FIG. 15, it can be seen that most of the current flowing to the myocardium during the time zone of the QRS wave flows in the left ventricle where the thickness of the myocardium is large. It turns out that it corresponds well.
【0084】図16は,図12(a),(b),(c)
から図15のデータを求めたのと同一の健常者につい
て,法線線分Bzを各点(x,y)に於いて計測し,
(数34)によりSt(x,y,t)を求め,QRS波の
時間帯T1について,(数35)の積分を行ない同じ積
分値の点を結んだ等積分図である。以下,図16から図
21に於いて,x軸,y軸は,生体表面に配置された磁
場センサの位置座標(単位はmである)を表わす。図1
6から図21の曲線の黒丸の近傍に示した数値はその曲
線のもつ積分値を示す。FIG. 16 shows the state shown in FIGS. 12 (a), (b) and (c).
For the same healthy subjects and were determined the data of FIG. 15, at the normal line B z at each point (x, y) measured from,
Seeking S t (x, y, t) by equation (34), the time period T 1 of the QRS wave, a like integral diagram connecting points of the same integral value performs the integration of equation (35). Hereinafter, in FIGS. 16 to 21, the x-axis and the y-axis represent the position coordinates (the unit is m) of the magnetic field sensor arranged on the surface of the living body. FIG.
Numerals shown in the vicinity of the black circles of the curves in FIGS. 6 to 21 indicate the integral values of the curves.
【0085】図15に示す磁場の接線成分Bx,Byから
求めた等積分図と,図16に示す磁場の法線成分Bzか
ら求めた等積分図のパターンは一致することが判明し
た。この一致は,(数6)及び(数7),又は(数3
2)及び(数33)が実際の実験データでほぼ成立して
いることを意味している。[0085] the tangential component of the magnetic field shown in FIG. 15 B x, and isointegral obtained from B y, the pattern of isointegral obtained from normal component B z of the magnetic field shown in FIG. 16 to be consistent found . This match is expressed by (Equation 6) and (Equation 7), or (Equation 3)
It means that 2) and (Equation 33) are almost satisfied with actual experimental data.
【0086】図17は,図15を求めたのと同一の健常
者について,T波の時間帯T2に於いて検出された2つ
の接線成分Bx,Byから得た2次元ベクトル強度│Bxy
(x,y)│を各点(x,y)について,(数4)の積
分を行ない同じ積分値の点を結んだ等積分図である。図
17に於いて,1e+003は,1000を示す。[0086] Figure 17, the same healthy subjects and were determined to 15, the two tangential components B x detected at the time slot T 2 of the T-wave, two-dimensional vector magnitude │ obtained from B y B xy
(X, y) | is an integral diagram obtained by integrating (Equation 4) for each point (x, y) and connecting points having the same integral value. In FIG. 17, 1e + 003 indicates 1000.
【0087】図18は,時間帯T2についての(数4)
の積分値と,QRS波が発生した期間帯T1についての
(数4)の積分値との差(数37)を表わす等高線図で
ある。即ち,図18は図17に示す等積分図から図15
に示す等積分図を差し引いた図である。T波の時間帯T
2の方が,QRS波の時間帯T1よりも長い。また,図1
7のパターンは,図15に示すパターンと似ている。こ
のため,図18に示す等高線図は全体が正の値となる。
図17,図18の曲線の黒丸の近傍に示した数値はその
曲線のもつ上記の積分値の差の値を示す。FIG. 18 shows (Equation 4) for the time zone T 2.
And integral value of a contour plot representative of the difference (number 37) of the integrated value of (number 4) for the period zone T 1 which QRS wave occurs. That is, FIG. 18 is based on the isometric diagram shown in FIG.
3 is a diagram obtained by subtracting an equal integral diagram shown in FIG. Time zone T of T wave
2/5 is longer than the time period T 1 of the QRS wave. Also, FIG.
The pattern 7 is similar to the pattern shown in FIG. For this reason, the contour map shown in FIG. 18 has a positive value as a whole.
Numerical values shown in the vicinity of the black circles in the curves in FIGS. 17 and 18 indicate the difference between the above-mentioned integral values of the curves.
【0088】次ぎに,心筋梗塞の患者の心磁場計測に関
する結果を,図19,図20,図21に示す。図19
は,QRS波の時間帯T1について図15と同様にして
求めた等積分図,図20は,T波の時間帯T2について
図17と同様にして求めた等積分図,図21は,T波の
時間帯T2についての積分値(数4)と,QRS波の時
間帯T1についての積分値(数4)との差(数38)を
表わし,図18と同様にして求めた等高線図である。即
ち,図21は,図20に示す等積分図から図19に示す
等積分図を差し引いた図である。図19,図20の曲線
の黒丸の近傍に示した数値はその曲線のもつ積分値を示
し,図21の曲線の黒丸の近傍に示した数値はその曲線
の持つ上記の積分値の差の値を示す。Next, FIG. 19, FIG. 20, and FIG. 21 show the results related to the measurement of the cardiac magnetic field in patients with myocardial infarction. FIG.
Is isointegral obtained in the same manner as in FIG. 15 for the time period T 1 of the QRS wave, FIG. 20, isointegral obtained in the same manner as in FIG. 17 for the time period T 2 of the T-wave, Fig. 21, integral values for the time slot T 2 of the T-wave and (Equation 4), represents the difference (number 38) of the integral value for the time period T 1 of the QRS wave (Equation 4), was obtained in the same manner as FIG. 18 It is a contour map. That is, FIG. 21 is a diagram obtained by subtracting the isometric diagram shown in FIG. 19 from the isometric diagram shown in FIG. The numerical values shown in the vicinity of the black circles of the curves in FIGS. 19 and 20 indicate the integral values of the curves, and the numerical values shown in the vicinity of the black circles of the curves in FIG. Is shown.
【0089】図19に示す時間帯T1での等積分図は,
図15及び図16に示す等積分図とあまり差のないパタ
ーンであり,左心室に電流が多く流れたことが分かる。
しかし,図20に示す時間帯T2での等積分図は,図1
9に示す時間帯T1での等積分図とは異なるパターンと
なり,心筋梗塞のために,時間帯T1と時間帯T2では心
臓に流れる電流量のパターンが大きく異なることが明確
に分かる。更に,図21に示す等高線図は全体が負の値
をもち,全体が正の値をもつ図18に示す健常者の等高
線図とは大きく異なり,心筋梗塞の患者では,時間帯T
2で心臓に流れる電流が障害を受けていることが明確に
分かる。The equal integral diagram in the time zone T 1 shown in FIG.
The pattern is not so different from the equal integration diagrams shown in FIGS. 15 and 16, and it can be seen that a large amount of current flows in the left ventricle.
However, isointegral in the time zone T 2 shown in FIG. 20, FIG. 1
The pattern is different from the isointegral diagram in the time zone T 1 shown in FIG. 9, and it is clearly seen that the pattern of the amount of current flowing to the heart is significantly different between the time zone T 1 and the time zone T 2 due to myocardial infarction. Further, the contour map shown in FIG. 21 has a negative value as a whole and is significantly different from the contour map of a healthy person shown in FIG. 18 having a positive value as a whole.
In Figure 2 , it can be clearly seen that the current flowing to the heart is damaged.
【0090】以上説明したように,心臓の時間帯T1と
時間帯T2に於ける磁場強度を画像化するすることによ
り,患者に苦痛を与えることなく非侵襲的に,1分以下
の短時間で,健康な状態と異常な状態(例えば,心筋梗
塞の状態,虚血状態等)とを容易に判別できる。即ち,
逆問題を解くことな疾患部位の早期発見,推定が可能と
なる。As described above, by imaging the magnetic field strength in the time zone T 1 and the time zone T 2 of the heart, the patient can be invasively non-invasively without causing discomfort within 1 minute or less. With time, a healthy state and an abnormal state (for example, a state of myocardial infarction, an ischemic state, etc.) can be easily distinguished. That is,
This enables early detection and estimation of disease sites that do not solve the inverse problem.
【0091】図22には生体磁場計測装置のコンピュー
タの画面上での処理画像例を示す。マルチウィンド形式
になっており,各処理画像をそれぞれのウィンド上に表
示できる。また,先に説明した図15から図21では磁
場強度や積分値の高低がわかるように各曲線に数値を入
れたが,ディスプレイ上では等高線の高低によって色分
けをして3次元カラー表示している。同時に,図13に
示すような磁場成分の時間変化を表わす波形(心磁
図),更には心電図も表示できるようになっており,心
臓疾患に関する総合的な解析ができるようにしている。FIG. 22 shows an example of a processed image on a computer screen of the biomagnetic field measuring apparatus. The multi-window format allows each processed image to be displayed on its own window. In FIG. 15 to FIG. 21 described above, numerical values are entered in each curve so that the level of the magnetic field strength and the integrated value can be understood. On the display, the color is classified according to the level of the contour lines, and three-dimensional color display is performed. . At the same time, a waveform (magnetocardiogram) representing a time change of the magnetic field component as shown in FIG. 13 and an electrocardiogram can be displayed, so that a comprehensive analysis on a heart disease can be performed.
【0092】図23は本発明の生体磁場計測装置のデス
プレイに表示された処理画像の一例を示す図である。図
23に於いて,MCGは心磁図の例,QRSは積分範囲
をQRS波の発生する期間T1とし(数35)により得
られた第1の等積分図,Tは積分範囲をT波の発生する
期間T2とし(数35)により得られた第2の等積分
図,(T−QRS)は第1及び第2の等積分図の差の各
例を示す。図22,図23に示すディスプレイ上の表示
例では,等高線の高低によって色分けをして3次元カラ
ー表示している。FIG. 23 is a view showing an example of a processed image displayed on the display of the biomagnetic field measuring apparatus of the present invention. In Figure 23, the MCG is MCG example, the first isointegral obtained by QRS is set to a period T 1 of occurrence of QRS wave integration range (number 35), T is the integration range of the T wave second isointegral of obtained by a period T 2 for generating (number 35), (T-QRS) indicate each example of the difference between the first and second isointegral. In the display example on the display shown in FIGS. 22 and 23, three-dimensional color display is performed by color-coding according to the level of contour lines.
【0093】なお,(数4),(数35)に於いて,積
分を行なわず簡便な方法により,I1(x,y),I
2(x,y)を求めることもできる。即ち,以下の(数
42)〜(数45)からI1(x,y),I2(x,y)
を求めて,更に,(数36)〜(数41)を適用する。
生体から発する磁場の接線成分(生体の面に平行な成
分)Bx(x,y,t),By(x,y,t)を計測する
場合には(但し,直交座標系(x,y,z)に於いて生
体の面に平行な面をxy面,生体の面に垂直な軸をzと
する),接線成分BxとByの2乗和の平方根から2次元
ベクトル強度│Bxy(x,y)│(│ │は絶対値を表
わす)を(数42)により求める。In Equations 4 and 35, I 1 (x, y), I 1 (x, y)
2 (x, y) can also be obtained. That is, from the following (Equation 42) to (Equation 45), I 1 (x, y) and I 2 (x, y)
And (Equation 36) to (Equation 41) are applied.
Tangential component of the magnetic field emanating from the living body (a component parallel to the plane of the living body) B x (x, y, t), B y (x, y, t) in the case of measuring the can (provided that the orthogonal coordinate system (x, y, xy plane parallel to the plane of the living body at a z), and z axis perpendicular to the plane of the living body), 2-dimensional vector magnitude from the square root of the square sum of tangential components B x and B y │ B xy (x, y) | (|| represents an absolute value) is obtained by (Equation 42).
【0094】[0094]
【数42】 │Bxy(x,y,t0)│= √{(Bx(x,y,t0))2+(By(x,y,t0))2} …(数42) 次いで,各点(x,y)について任意の時点での波形│
Bxy(x,y,t0)│の値I1(x,y)を(数43)
により求め,内挿,外挿により各点(x,y)でのI1
(x,y)が同じ値の点を結ぶ等磁場線図を求めて,等
磁場線図を表示画面に表示する。│B xy (x, y, t 0 ) │ = √ {(B x (x, y, t 0 )) 2 + (B y (x, y, t 0 )) 2 … (number 42) Then, for each point (x, y), the waveform at any time |
The value I 1 (x, y) of B xy (x, y, t 0 ) |
I 1 at each point (x, y) by interpolation and extrapolation.
An isomagnetic field diagram connecting points having the same value of (x, y) is obtained, and the isomagnetic field diagram is displayed on the display screen.
【0095】[0095]
【数43】 I1(x,y)=│Bxy(x,y,t0)│ …(数43) 生体の面に垂直な磁場成分Bz(x,y,t)を計測す
る場合には,垂直な磁場成分Bz(x,y,t0)のx方
向の変化率∂Bz(x,y,t0)/∂xと,Bz(x,
y,t0)の方向の変化率∂Bz(x,y,t0)/∂y
と求め,(数44)に示すように2乗和の平方根S
t0(x,y,t)を求める。I 1 (x, y) = | B xy (x, y, t 0 ) | (Expression 43) When measuring the magnetic field component B z (x, y, t) perpendicular to the surface of the living body Include the rate of change ∂B z (x, y, t 0 ) / ∂x of the perpendicular magnetic field component B z (x, y, t 0 ) in the x direction and B z (x,
y, t 0 ) direction change rate ∂B z (x, y, t 0 ) / ∂y
And the square root S of the sum of squares as shown in (Equation 44)
Find t0 (x, y, t).
【0096】[0096]
【数44】 St0(x,y,t0)=√[{∂Bz(x,y,t0)/∂x}2 +{∂Bz(x,y,t0)/∂y}2] …(数44) 次いで,各点(x,y)について任意の時点での波形S
t0(x,y,t0)の値I2(x,y)を(数45)によ
り求め,内挿,外挿により各点(x,y)での値I
2(x,y)が同じ値の点を結ぶ等磁場線図を求めて,
等磁場線図を表示画面に表示する。S t0 (x, y, t 0 ) = √ [{∂B z (x, y, t 0 ) / ∂x} 2 + {∂B z (x, y, t 0 ) / ∂y } 2 ] (Equation 44) Next, the waveform S at each point (x, y) at an arbitrary time point
t0 (x, y, t 0) the value I 2 (x, y) of the determined by (number 45), the value at each point interpolation, by extrapolation (x, y) I
2 Find an isomagnetic field map connecting points where (x, y) have the same value.
The isomagnetic field map is displayed on the display screen.
【0097】[0097]
【数45】 I2(x,y)=│St0(x,y,t0)│ …(数45) なお,(数42)〜(数45)に於いてt0として,例
えば,心臓を測定の対象とする時には,心室が収縮した
時のQ,R,Sの各波の極大値を与える時点をとる。更
に,(数42)〜(数45)に於いてt0として,複数
のt0をとり求めた複数の値の間での,等加重を含む和
又は差,比を求める等の演算を行ない,内挿,外挿によ
り演算結果が同じ値の点を結ぶ等磁場線図を求めて,等
磁場線図を表示画面に表示する。このような方法によっ
ても,上記で説明した(数4),(数35)を用いる方
法とほぼ同様な結果を得ることができる。I 2 (x, y) = | S t0 (x, y, t 0 ) | (Expression 45) Note that, in Expressions 42 to 45, as t 0 , for example, heart Is taken as a measurement target, a time point at which the maximum value of each of the Q, R, and S waves when the ventricle contracts is taken. Further, as (t 0 ) in (Equation 42) to (Equation 45), an operation such as finding a sum or difference including equal weights and a ratio between a plurality of values obtained by taking a plurality of t 0 is performed. , Interpolation and extrapolation to obtain an isomagnetic field map connecting points having the same value of the operation result, and display the isomagnetic field map on the display screen. Even with such a method, it is possible to obtain substantially the same results as the methods using (Equation 4) and (Equation 35) described above.
【0098】従来方法により法線成分Bzを測定して得
た患者Xの心磁図のQ波,R波,S波の極値が出現する
時点での等磁場線図を,図24(a),(b),(c)
に示す。図24(a),(b),(c)に於いて,点線
は吸い込まれる磁場の等磁場線図を示し,実線は沸き出
す磁場の等磁場線図を示し,白抜き矢印は電流ダイポー
ルの大きさ,方向を示している。図24(a),
(b),(c)に示す等磁場線図には,心臓内に存在す
る電流源を1つと仮定した時の電流ダイポールの位置を
白抜き矢印により示して重ねて表示している。図24
(a)に示すように,Q波の極値が出現する時点では,
心室中隔で右下方向に電流が流れ,図24(b)に示す
ように,R波の極値が出現する時点では,左室全体で左
斜め下方向に電流が大きく流れる。また,図24(c)
に示すように,S波の極値が出現する時点では,心室基
部方向に右斜め上に電流が流れ,心室の脱分極過程が終
了するのが分かる。[0098] Q-wave of MCG conventional methods patients obtained by measuring the normal component B z by X, R-wave, the isomagnetic field at the time the extreme values of the S wave appears, FIG. 24 (a ), (B), (c)
Shown in In FIGS. 24 (a), (b), and (c), the dotted line shows the isomagnetic field map of the magnetic field to be absorbed, the solid line shows the isomagnetic field map of the boiling magnetic field, and the white arrow shows the current dipole. The size and direction are shown. FIG. 24 (a),
In the isomagnetic field diagrams shown in (b) and (c), the position of the current dipole when the number of current sources existing in the heart is assumed to be one is superimposed and indicated by a white arrow. FIG.
As shown in (a), when the extreme value of the Q wave appears,
A current flows in the lower right direction in the interventricular septum, and as shown in FIG. 24B, at the time when the extreme value of the R wave appears, a large current flows in the entire left ventricle in a diagonally lower left direction. FIG. 24 (c)
As shown in FIG. 7, at the time when the extreme value of the S-wave appears, a current flows obliquely to the upper right in the direction of the ventricle base, and the depolarization process of the ventricle ends.
【0099】上記患者Xの心臓から発する磁場の接線成
分Bx,Byを測定し,Q波,R波,S波の各極値が出現
する時点に於いて,接線成分を(数42),(数43)
に基づいて合成した等磁場線図を,図25(a),
(b),(c)に示す。[0099] the tangential component of the magnetic field generated from the heart of the patient X B x, the B y is measured, Q wave, R wave, at the time of the extreme value of the S wave appears, the tangential component (number 42) , (Equation 43)
Fig. 25 (a),
(B) and (c) show.
【0100】図25(a)のパターンと図24(a)の
パターン,図25(b)のパターンと図24(b)のパ
ターン,図25(c)のパターンと図24(c)のパタ
ーン,はそれぞれほぼ一致する。しかし,図25(b)
に示すR波の極値が出現する時点のパターンでは,心筋
は広い領域で活動しており,図24(b)のR波の極値
が出現する時点のパターンでは鮮明でなかった複数の電
流源が容易に判別でき,電流源の1つは左方向に存在
し,他の電流源は下方に存在することが分かる。The pattern of FIG. 25A and the pattern of FIG. 24A, the pattern of FIG. 25B and the pattern of FIG. 24B, the pattern of FIG. 25C and the pattern of FIG. , Are almost the same. However, FIG.
In the pattern at the time when the extreme value of the R-wave appears as shown in FIG. 24, the myocardium is active in a wide area, and a plurality of currents that were not clear in the pattern at the time when the extreme value of the R-wave in FIG. The sources can be easily identified, and it can be seen that one of the current sources is to the left and the other is below.
【0101】図24(a),(b),(c)に示す,Q
波,R波,S波の各極値が出現する時点での法線成分B
zの等磁場線図データをそれぞれ用いて,(数44),
(数45)に基づいて求めた,Q波,R波,S波の各極
値が出現する時点の等磁場線図を,図26(a),
(b),(c)に示す。図26(a),(b),(c)
に示す結果から,図24(a),(b),(c)に示す
法線成分Bzの等磁場線図や,(数1)に基づくアロー
マップでは判別しにくかった複数の電流源が判別でき
る。図26(a),(b),(c)のパターンは,図2
5(a),(b),(c)に示すパターン(接線成分B
x,By合成から得られるBxyの等磁場線図)と同等であ
ることが分かる。このことは,(数6)及び(数7),
又は(数32)及び(数33)が実際の実験データでほ
ぼ成立していることを意味している。The Q shown in FIGS. 24 (a), (b) and (c)
Normal component B at the time when each extreme value of wave, R wave and S wave appears
Using the isomagnetic field map data of z ,
The isomagnetic field diagram at the time when the extreme values of the Q wave, R wave, and S wave appear based on (Equation 45) is shown in FIG.
(B) and (c) show. FIGS. 26 (a), (b), (c)
From the results shown in FIG. 24 (a), (b), and isomagnetic field of normal component B z of (c), the plurality of current source which was difficult to determine the arrow map that is based on equation (1) Can be determined. The patterns of FIGS. 26 (a), (b) and (c) are shown in FIG.
5 (a), (b) and (c) show patterns (tangent component B
x, it is found that equivalent to isomagnetic field) of the resulting B xy from B y synthesis. This means that (Equation 6) and (Equation 7),
Or, it means that (Equation 32) and (Equation 33) are almost satisfied with actual experimental data.
【0102】なお,図24(a)から図26(c)の各
図に於いて,横軸x,縦軸yは,生体表面に配置された
磁場センサの位置座標を表わす。In each of FIGS. 24 (a) to 26 (c), the horizontal axis x and the vertical axis y represent the position coordinates of the magnetic field sensor arranged on the surface of the living body.
【0103】以上の説明では,心磁場計測に関する例を
とって本発明を説明したが,脳磁図(MEG)を得る脳
磁場計測の場合にも本発明が適用できることは言うまで
もない。In the above description, the present invention has been described by taking an example relating to the measurement of the magnetocardiogram, but it is needless to say that the present invention can be applied to the measurement of the magnetoencephalogram (MEG).
【0104】図27は脳磁場を計測する脳磁場計測シス
テムの脳磁場計測用デュワの内部構成の一部を示す断面
図である。図27に示すように,脳磁場を計測する場合
には,胸部と異なり頭部は球状であるため,SQUID
磁束計103−1,103−2,…,103−Nを内蔵
する頭部計測用デュワ102の底面の形状を半球として
頭部100を覆うようにする。SQUID磁束計103
−1,103−2,…,103−Nは頭部計測用デュワ
102の内側の面に沿って放射状に配置され,各SQU
ID磁束計の先端面(磁場計測面)は半球面の接線面に
ほぼ平行となるように配置されている。半球の中心が頭
部の脳部のほぼ中心と一致するように脳部を球と仮定し
て半球の半径は設定され,この半径は成人でも測定でき
るよう約10cmとした。頭部計測用デュワ102の内
部には熱輻射シールド部材104が配置され頭部計測用
デュワの上部は上板105により密閉されている。SQ
UID磁束計103−1,…,103−Nにより検出さ
れた信号は信号線106−1,…,106−Nを通して
頭部計測用デュワの外部に取り出される。FIG. 27 is a sectional view showing a part of the internal configuration of a dewar for brain magnetic field measurement of a brain magnetic field measurement system for measuring a brain magnetic field. As shown in FIG. 27, when the brain magnetic field is measured, since the head is spherical unlike the chest, the SQUID
.., 103-N, the bottom surface of the head measurement dewar 102 is formed as a hemisphere so as to cover the head 100. SQUID magnetometer 103
, 103-N are radially arranged along the inner surface of the head measurement dewar 102, and
The tip surface (magnetic field measurement surface) of the ID magnetometer is disposed so as to be substantially parallel to the tangent surface of the hemisphere. The radius of the hemisphere was set on the assumption that the brain is a sphere so that the center of the hemisphere substantially coincides with the center of the brain of the head, and this radius was set to about 10 cm so that even adults could measure it. A heat radiation shield member 104 is disposed inside the head measurement dewar 102, and an upper portion of the head measurement dewar is sealed by an upper plate 105. SQ
The signals detected by the UID magnetometers 103-1,..., 103-N are taken out of the head measuring dewar through the signal lines 106-1,.
【0105】図28は図27に示す脳磁場計測システム
により計測可能な磁場成分と頭部の関係を説明する図で
ある。頭部の上方に放射状に複数の位置の1つO’配置
されたQUID磁束計により計測可能な脳磁場Bの成分
は,Oを原点とする極座標(r,θ,φ)に於けるr方
向の成分Br(法線成分)である。図28に於いて,成
分Bθ,Bφは頭部表面に平行な接線成分を示し,原点
Oは脳部を球と仮定した時の球の中心である。体性感覚
として右中指に電気刺激を与え,図27に示す脳磁場計
測システムにより法線成分Brを検出し,電気刺激を与
えてから約100msec後に出現する脳波が最大とな
る時点での等磁場線図を求める。図29(a),(b)
は,図27に示す脳磁場計測システムにより得られる等
磁場線図の一例を示す図であり,図29(a)は従来の
方法による法線成分Brの等磁場線図,図29(b)は
以下に示す本発明の(数46)を使用して得られる等磁
場線図(地球儀に示された地図の如く,脳部を近似する
球面に表示された脳磁場の強度分布を示す。)を示す。FIG. 28 is a view for explaining the relationship between the magnetic field component and the head which can be measured by the brain magnetic field measurement system shown in FIG. The component of the cerebral magnetic field B measurable by the QUID magnetometer radially arranged at one of a plurality of positions O ′ above the head is the r direction in the polar coordinates (r, θ, φ) with O as the origin. Is a component Br (normal component) of In FIG. 28, components B θ and B φ indicate tangential components parallel to the head surface, and the origin O is the center of the sphere when the brain is assumed to be a sphere. An electrical stimulus is applied to the right middle finger as a somatic sensation, a normal component Br is detected by the cerebral magnetic field measurement system shown in FIG. Find the magnetic field diagram. FIG. 29 (a), (b)
Is a diagram showing an example of such a magnetic field diagram obtained by cerebral magnetic field measurement system shown in FIG. 27, FIG. 29 (a) is isomagnetic field of normal component B r by conventional methods, FIG. 29 (b ) Shows the intensity distribution of the brain magnetic field displayed on a spherical surface approximating the brain, such as a map shown on a globe, obtained by using the following (Equation 46) of the present invention. ).
【0106】[0106]
【数46】 St(θ,φ,t)= √{(∂Br(t)/∂θ)2+(∂Br(t)/∂φ)2} …(数46) 図29(a)に示す等磁場線図には,脳内に存在する電
流源を1つと仮定した時の電流ダイポールの位置を白抜
き矢印により示して重ねて表示している。図29(a)
において,点線は吸い込まれる磁場の等磁場線図を示
し,実線は沸き出す磁場の等磁場線図を示し,白抜き矢
印は電流ダイポールの大きさ,方向を示している。図2
9(a)に示す法線成分Brの等磁場線図で従来推定し
ていた電流源(白抜き矢印で示す電流ダイポール)が,
図29(b)に示す等磁場線図ではピーク位置Aに対応
して出現していることが容易に直視できる。なお,図2
7に図示しない脳磁場計測システムのその他の構成は基
本的に図7に示す生体磁場計測装置の構成と同一であ
る。S t (θ, φ, t) = √ {(∂B r (t) / ∂θ) 2 + (∂B r (t) / ∂φ) 2 … (Formula 46) In the isomagnetic field diagram shown in a), the position of the current dipole when the number of current sources existing in the brain is assumed to be one is superimposed and indicated by a white arrow. FIG. 29 (a)
In, the dotted line shows the isomagnetic field map of the magnetic field to be absorbed, the solid line shows the isomagnetic field map of the boiling magnetic field, and the white arrows show the size and direction of the current dipole. FIG.
9 the current source has been estimated conventionally isomagnetic field of normal component B r shown in (a) (current dipole shown by a white arrow) is,
In the isomagnetic field diagram shown in FIG. 29 (b), it can be easily seen directly that it appears corresponding to the peak position A. Note that FIG.
The other configuration of the brain magnetic field measurement system not shown in FIG. 7 is basically the same as the configuration of the biomagnetic field measurement device shown in FIG.
【0107】以上説明した本発明による各種の方法によ
り得られる心磁場,脳磁場に関する等磁場線図を使っ
て,磁場源を解析する方法として,逆問題を解く様々の
アルゴリズムが考えられる。実際に多く使用されている
単純なアルゴリズムは,磁場源として単一あるいは2つ
程度の電流ダイポールを想定し,これら電流ダイポール
が存在する位置座標を初期条件として任意に仮定して,
各位置座標に存在する電流ダイポールが,ビオサバール
の式で表される磁場を作るものとして,実測した磁場の
計測点(x,y)での磁場を計算する。計算された磁場
〈Bc(x,y)〉と実測値の磁場〈Vm(x,y)〉
(m=1,2,…,M:Mは実測される磁場の計測点の
総数)との差で表される次の(数47)に示す評価関数
を計算し,各電流ダイポールの位置座標を変化させて,
評価関数Lの最小値を解析的に求めていく。(数47)
に於いて,Gは定数,〈ns〉は法線又はz方向の単位
ベクトルであり,加算記号Σは,m=1,2,…,Mに
関する加算を示す。Various algorithms for solving the inverse problem can be considered as a method of analyzing the magnetic field source using the isomagnetic maps relating to the cardiac magnetic field and the brain magnetic field obtained by the various methods according to the present invention described above. A simple algorithm often used in practice is to assume one or two current dipoles as magnetic field sources, and arbitrarily assuming the position coordinates where these current dipoles exist as initial conditions.
The magnetic field at the measurement point (x, y) of the actually measured magnetic field is calculated on the assumption that the current dipole existing at each position coordinate generates a magnetic field represented by the Biot-Savart equation. The calculated magnetic field <B c (x, y)> and the actually measured magnetic field <V m (x, y)>
(M = 1, 2,..., M: where M is the total number of measurement points of the actually measured magnetic field) and the evaluation function shown in the following (Equation 47) is calculated, and the position coordinates of each current dipole are calculated. By changing
The minimum value of the evaluation function L is obtained analytically. (Equation 47)
, G is a constant, < ns > is a unit vector in the normal direction or z direction, and the addition symbol Σ indicates addition for m = 1, 2,..., M.
【0108】[0108]
【数47】 L=Σ{〈Vm(x,y)〉−G([〈Bc(x,y)〉]・ns)}2 …(数47) しかし,(数47)に基づく方法では,磁場の広い測定
領域を解析する場合,最小値に収束しない場合も出てく
る。本発明では,評価関数Lを算出の際のダイポールの
位置と個数の初期条件を,(数3),(数34),又は
(数46)に基づく等磁場線図に於けるピーク位置をダ
イポールの位置とし,更に,等磁場線図に於けるピーク
の個数をダイポールの個数として予め決める。このよう
に初期条件を与え評価関数Lを解くことにより,磁場源
解析が必ず収束する。ディスプレイ上に表示される,
(数3),(数34),又は(数46)に基づく心磁
場,脳磁場に関する等磁場線図上での各ピーク位置を指
定することにより,自動的に各ピーク位置の座標とその
個数が上記の初期値として自動的に装置に入力され,評
価関数Lが解かれ,収束する磁場源解析結果が得られ
る。L = {<V m (x, y)> − G ([<B c (x, y)>] · ns )} 2 (Equation 47) However, based on (Equation 47) In the method, when analyzing a wide measurement region of a magnetic field, there are cases where the measurement value does not converge to the minimum value. In the present invention, the initial condition of the position and the number of dipoles at the time of calculating the evaluation function L is defined as the peak position in the isomagnetic field map based on (Equation 3), (Equation 34), or (Equation 46). And the number of peaks in the isomagnetic field diagram is determined in advance as the number of dipoles. By thus giving the initial condition and solving the evaluation function L, the magnetic field source analysis always converges. Displayed on the display,
The coordinates of each peak position and the number of the peak positions are automatically specified by designating each peak position on the isomagnetic field map for the cardiac magnetic field and brain magnetic field based on (Expression 3), (Expression 34), or (Expression 46). Is automatically input to the apparatus as the above initial value, the evaluation function L is solved, and a converged magnetic field source analysis result is obtained.
【0109】従って,従来技術のように試行錯誤的に初
期値を設定するのではなく,計測の結果得られる等磁場
線図のデータに基づいて,初期値設定をほぼ一義的にか
つ容易に可能ででき,効率よくより正確に逆問題を解く
ことが可能となる。Therefore, the initial value can be set almost unambiguously and easily based on the data of the isomagnetic field diagram obtained as a result of the measurement, instead of setting the initial value by trial and error as in the prior art. It is possible to solve the inverse problem efficiently and more accurately.
【0110】なお,以上の説明に於いて使用した等磁場
線図を表わす各図では,医療の分野で行なわれている通
例に従い,人体の右側を各図の左側に表示し,人体の左
側を各図の右側に表示している。In each of the figures representing the isomagnetic field map used in the above description, the right side of the human body is displayed on the left side of each figure and the left side of the human body is displayed in accordance with the usual practice in the medical field. It is displayed on the right side of each figure.
【0111】[0111]
【発明の効果】本発明では,ベクトル計測により接線成
分Bx,Byを計測することなく,法線成分Bzの計測の
みから,(数2)に示す従来技術に於けるBxyに基づく
等磁場線図と等価的な等磁場線図が得られる。従来技術
の於ける法線成分Bzから直接得る等磁場線図では,複
数の電流源は判別しにくかったが,本発明の等磁場線図
では,(数2)に示す従来技術に於けるBxyに基づく等
磁場線図と同様に,電流源の直上にピークパターンが出
現するので,生体内の複数の電流源を直読でき,複数の
電流源の位置,大きさ等を解析する逆問題が容易に解け
るようになる。本発明の装置によれば,心筋梗塞,虚血
等の発見,不整脈を生じている位置の発見,心筋肥大の
発見,術前術後の心筋状態の変化の評価等の心臓に関す
る疾患の発見,状態の確認等が容易にできる。In the present invention, without measuring tangential components B x, the B y by vector measurement, only the measurement of the normal component B z, based in B xy in the prior art shown in equation (2) An isomagnetic field diagram equivalent to the isomagnetic diagram is obtained. The isomagnetic field obtained directly from in normal component B z of the prior art, a plurality of current sources is was difficult to determine, in isomagnetic field of the present invention, in the prior art shown in equation (2) Similar to the isomagnetic field map based on Bxy, a peak pattern appears immediately above the current source, so that multiple current sources in the living body can be read directly, and the inverse problem of analyzing the position, size, etc. of multiple current sources. Can be easily solved. According to the device of the present invention, discovery of diseases related to the heart, such as discovery of myocardial infarction, ischemia, etc., discovery of arrhythmic locations, discovery of myocardial hypertrophy, evaluation of changes in myocardial condition before and after surgery, It is easy to check the status.
【図1】本発明に於いて,心磁場の発生を,無限平面導
体中の電流ダイポールから発生する磁場によりモデル化
して解析するための図。FIG. 1 is a diagram for modeling and analyzing generation of a cardiac magnetic field by a magnetic field generated from a current dipole in an infinite planar conductor in the present invention.
【図2】本発明に於いて,無限平面導体の内部に存在す
る電流ダイポールのモーメントの概略位置を示す図。FIG. 2 is a diagram showing a schematic position of a moment of a current dipole existing inside an infinite planar conductor in the present invention.
【図3】本発明に於いて,無限平面導体の上でのBx及
び−∂BZ/∂xをそれぞれの最大値で規格化した相対
磁場強度曲線C1,C2を示す図。FIG. 3 is a diagram showing relative magnetic field strength curves C 1 and C 2 in which B x and −ΔB Z / Δx on an infinite planar conductor are normalized by respective maximum values in the present invention.
【図4】本発明に於いて,−∂BZ(x,0)/∂xの
第1項,第2項,第3項を示す磁場強度曲線C3,C4,
C5を示す図。[4] In the present invention, -∂B Z (x, 0) / first term of ∂x, paragraph 2, the magnetic field intensity curve C 3 showing a third term, C 4,
Shows the C 5.
【図5】本発明に於いて,Bx,∂BZ/∂xのそれぞれ
の第1項と第2項を規格化の後に比較した相対磁場強度
曲線C6,C7,C8,C9を示す図。FIG. 5 shows relative magnetic field strength curves C 6 , C 7 , C 8 , C 8 in which the first and second terms of B x , ∂B Z / ∂x are compared after normalization. shows a 9.
【図6】本発明に於いて,α=(∇K)z/K,{−∂
BZ(x,0)/∂xの第1項}/{Bx(x,0)の第
1項},{−∂BZ(x,0)/∂xの第2項}/{Bx
(x,0)の第2項}の各々の磁場強度曲線C10,
C11,C12を示す図。FIG. 6 is a graph showing a relation between α = (∇K) z / K and {−∂ in the present invention.
B Z (x, 0) / the first term of ∂x} / {first term of B x (x, 0)} , {- ∂B Z (x, 0) / second term of ∂x} / { B x
The magnetic field strength curves C 10 ,
Shows the C 11, C 12.
【図7】本発明が実施される心磁場計測を行なう生体磁
場計測装置の概略構成を示す図。FIG. 7 is a diagram showing a schematic configuration of a biomagnetic field measuring apparatus for performing a cardiac magnetic field measurement according to the present invention.
【図8】本発明が実施される心磁場計測を行なう生体磁
場計測装置に於ける磁場センサの配置構成を示す図。FIG. 8 is a diagram showing an arrangement configuration of a magnetic field sensor in a biomagnetic field measuring apparatus that performs a cardiac magnetic field measurement according to the present invention.
【図9】本発明が実施される心磁場計測を行なう生体磁
場計測装置に於ける磁場の法線成分を検出する磁場セン
サ単体の構成を示す図。FIG. 9 is a diagram showing the configuration of a single magnetic field sensor for detecting a normal component of a magnetic field in a biomagnetic field measuring apparatus for performing a cardiac magnetic field measurement according to the present invention.
【図10】本発明が実施される心磁場計測を行なう生体
磁場計測装置に於ける磁場の接線成分を検出する磁場セ
ンサ単体の構成を示す図。FIG. 10 is a diagram showing the configuration of a single magnetic field sensor for detecting a tangential component of a magnetic field in a biomagnetic field measurement apparatus for performing a cardiac magnetic field measurement according to the present invention.
【図11】本発明が実施される心磁場計測を行なう生体
磁場計測装置に於ける磁場センサの配置と人体の胸部と
の位置関係を示す図。FIG. 11 is a diagram showing a positional relationship between an arrangement of a magnetic field sensor and a chest of a human body in a biomagnetic field measuring apparatus for performing a cardiac magnetic field measurement according to the present invention.
【図12】本発明の実施例に於いて,各磁場センサ位置
に於いて計測した健常者の心臓から発する磁場の各方向
の成分の時間変化を表わす波形を示す図。FIG. 12 is a diagram showing a waveform representing a temporal change of a component in each direction of a magnetic field emitted from a healthy person's heart measured at each magnetic field sensor position in the embodiment of the present invention.
【図13】本発明の実施例に於いて,健常者について計
測された特定の2チャンネルに関する接線成分(Bx)
の時間変化を表わす波形を示す図。FIG. 13 is a diagram illustrating a tangential component (B x ) of two specific channels measured for a healthy person in the embodiment of the present invention.
FIG. 3 is a diagram showing a waveform representing a time change of the waveform.
【図14】本発明の実施例に於いて,磁場の接線成分B
x,Byを計測した健常者の心磁波形から得た,Q波,R
波,S波の各波のピーク時に於ける等磁場線図。FIG. 14 shows a tangential component B of a magnetic field in the embodiment of the present invention.
x, to obtain a B y from healthy subjects of the magnetocardiogram waveform measured, Q wave, R
FIG. 3 is an isomagnetic field diagram at the peak of each of the wave and the S wave.
【図15】本発明の実施例に於いて,健常者の心磁波形
のQRS波が出現する時間帯に於いて検出された2つの
接線成分から得た等積分図。FIG. 15 is an isointegral diagram obtained from two tangent components detected in a time zone in which a QRS wave of a magnetocardiogram of a healthy person appears in the embodiment of the present invention.
【図16】本発明の実施例に於いて,健常者の心磁波形
のQRS波が出現する時間帯に於いて検出された法線線
分から得た等積分図。FIG. 16 is an isointegral graph obtained from a normal line segment detected in a time zone in which a QRS wave of a magnetocardiogram of a healthy person appears in the example of the present invention.
【図17】本発明の実施例に於いて,健常者の心磁波形
のT波が出現する時間帯に於いて検出された2つの接線
成分から得た等積分図。FIG. 17 is an isointegral graph obtained from two tangent components detected in a time zone in which a T wave of a magnetocardiogram of a healthy person appears in the embodiment of the present invention.
【図18】図17に示す等積分図から図15に示す等積
分図を差し引いた図。FIG. 18 is a diagram obtained by subtracting the isometric diagram shown in FIG. 15 from the isometric diagram shown in FIG. 17;
【図19】本発明の実施例に於いて,心筋梗塞の患者の
心磁波形のQRS波が出現する時間帯に於いて検出され
た2つの接線成分から得た等積分図。FIG. 19 is an isometric diagram obtained from two tangent components detected in a time zone in which a QRS wave of a magnetocardiographic waveform of a patient with myocardial infarction appears in an embodiment of the present invention.
【図20】本発明の実施例に於いて,心筋梗塞の患者の
心磁波形のT波が出現する時間帯に於いて検出された2
つの接線成分から得た等積分図。FIG. 20 is a graph showing the detection of a T-wave of a magnetocardiographic waveform of a patient with a myocardial infarction in a time period when the T-wave appears in an embodiment of the present invention.
Isointegral diagram obtained from two tangent components.
【図21】図20に示す等積分図から図19に示す等積
分図を差し引いた図。FIG. 21 is a diagram obtained by subtracting the isometric diagram shown in FIG. 19 from the isometric diagram shown in FIG. 20;
【図22】本発明が実施される心磁場計測を行なう生体
磁場計測装置のパソコンでの出力画面の例を示す図。FIG. 22 is a diagram showing an example of an output screen on a personal computer of a biomagnetic field measurement apparatus for performing cardiac magnetic field measurement according to the present invention.
【図23】本発明の生体磁場計測装置のデスプレイに表
示された処理画像の一例を示す図。FIG. 23 is a view showing an example of a processed image displayed on the display of the biomagnetic field measuring apparatus of the present invention.
【図24】従来方法により法線成分Bzを測定して得
た,心磁図(MCG)のQ波,R波,S波の極値が出現
する時点での等磁場線図を示す図。FIG. 24 is a diagram showing an isomagnetic field diagram at the time when the extreme values of the Q wave, R wave, and S wave of the magnetocardiogram (MCG) are obtained by measuring the normal component B z according to the conventional method.
【図25】本発明の実施例に於いてそれぞれ,心臓から
の磁場の接線成分Bx,Byを測定し,Q波,R波,S波
の極値が出現する時点に於いて,接線成分を合成したB
xyの等磁場線図を示す図。[Figure 25], respectively In the embodiment of the present invention, the tangential component B x of a magnetic field from the heart, the B y is measured, at the time of the Q wave, R wave, the extreme values of the S-wave occurrence, tangent B that synthesized components
The figure which shows the isomagnetic field map of xy .
【図26】本発明の実施例に於いて,図24に示す,Q
波,R波,S波の極値が出現する時点での法線成分Bz
の等磁場線図データをそれぞれ用いて,(数43),
(数44)に基づいて求めた,各時点での等磁場線図を
示す図。FIG. 26 is a diagram showing an embodiment of the present invention;
Component B z at the time when the extreme values of the wave, R wave and S wave appear
(Equation 43)
The figure which shows the iso-magnetic-field map in each time calculated | required based on (Equation 44).
【図27】本発明の実施例に於いて,脳磁場を計測する
脳磁場計測システムの脳磁場計測用デュワの内部構成の
一部を示す断面図。FIG. 27 is a cross-sectional view showing a part of the internal configuration of a dewar for brain magnetic field measurement of a brain magnetic field measurement system for measuring a brain magnetic field in an embodiment of the present invention.
【図28】図27に示す脳磁場計測システムにより計測
可能な磁場成分と頭部の関係を説明する図。28 is a view for explaining the relationship between a magnetic field component and the head which can be measured by the brain magnetic field measurement system shown in FIG. 27.
【図29】図27に示す脳磁場計測システムにより得ら
れる等磁場線図の一例を示す図。FIG. 29 is a diagram showing an example of an isomagnetic field diagram obtained by the brain magnetic field measurement system shown in FIG. 27;
1…磁場シールドルーム,2…被検者,3…ベッド,4
…デュワ,5…自動補給装置,6…FFL回路,7…フ
イルター回路,8…計算機,10,10’,10”…検
出コイル,11,11’,11”…参照コイル,12,
12’,12”…SQUID,13…x成分検出用磁場
センサ,14…y成分検出用磁場センサ,20−1,2
0−2,〜,20−8,21−1,〜,21−8,22
−1,〜,22−8,23−2,〜,23−8,24−
1,〜,24−8,25−1,〜,25−8,26−
1,〜,26−8,27−1,〜,27−8…磁場セン
サ,30…胸部,103−1,103−2,…,103
−N…SQUID磁束計,100…頭部,102…頭部
計測用デュワ,104…熱輻射シールド部材,105…
上板,106−1,…,106−N…信号線。1: magnetic field shield room, 2: subject, 3: bed, 4
... Dua, 5 ... Automatic replenishing device, 6 ... FFL circuit, 7 ... Filter circuit, 8 ... Computer, 10, 10 ', 10 "... Detection coil, 11, 11', 11" ... Reference coil, 12,
12 ', 12 "... SQUID, 13 ... Magnetic field sensor for detecting x component, 14 ... Magnetic field sensor for detecting y component, 20-1 and 20-1
0-2, ~, 20-8, 21-1, ~, 21-8, 22
-1, ~, 22-8,23-2, ~, 23-8,24-
1, ~, 24-8,25-1, ~, 25-8,26-
1, ~, 26-8, 27-1, ..., 27-8 ... magnetic field sensor, 30 ... chest, 103-1, 103-2, ..., 103
-N: SQUID magnetometer, 100: head, 102: head dewar, 104: heat radiation shield member, 105:
.., 106-N... Signal lines.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 博之 茨城県ひたちなか市市毛882番地 株式 会社日立製作所計測器事業部内 (72)発明者 近藤 昭二 茨城県ひたちなか市市毛882番地 株式 会社日立製作所計測器事業部内 (72)発明者 小見山 泰明 茨城県ひたちなか市市毛882番地 株式 会社日立製作所計測器事業部内 (72)発明者 岡島 健一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平8−266499(JP,A) 特開 平6−121776(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 5/05 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroyuki Suzuki 882 Ma, Hitachinaka-shi, Ibaraki Pref.Hitachi, Ltd.Measurement Equipment Division (72) Inventor Shoji Kondo 882-Homo, Hitachinaka-shi, Ibaraki Pref. (72) Inventor Yasuaki Omiyama 882 Ma, Hitachinaka-shi, Ibaraki Pref.Hitachi, Ltd.Measurement Instruments Division (72) Inventor Kenichi Okajima 1-280, Higashi-Koikekubo, Kokubunji-shi, Tokyo Within Central Research Laboratory, Hitachi, Ltd. 56) References JP-A-8-266499 (JP, A) JP-A-6-121776 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/05
Claims (4)
面,前記生体表面に垂直な方向を前記直交座標のz軸と
し,量子干渉素子(SQUID)からなる複数の磁束計
により検出され,前記生体から発する生体磁場の前記生
体表面に垂直な磁場成分Bz(x,y,t)のx方向及
びy方向での変化率の2乗和 S(x,y,t)={(∂Bz(x,y,t)/∂x)2
+(∂Bz(x,y,t)/∂y)2} の平方根に比例する値を求め,任意の時点tでの前記値
の等しい点を結ぶ等磁場線図を求める工程と,前記等磁
場線図をディスプレイに表示する工程と,前記等磁場線
図のピークの数及び前記ピークの位置データが,前記生
体内の磁場源の位置,強度を推定する逆問題を解くため
の前記磁場源の個数,及び前記磁場源の位置の初期値と
して入力される工程とを有することを特徴とする磁場源
解析方法。1. A plane parallel to a living body surface is defined as an x, y plane of rectangular coordinates, and a direction perpendicular to the biological surface is defined as az axis of the rectangular coordinates, and is detected by a plurality of magnetometers comprising a quantum interference device (SQUID). And the sum of squares of the rate of change in the x and y directions of the magnetic field component B z (x, y, t) of the biomagnetic field emitted from the living body perpendicular to the surface of the living body S (x, y, t) = { (∂B z (x, y, t) / ∂x) 2
+ (∂B z (x, y, t) / ∂y) 2を a value proportional to the square root of 2 ,, and an isomagnetic field diagram connecting points having the same value at any time t, A step of displaying an isomagnetic field map on a display, wherein the number of peaks and the position data of the peaks in the isomagnetic field map are used to solve an inverse problem for estimating the position and intensity of a magnetic field source in the living body. A method of inputting the number of sources and an initial value of the position of the magnetic field source.
面,前記生体表面に垂直な方向を前記直交座標のz軸と
し,量子干渉素子(SQUID)からなる複数の磁束計
により検出され,前記生体から発する生体磁場の前記生
体表面に垂直な磁場成分Bz(x,y,t)のx方向及
びy方向での変化率の2乗和 S(x,y,t)={(∂Bz(x,y,t)/∂x)2
+(∂Bz(x,y,t)/∂y)2} の平方根に比例する値を求め,任意の時点tでの前記値
の等しい点を結ぶ等磁場線図を求める演算を行なう工程
と,前記等磁場線図をディスプレイに表示する工程と,
前記ディスプレイに表示された前記等磁場線図上で指定
された前記等磁場線図の各ピーク位置の座標とその個数
が自動的に初期条件として入力される工程と,磁場源と
して想定された電流ダイポールの存在する位置座標を仮
定して,前記各位置座標に存在する前記電流ダイポール
がビオサバールの式で表される磁場を生成するものとし
て,前記生体磁場が計測された複数(m=1,2,…,
M)における位置(x,y)での磁場〈Bc(x,
y)〉を計算し,計測された前記生体磁場〈Vm(x,
y)〉と計算された磁場〈Bc(x,y)〉の差で表わ
される評価関数を用いて,前記各電流ダイポールの存在
する前記位置座標を変化させて,評価関数の最小値を解
析的に求めて前記磁場源の解析を行なう工程と,前記磁
場源の解析結果が前記ディスプレイに表示されることを
特徴とする磁場源解析方法。2. A plane parallel to the living body surface is defined as an x, y plane of rectangular coordinates, and a direction perpendicular to the biological surface is defined as az axis of the rectangular coordinates, and is detected by a plurality of magnetometers comprising a quantum interference device (SQUID). And the sum of squares of the rate of change in the x and y directions of the magnetic field component B z (x, y, t) of the biomagnetic field emitted from the living body perpendicular to the surface of the living body S (x, y, t) = { (∂B z (x, y, t) / ∂x) 2
+ ({B z (x, y, t) / {y) 2 } A step of obtaining a value proportional to the square root of 2 } and obtaining an isomagnetic field map connecting points having the same value at an arbitrary time t Displaying the isomagnetic field map on a display;
Automatically inputting the coordinates and the number of each peak position of the isomagnetic field map specified on the isomagnetic field map displayed on the display as initial conditions; Assuming the position coordinates where the dipoles are present, assuming that the current dipoles present at the respective position coordinates generate a magnetic field represented by the Biot-Savart equation, a plurality of measured biomagnetic fields (m = 1, 2) ,…,
M), the magnetic field <B c (x, y) at the position (x, y)
y)>, and the measured biomagnetic field <V m (x,
y)> and the calculated coordinates of the magnetic field <B c (x, y)> are used to change the position coordinates where each of the current dipoles are present to analyze the minimum value of the evaluation function. Analyzing the magnetic field source in a predetermined manner, and displaying the analysis result of the magnetic field source on the display.
をもつ半球面の接線面にほぼ平行となるように先端部が
配置される複数のSQUID磁束計により検出され,前
記球の中心を原点とする極座標(r,θ,φ)に於ける
r方向の磁場成分であり,前記生体の脳部から発生する
生体磁場の前記接線面に垂直な法線成分Br(θ,φ,
t)のθ方向及びφ方向での変化率の2乗和 S(θ,φ,t)={(∂Br(θ,φ,t)/∂θ)2
+(∂Br(θ,φ,t)/∂φ)2} の平方根に比例する値を求め,任意の時点tでの前記値
の等しい点を結ぶ等磁場線図を求める工程と,前記等磁
場線図をディスプレイに表示する工程と,前記等磁場線
図のピークの数及び前記ピークの位置データが,前記生
体内の磁場源の位置,強度を推定する逆問題を解くため
の前記磁場源の個数,及び前記磁場源の位置の初期値と
して入力される工程とを有することを特徴とする磁場源
解析方法。3. Assuming that the head of the living body is a sphere, the head is detected by a plurality of SQUID magnetometers whose tips are arranged so as to be substantially parallel to a tangent surface of a hemisphere having a radius of the sphere. A magnetic field component in the r direction in polar coordinates (r, θ, φ) with the center of the sphere as the origin, and a normal component B r (θ perpendicular to the tangent plane of the biomagnetic field generated from the brain of the living body , Φ,
t) the sum of squares of the rate of change in the θ and φ directions S (θ, φ, t) = {(∂B r (θ, φ, t) / ∂θ) 2
+ (∂B r (θ, φ, t) / ∂φ) 2求 め to obtain a value proportional to the square root of 2 ,, and at any time t to obtain an isomagnetic field map connecting points having the same value, A step of displaying an isomagnetic field map on a display, wherein the number of peaks and the position data of the peaks in the isomagnetic field map are used to solve an inverse problem for estimating the position and intensity of a magnetic field source in the living body. A method of inputting the number of sources and an initial value of the position of the magnetic field source.
をもつ半球面の接線面にほぼ平行となるように先端部が
配置される複数のSQUID磁束計により検出され,前
記球の中心を原点とする極座標(r,θ,φ)に於ける
r方向の磁場成分であり,前記生体の脳部から発生する
生体磁場の前記接線面に垂直な法線成分Br(θ,φ,
t)のθ方向及びφ方向での変化率の2乗和 S(θ,φ,t)={(∂Br(θ,φ,t)/∂θ)2
+(∂Br(θ,φ,t)/∂φ)2} の平方根に比例する値を求め,任意の時点tでの前記値
の等しい点を結ぶ等磁場線図を求める工程と,前記等磁
場線図をディスプレイに表示する工程と,前記ディスプ
レイに表示された前記等磁場線図上で指定された前記等
磁場線図の各ピーク位置の座標とその個数が自動的に初
期条件として入力される工程と,磁場源として想定され
た電流ダイポールの存在する位置座標を仮定して,前記
各位置座標に存在する前記電流ダイポールがビオサバー
ルの式で表される磁場を生成するものとして,前記生体
磁場が計測された複数(m=1,2,…,M)における
位置(θ,φ)での磁場〈Bc(θ,φ)〉を計算し,
計測された前記生体磁場〈Vm(θ,φ)〉と計算され
た磁場〈Bc(θ,φ)〉の差で表わされる評価関数を
用いて,前記各電流ダイポールの存在する前記位置座標
を変化させて,評価関数の最小値を解析的に求めて前記
磁場源の解析を行なう工程と,前記磁場源の解析結果が
前記ディスプレイに表示されることを特徴とする磁場源
解析方法。4. Assuming that the head of the living body is a sphere, the head is detected by a plurality of SQUID magnetometers whose tips are arranged substantially parallel to a tangent surface of a hemisphere having a radius of the sphere. A magnetic field component in the r direction in polar coordinates (r, θ, φ) with the center of the sphere as the origin, and a normal component B r (θ perpendicular to the tangent plane of the biomagnetic field generated from the brain of the living body , Φ,
t) the sum of squares of the rate of change in the θ and φ directions S (θ, φ, t) = {(∂B r (θ, φ, t) / ∂θ) 2
+ (∂B r (θ, φ, t) / ∂φ) 2求 め to obtain a value proportional to the square root of 2 ,, and at any time t to obtain an isomagnetic field map connecting points having the same value, Displaying the isomagnetic field map on a display, and automatically inputting the coordinates and the number of each peak position of the isomagnetic field map specified on the isomagnetic field map displayed on the display as initial conditions And the current dipole present at each of the position coordinates is assumed to generate a magnetic field represented by the Biot-Savart equation, assuming the position coordinates of the current dipole assumed as the magnetic field source. The magnetic field <B c (θ, φ)> at the position (θ, φ) at a plurality of (m = 1, 2,..., M) where the magnetic field was measured,
Using the evaluation function represented by the difference between the measured biomagnetic field <V m (θ, φ)> and the calculated magnetic field <B c (θ, φ)>, the position coordinates where each of the current dipoles are present And analyzing the magnetic field source by analytically obtaining the minimum value of the evaluation function, and displaying the analysis result of the magnetic field source on the display.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000244019A JP3196771B2 (en) | 1997-03-07 | 2000-08-07 | Magnetic field source analysis method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5276997 | 1997-03-07 | ||
JP9-52769 | 1997-03-07 | ||
JP2000244019A JP3196771B2 (en) | 1997-03-07 | 2000-08-07 | Magnetic field source analysis method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26112698A Division JP3231710B2 (en) | 1997-03-07 | 1998-09-16 | A method for estimating the tangent component of a biomagnetic field parallel to a biological surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001087239A JP2001087239A (en) | 2001-04-03 |
JP3196771B2 true JP3196771B2 (en) | 2001-08-06 |
Family
ID=26393427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000244019A Expired - Lifetime JP3196771B2 (en) | 1997-03-07 | 2000-08-07 | Magnetic field source analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3196771B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5403551B2 (en) * | 2009-12-14 | 2014-01-29 | 国立大学法人大阪大学 | Magnetic field source estimation apparatus, method and program |
-
2000
- 2000-08-07 JP JP2000244019A patent/JP3196771B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001087239A (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6735460B2 (en) | Biomagnetic field measuring method and apparatus | |
Malmivuo | Comparison of the properties of EEG and MEG in detecting the electric activity of the brain | |
US6665553B2 (en) | Biomagnetic field measuring apparatus using squid magnetometers for evaluating a rotational property of a current in a subject | |
Nenonen et al. | Magnetocardiographic functional localization using current multipole models | |
JP2012179352A (en) | System and method for constructing current dipole | |
JP3582495B2 (en) | Biomagnetic field measurement device | |
Schneider et al. | Multichannel biomagnetic system for study of electrical activity in the brain and heart. | |
Nenonen | Solving the inverse problem in magnetocardiography | |
JP2019515757A (en) | Device for measuring biomagnetic field | |
JP3067728B2 (en) | Biomagnetic field measurement device | |
Nowak | Biomagnetic instrumentation | |
Moshage et al. | Progress in biomagnetic imaging of heart arrhythmias | |
JP3518493B2 (en) | Calculation method of isometric diagram of biomagnetic field | |
JP4078821B2 (en) | Biomagnetic field measurement device | |
JP3196771B2 (en) | Magnetic field source analysis method | |
JP3196769B2 (en) | Biomagnetic field measurement device | |
JP3196770B2 (en) | Biomagnetic field measurement device | |
JP3231710B2 (en) | A method for estimating the tangent component of a biomagnetic field parallel to a biological surface | |
JP3196768B2 (en) | Biomagnetic field measurement device | |
JP3233127B2 (en) | Biomagnetic field measurement device | |
JP3525873B2 (en) | Initial value estimation method in magnetic field source analysis method | |
Lounasmaa et al. | SQUIDs in neuro-and cardiomagnetism | |
Erasala et al. | Adult magnetocardiography: Principles and clinical practice | |
JP2004073894A (en) | Calculating method for isofield contour map of biomagnetic field | |
JP3705285B2 (en) | Biomagnetic field measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080608 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080608 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |