JP3705236B2 - Grinding apparatus and grinding method - Google Patents

Grinding apparatus and grinding method Download PDF

Info

Publication number
JP3705236B2
JP3705236B2 JP2002131294A JP2002131294A JP3705236B2 JP 3705236 B2 JP3705236 B2 JP 3705236B2 JP 2002131294 A JP2002131294 A JP 2002131294A JP 2002131294 A JP2002131294 A JP 2002131294A JP 3705236 B2 JP3705236 B2 JP 3705236B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
grinding wheel
wheel
driving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131294A
Other languages
Japanese (ja)
Other versions
JP2003326443A (en
Inventor
泰平 山田
吉宏 水谷
浩 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2002131294A priority Critical patent/JP3705236B2/en
Publication of JP2003326443A publication Critical patent/JP2003326443A/en
Application granted granted Critical
Publication of JP3705236B2 publication Critical patent/JP3705236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、工作物を中心軸線回りに回転させながら、砥石車との相対移動により、工作物の研削を行う研削装置及び研削方法に関する。
【0002】
【従来の技術】
従来より、円筒工作物や自動車のエンジンに使用されるカムシャフトなどを研削するため、工作物をその中心軸回りに回転させながら、高速に回転する砥石によって研削を行う研削装置が知られている(例えば、特開平10−225856号公報等)。
【0003】
工作物の回転方向と砥石の回転方向の関係では、図4(A)に示すもの(アップカット)と同図(B)に示すもの(ダウンカット)の2つが考えられるが、一般的には、比較的良好な面精度で研削できる(A)のアップカットによって研削を行っていた。
【0004】
【発明が解決しようとする課題】
このような研削装置で研削を行うと、砥石の切れ味が次第に低下し、すべりが発生しやすくなる。すべりが発生すると熱が発生し、研削焼けが発生してしまう。このため、ドレッシングを頻繁に行う必要があり、研削効率を上げることができなかった。
【0005】
本発明は、上記の問題点に鑑み、研削焼けを抑え且つ研削効率を向上させると共に、良好な仕上げ面精度を得ることを課題とするものである。
【0006】
【課題を解決するための手段】
この課題を解決するため、本願の発明者らは鋭意研究し、研削焼けが発生する原理やそれを抑える方法を種々検討した。この結果、研削焼けが発生するのは、図5(A)及び(B)に示すように、一つの砥粒が工作物に当たって研削を開始する際、食い込み角Ig1が小さいために砥粒が工作物に食い込むことができず、工作物表面をすべる領域S1があること。また、このすべりによって図5(C)に示すように砥粒が磨耗により平坦化し、さらに食い込みにくくなることが主因であることが判明した。
【0007】
一方、図6(B)に示すようなダウンカットによれば、図6(A)及び(B)に示すように、食い込み角Ig2が大きいので、砥粒が工作物に当たってから離れるまで、砥粒が常に工作物に切り込んでいる。このため、すべりによる熱は発生しにくいが、研削後に工作物表面となる領域S2においても砥粒が切り込んでいるため、アップカットによる場合よりも面精度は低下する。このため、ダウンカットのみによって研削をすることは適当ではない。
【0008】
そこで発明者らは、荒研削のみをダウンカットで行い、仕上げ研削をアップカットによって行えば、それぞれの長所を活かした最適な研削を行うことができるとの知見を得、本発明を成すに至ったのである。
【0009】
つまり、荒研削をダウンカットで行うことにより、砥粒のすべりを低減し、研削焼けを抑えることができる。この半面、荒研削後の工作面表面の面精度は良好ではないが、後の仕上げ研削時に削り取られるので問題はない。また、仕上げ研削はアップカットで行うので、従来の研削方法と同等の仕上げ面精度を得ることができるのである。これは、低剛性のスチール材を研削する場合に特に有効である。
【0010】
この知見に基づき、請求項1及び3に記載の発明では、工作物をその中心軸線回りに回転させる工作物駆動手段と、砥石車を軸支する砥石台と、前記砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記砥石車によって研削する研削装置又は研削方法において、研削点における前記工作物と前記砥石車の回転方向が同方向となるダウンカットによって荒研削を行った後、前記工作物駆動手段による工作物の回転方向、前記砥石車駆動手段による砥石車の回転方向の何れか一方を切り替え、研削点における前記工作物と前記砥石車の回転方向が逆方向となるアップカットによって仕上げ研削を行うこととした。
【0011】
これにより、より多くの研削代を高効率で研削しなければならない荒研削をダウンカットで行うので、研削焼けが発生しにくいと共に、高精度に研削しなければならない仕上げ研削をアップカットで行うので、良好な仕上げ面精度を得ることができる。
【0012】
また、請求項2及び4に記載の発明では、工作物をその中心軸線回りに回転させる工作物駆動手段と、第一及び第二の砥石車をそれぞれ軸支する第一及び第二の砥石台と、前記第一及び第二の砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記第一及び第二の砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記第一及び第二の砥石車によって研削する研削方法において、前記第一の砥石車による前記工作物の荒研削を、研削点における前記工作物と前記第一の砥石車の回転方向が同方向となるダウンカットで行い、前記第二の砥石車による前記工作物の仕上げ研削を、研削点における前記工作物と前記第二の砥石車の回転方向が逆方向となるアップカットで行うこととした。
【0013】
これにより、請求項1及び3に記載の発明の作用・効果に加え、第一及び第二の砥石車により荒研削と仕上げ研削とを同時並行で行うことができるので、さらに稼動効率を上げることができる。
【0014】
【発明の実施の形態】
以下、本発明における第一の実施形態を図面に基づいて説明する。ここでは、自動車のエンジンに使用されるカムシャフトを研削する研削装置に本発明を適用した場合について具体例を挙げて説明する。本実施の形態におけるカムシャフト研削装置の概要構成図を図1に示す。図1に示すように、研削装置のベッド1上に設置されたZ軸方向のZ軸案内レール2a,2b上にZ軸テーブル10が設置されている。テーブル10はボールねじ3によりZ軸方向に摺動自在である。Z軸テーブル10のX軸案内レール11a、11b上に砥石台20が設置されている。砥石台20はボールねじ12によりX軸方向に摺動自在である。砥石台20上には砥石車31及びこれらを軸支するとともに回転駆動する砥石車駆動モータ32が設置されている。
【0015】
砥石台20のX軸前方に主軸台40a,40bが設置されている。主軸台40a,40bに設けられたチャック等により、工作物であるスチール製のカムシャフト80が回転可能に支持されるようになっている。主軸台40a、40bには、カムシャフト80を中心軸線回りに回転させる主軸モータ50a,50bが設けられている。主軸モータ50aと50bとは完全に同期して同じ位相に制御される。
【0016】
Z軸ボールねじ3はZ軸テーブルモータ51により回転駆動される。また、X軸ボールねじ12は砥石台モータ52により回転駆動される。これら各モータ(主軸モータ50a及び50b、Z軸テーブルモータ51、砥石台モータ52)は高精度位置決めが可能なサーボモータであり、制御盤60に内蔵された数値制御装置61により制御される。数値制御装置61にはカムシャフト80の各加工部位を研削するために必要なNCプログラム及びパラメータ等が予め記憶されている。
【0017】
砥石車駆動モータ32は高トルクで高速回転が可能なモータであり、制御盤60に内蔵されたドライバ62から供給される電流によって回転力を発生する。ドライバ62が出力する電流値の情報は数値制御装置61に送られるようになっている。
【0018】
次に、上述した構成の研削装置を用いた研削方法について、図2のフローチャートにより説明する。なお、下記においてS*(*=102、104、・・・)はフローチャート中の各ステップを表す。また、便宜上、カムシャフト80の図面右端のカム81を研削箇所1とし、その左隣の一対のカム82を研削箇所2とする。以下、同様に研削箇所3,4・・・7,8とし、この順序で研削を行うものとする。これら各研削箇所を図2のフローチャート中では研削箇所n(n=1〜8)と表す。
【0019】
図2のフローチャートは、一つのカムシャフトを研削する際の数値制御装置61で行われる概要処理手順の一例を示したフローチャートである。このフローチャートにおいて、S102ではnを1に初期化する。これは研削箇所1を初めに研削することを意味する。次のS104ではドライバ62に指示を送り、砥石車の回転を開始させる。
【0020】
S106では主軸モータ50a,50bをW2方向に回転開始し、この状態でS108でZ軸テーブルモータ51と砥石台モータ52を制御することによりカムシャフト80と砥石台20とを相対移動させて荒研削を行う。この際、研削点における工作物と前記砥石車の回転方向が同方向となるのでダウンカットで研削することとなる。
【0021】
荒研削が終了すると、S110で主軸モータ50a,50bの回転方向を逆転し、W1方向に回転開始する。この状態でS112でZ軸テーブルモータ51と砥石台モータ52を制御することによりカムシャフト80と砥石台20とを相対移動させて仕上げ研削を行う。この際、研削点における工作物と前記砥石車の回転方向が逆方向となるのでアップカットで研削することとなる。
【0022】
仕上げ研削が終了すると、S114でnが8であるか否かを判別する。n=8でなければ、nを+1し、次の研削箇所の研削を行う。n=8であれば全ての研削箇所の研削が終了したと判断し、研削終了とする。
【0023】
このようにして研削を行うことにより、より多くの研削代を高効率で研削しなければならない荒研削をダウンカットで行うため研削焼けが発生しにくく、また、比較的少ない研削代を高精度に研削しなければならない仕上げ研削をアップカット行うので良好な仕上げ面精度を得ることができる。
【0024】
なお、上記では、砥石車の回転方向を固定し、工作物の回転方向を切り替える場合の実施例について説明したが、これとは逆に、工作物の回転方向を固定し、砥石車の回転方向を切り替えることでダウンカットとアップカットを切り替えるようにしても同様の効果を得ることができる。
【0025】
また、前述のように、ダウンカット時には砥粒が大きな食い込み角で工作物に当たるため、このときの衝撃により砥粒の破砕がある程度の割合で発生する(図6(C))。このため、アップカット時に平坦化した砥粒をドレッシングするのと同様の作用があり、ドレッシングを行うドレッシングインターバルを延ばすことができ、研削効率を上げる効果もある。
【0026】
次に本発明における第二の実施形態を図面に基づいて説明する。本実施の形態おける研削装置の構成例は図3に示すものであり、前記第一の実施形態との違いは、砥石車を軸支し且つ回転駆動させることのできる砥石台を2つ設け、これら砥石台が独立して工作物と相対移動し得るように構成したことである。図3に示すように、本実施の形態による研削装置は砥石車31a,31bを備え、この一方を荒研削用として使用し、他方を仕上げ研削用として使用する。荒研削用の砥石車は研削点における工作物80と砥石車の回転方向が同方向となるダウンカットで荒研削を行い、仕上げ研削用の砥石車は研削点における工作物80と砥石車の回転方向が逆方向となるアップカットで仕上げ研削を行う。
【0027】
これにより、ダウンカットで荒研削を行いながらアップカットで仕上げ研削ができるので、第一の実施形態の作用・効果に加え、短時間で工作物の研削加工を完了することができ、稼動効率を上げることができる。
【0028】
【発明の効果】
以上、説明したように、請求項1及び3に記載の発明では、工作物をその中心軸線回りに回転させる工作物駆動手段と、砥石車を軸支する砥石台と、前記砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記砥石車によって研削する研削装置又は研削方法において、研削点における前記工作物と前記砥石車の回転方向が同方向となるダウンカットによって荒研削を行った後、前記工作物駆動手段による工作物の回転方向、前記砥石車駆動手段による砥石車の回転方向の何れか一方を切り替え、研削点における前記工作物と前記砥石車の回転方向が逆方向となるアップカットによって仕上げ研削を行うこととしたので、研削焼けが発生しにくいと共に、良好な仕上げ面精度を得ることができる。また、ドレッシングインターバルを延ばすことも可能となり、研削効率を向上させることができる。
【0029】
請求項2及び4に記載の発明では、工作物をその中心軸線回りに回転させる工作物駆動手段と、第一及び第二の砥石車をそれぞれ軸支する第一及び第二の砥石台と、前記第一及び第二の砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記第一及び第二の砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記第一及び第二の砥石車によって研削する研削方法において、前記第一の砥石車による前記工作物の荒研削を、研削点における前記工作物と前記第一の砥石車の回転方向が同方向となるダウンカットで行い、前記第二の砥石車による前記工作物の仕上げ研削を、研削点における前記工作物と前記第二の砥石車の回転方向が逆方向となるアップカットで行うこととしたので、請求項1及び3に記載の発明の作用・効果に加え、第一及び第二の砥石車により荒研削と仕上げ研削とを同時並行で行うことができるので、短時間で工作物の研削加工を完了できる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態における概要構成を示す図である。
【図2】本発明の第一の実施形態における研削方法の手順を示すフローチャートである。
【図3】本発明の第二の実施形態における概要構成を示す図である。
【図4】アップカットとダウンカットを示す説明図である。
【図5】円筒状の工作物を回転させながらアップカット研削する場合の例を示す説明図である。
【図6】円筒状の工作物を回転させながらダウンカット研削する場合の例を示す説明図である。
【符号の説明】
31,31a,31b 砥石車
80 カムシャフト(工作物)
32 砥石車駆動モータ
50a,50b 主軸モータ
60 制御盤
61 数値制御装置
62 ドライバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grinding apparatus and a grinding method for grinding a workpiece by rotating relative to the grinding wheel while rotating the workpiece around a central axis.
[0002]
[Prior art]
Conventionally, in order to grind a cylindrical workpiece or a camshaft used for an automobile engine, a grinding apparatus that performs grinding with a grindstone that rotates at high speed while rotating the workpiece around its central axis is known. (For example, Unexamined-Japanese-Patent No. 10-225856 etc.).
[0003]
Regarding the relationship between the rotation direction of the workpiece and the rotation direction of the grindstone, there are two possible ones: the one shown in FIG. 4A (up cut) and the one shown in FIG. 4B (down cut). Grinding was performed by up-cutting (A), which can be ground with relatively good surface accuracy.
[0004]
[Problems to be solved by the invention]
When grinding is performed with such a grinding apparatus, the sharpness of the grindstone gradually decreases, and slipping easily occurs. When slipping occurs, heat is generated and grinding burn occurs. For this reason, it is necessary to perform dressing frequently and the grinding efficiency cannot be increased.
[0005]
In view of the above problems, an object of the present invention is to suppress grinding burn and improve grinding efficiency, and to obtain good finished surface accuracy.
[0006]
[Means for Solving the Problems]
In order to solve this problem, the inventors of the present application have intensively studied and studied various principles of grinding burns and methods for suppressing them. As a result, as shown in FIGS. 5 (A) and 5 (B), the grinding burn occurs when one abrasive grain hits the workpiece and starts grinding, because the bite angle Ig1 is small and the abrasive grain is machined. There must be a region S1 that cannot slide into the object and slides on the workpiece surface. Further, it has been found that the main reason is that the sliding causes the abrasive grains to be flattened by abrasion as shown in FIG.
[0007]
On the other hand, according to the down cut as shown in FIG. 6 (B), since the bite angle Ig2 is large as shown in FIGS. 6 (A) and 6 (B), the abrasive grains are applied until they come off after hitting the workpiece. Always cut into the workpiece. For this reason, although the heat | fever by sliding is hard to generate | occur | produce, since the abrasive grain has cut | disconnected also in area | region S2 used as the workpiece surface after grinding, a surface precision falls rather than the case by an upcut. For this reason, it is not appropriate to perform grinding only by down-cutting.
[0008]
Accordingly, the inventors have obtained the knowledge that if only rough grinding is performed by down-cutting and finish grinding is performed by up-cutting, optimum grinding can be performed taking advantage of each advantage, and the present invention has been achieved. It was.
[0009]
That is, by performing rough grinding by down-cutting, it is possible to reduce slip of abrasive grains and suppress grinding burn. On the other hand, the surface accuracy of the machined surface after rough grinding is not good, but there is no problem because it is scraped off during subsequent finish grinding. In addition, since the finish grinding is performed by up-cutting, the finished surface accuracy equivalent to that of the conventional grinding method can be obtained. This is particularly effective when grinding a low-rigidity steel material.
[0010]
Based on this knowledge, in the inventions according to claims 1 and 3, the workpiece driving means for rotating the workpiece around its central axis, the grinding wheel base for supporting the grinding wheel, and the grinding wheel for rotationally driving the grinding wheel In a grinding apparatus or method for grinding a workpiece with the grinding wheel, the vehicle and the grinding wheel are provided with a vehicle driving means, and a relative movement means for relatively moving the workpiece and the grinding wheel base. After rough grinding by down-cut with the same rotation direction of the car, either the rotation direction of the workpiece by the workpiece driving means or the rotation direction of the grinding wheel by the grinding wheel driving means is switched to perform grinding. Finish grinding is performed by up-cut in which the workpiece and the grinding wheel rotate in opposite directions.
[0011]
As a result, rough grinding, which requires high efficiency grinding for more grinding allowances, is performed by down-cutting, so grinding burn is unlikely to occur and finish grinding, which must be ground with high precision, is performed by up-cutting. Good finish surface accuracy can be obtained.
[0012]
In the inventions according to claims 2 and 4, the workpiece driving means for rotating the workpiece around its central axis, and the first and second grinding wheel platforms for pivotally supporting the first and second grinding wheels, respectively. Grinding wheel driving means for rotationally driving the first and second grinding wheels, and relative movement means for relatively moving the workpiece and the first and second grinding wheel platforms, In the grinding method of grinding by the first and second grinding wheels, rough grinding of the workpiece by the first grinding wheel is performed, and the rotation direction of the workpiece and the first grinding wheel at a grinding point is the same direction. It is decided to carry out the final grinding of the workpiece by the second grinding wheel with an upcut in which the rotation direction of the workpiece and the second grinding wheel at the grinding point is opposite. .
[0013]
As a result, in addition to the operations and effects of the inventions of claims 1 and 3, rough grinding and finish grinding can be performed simultaneously by the first and second grinding wheels, so that the operating efficiency is further increased. Can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. Here, a specific example is given and demonstrated about the case where this invention is applied to the grinding device which grinds the camshaft used for the engine of a motor vehicle. FIG. 1 shows a schematic configuration diagram of a camshaft grinding apparatus in the present embodiment. As shown in FIG. 1, a Z-axis table 10 is installed on Z-axis guide rails 2a and 2b in the Z-axis direction installed on a bed 1 of a grinding apparatus. The table 10 is slidable in the Z-axis direction by the ball screw 3. A grinding wheel base 20 is installed on the X-axis guide rails 11 a and 11 b of the Z-axis table 10. The grinding wheel base 20 is slidable in the X-axis direction by the ball screw 12. On the grinding wheel base 20, a grinding wheel 31 and a grinding wheel drive motor 32 that pivotally supports these wheels are installed.
[0015]
Spindle heads 40a and 40b are installed in front of the grinding wheel head 20 in the X-axis. A steel camshaft 80, which is a workpiece, is rotatably supported by a chuck or the like provided on the headstocks 40a and 40b. The spindle heads 40a and 40b are provided with spindle motors 50a and 50b that rotate the camshaft 80 around the central axis. The spindle motors 50a and 50b are controlled to the same phase in complete synchronization.
[0016]
The Z-axis ball screw 3 is rotationally driven by a Z-axis table motor 51. The X-axis ball screw 12 is driven to rotate by a grindstone motor 52. Each of these motors (spindle motors 50a and 50b, Z-axis table motor 51, and grindstone motor 52) is a servo motor capable of high-precision positioning, and is controlled by a numerical controller 61 built in the control panel 60. The numerical controller 61 stores in advance an NC program, parameters, and the like necessary for grinding each machining portion of the camshaft 80.
[0017]
The grinding wheel drive motor 32 is a motor that can rotate at high speed with high torque, and generates a rotational force by a current supplied from a driver 62 built in the control panel 60. Information on the current value output by the driver 62 is sent to the numerical controller 61.
[0018]
Next, a grinding method using the grinding apparatus having the above-described configuration will be described with reference to the flowchart of FIG. In the following, S * (* = 102, 104,...) Represents each step in the flowchart. For the sake of convenience, the cam 81 at the right end of the camshaft 80 in the drawing is designated as a grinding location 1 and the pair of cams 82 adjacent to the left is designated as a grinding location 2. Hereinafter, similarly, it will be set as the grinding location 3,4 ... 7,8, and shall grind in this order. Each of these grinding points is represented as a grinding point n (n = 1 to 8) in the flowchart of FIG.
[0019]
The flowchart of FIG. 2 is a flowchart showing an example of a schematic processing procedure performed by the numerical controller 61 when grinding one camshaft. In this flowchart, n is initialized to 1 in S102. This means that the grinding point 1 is ground first. In the next S104, an instruction is sent to the driver 62 to start the rotation of the grinding wheel.
[0020]
In S106, the spindle motors 50a and 50b start to rotate in the W2 direction, and in this state, the Z-axis table motor 51 and the grinding wheel base motor 52 are controlled in S108 to move the camshaft 80 and the grinding wheel base 20 relative to each other and perform rough grinding. I do. At this time, since the rotation direction of the workpiece at the grinding point and the grinding wheel is the same direction, grinding is performed by down-cutting.
[0021]
When the rough grinding is completed, the rotation direction of the spindle motors 50a and 50b is reversed in S110, and the rotation is started in the W1 direction. In this state, by controlling the Z-axis table motor 51 and the grindstone motor 52 in S112, the camshaft 80 and the grindstone table 20 are relatively moved to perform finish grinding. At this time, since the rotation direction of the work piece and the grinding wheel at the grinding point is opposite, grinding is performed by up-cutting.
[0022]
When finish grinding is completed, it is determined whether or not n is 8 in S114. If n = 8, n is incremented by 1 and the next grinding point is ground. If n = 8, it is determined that the grinding of all the grinding points is completed, and the grinding is finished.
[0023]
By performing grinding in this way, it is difficult to generate grinding burn because rough grinding, which requires more grinding to be performed with high efficiency, is performed with a down cut, and relatively less grinding allowance is highly accurate. Since the finish grinding that must be ground is up-cut, good finished surface accuracy can be obtained.
[0024]
In the above description, the embodiment in which the rotation direction of the grinding wheel is fixed and the rotation direction of the workpiece is switched has been described. On the contrary, the rotation direction of the workpiece is fixed and the rotation direction of the grinding wheel is changed. The same effect can be obtained even if the down cut and the up cut are switched by switching.
[0025]
Further, as described above, the abrasive grains hit the work piece with a large biting angle during the down cut, so that the abrasive grains are crushed at a certain rate due to the impact at this time (FIG. 6C). For this reason, there exists an effect | action similar to dressing the abrasive grain planarized at the time of an up cut, the dressing interval which performs dressing can be extended, and there also exists an effect which raises grinding efficiency.
[0026]
Next, a second embodiment of the present invention will be described based on the drawings. The configuration example of the grinding apparatus in the present embodiment is shown in FIG. 3, and the difference from the first embodiment is that two grinding wheel bases that can support and rotate the grinding wheel are provided, This is because the grindstone platform can be independently moved relative to the workpiece. As shown in FIG. 3, the grinding apparatus according to the present embodiment includes grinding wheels 31a and 31b, one of which is used for rough grinding and the other is used for finish grinding. The grinding wheel for rough grinding performs rough grinding with a down cut in which the rotation direction of the workpiece 80 and the grinding wheel at the grinding point is the same direction, and the grinding wheel for finish grinding rotates the workpiece 80 and the grinding wheel at the grinding point. Finish grinding with up-cut in the opposite direction.
[0027]
As a result, it is possible to finish grinding with up-cut while performing rough grinding with down-cut, so in addition to the action and effect of the first embodiment, the grinding of the workpiece can be completed in a short time, and the operating efficiency is improved. Can be raised.
[0028]
【The invention's effect】
As described above, in the inventions according to claims 1 and 3, the workpiece driving means for rotating the workpiece around the central axis thereof, the grinding wheel base for pivotally supporting the grinding wheel, and the grinding wheel being rotationally driven. A grinding wheel driving means, a relative movement means for relatively moving the workpiece and the grinding wheel base, and a grinding apparatus or a grinding method for grinding the workpiece by the grinding wheel. After rough grinding by down-cut with the same direction of rotation of the grinding wheel, switching is performed between the rotation direction of the workpiece by the workpiece driving means and the rotation direction of the grinding wheel by the grinding wheel driving means. Since the finish grinding is performed by the up-cut in which the rotation direction of the workpiece and the grinding wheel is opposite to each other at the grinding point, grinding burn hardly occurs and a good finished surface precision is obtained. It is possible to obtain. In addition, the dressing interval can be extended and the grinding efficiency can be improved.
[0029]
In the inventions according to claims 2 and 4, the workpiece driving means for rotating the workpiece around its central axis, the first and second grinding wheel platforms for pivotally supporting the first and second grinding wheels, respectively. Grinding wheel driving means for rotationally driving the first and second grinding wheels, and relative movement means for relatively moving the workpiece and the first and second grinding wheel platforms, wherein the workpiece is In the grinding method of grinding with the first and second grinding wheels, rough grinding of the workpiece by the first grinding wheel is performed so that the rotation direction of the workpiece and the first grinding wheel at a grinding point is the same direction. Since it is performed by down-cutting, the finish grinding of the workpiece by the second grinding wheel is performed by up-cut in which the rotation direction of the workpiece and the second grinding wheel at the grinding point is opposite, In the operation and effect of the inventions of claims 1 and 3 For example, since the rough grinding and finish grinding the first and second grinding wheel can be carried out simultaneously in parallel, it can be completed grinding of the workpiece in a short time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration in a first embodiment of the present invention.
FIG. 2 is a flowchart showing a procedure of a grinding method according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a schematic configuration in a second embodiment of the present invention.
FIG. 4 is an explanatory diagram showing an up cut and a down cut.
FIG. 5 is an explanatory view showing an example in the case of up-cut grinding while rotating a cylindrical workpiece.
FIG. 6 is an explanatory diagram showing an example of down-cut grinding while rotating a cylindrical workpiece.
[Explanation of symbols]
31, 31a, 31b Grinding wheel 80 Camshaft (workpiece)
32 grinding wheel drive motors 50a and 50b spindle motor 60 control panel 61 numerical control device 62 driver

Claims (4)

工作物をその中心軸線回りに回転させる工作物駆動手段と、砥石車を軸支する砥石台と、前記砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記砥石車によって研削する研削装置において、
研削点における前記工作物と前記砥石車の回転方向が同方向となるダウンカットによって荒研削を行う荒研削手段と、
研削点における前記工作物と前記砥石車の回転方向が逆方向となるアップカットによって仕上げ研削を行う仕上げ研削手段と、
荒研削に引き続いて仕上げ研削を行う際に、前記工作物駆動手段による工作物の回転方向、前記砥石車駆動手段による砥石車の回転方向の何れか一方を切り替える切替制御手段と
を備えたことを特徴とする研削装置。
Relative movement of the workpiece driving means for rotating the workpiece around its central axis, a grinding wheel base for pivotally supporting the grinding wheel, a grinding wheel driving means for rotationally driving the grinding wheel, and the workpiece and the grinding wheel base A grinding device for grinding the workpiece by the grinding wheel,
Rough grinding means for performing rough grinding by down-cut in which the rotation direction of the workpiece and the grinding wheel at the grinding point is the same direction;
Finish grinding means for performing finish grinding by up-cut in which the rotation direction of the workpiece and the grinding wheel at the grinding point is opposite;
A switching control means for switching between a rotation direction of the workpiece by the workpiece driving means and a rotation direction of the grinding wheel by the grinding wheel driving means when performing finish grinding following the rough grinding. A characteristic grinding device.
工作物をその中心軸線回りに回転させる工作物駆動手段と、第一及び第二の砥石車をそれぞれ軸支する第一及び第二の砥石台と、前記第一及び第二の砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記第一及び第二の砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記第一及び第二の砥石車によって研削する研削装置において、
前記第一の砥石車による前記工作物の荒研削を、研削点における前記工作物と前記第一の砥石車の回転方向が同方向となるダウンカットで行う荒研削手段と、
前記第二の砥石車による前記工作物の仕上げ研削を、研削点における前記工作物と前記第二の砥石車の回転方向が逆方向となるアップカットで行う仕上げ研削手段と
を備えたことを特徴とする研削装置。
A workpiece driving means for rotating the workpiece around its central axis, first and second grinding wheel platforms for supporting the first and second grinding wheels, respectively, and the first and second grinding wheels Grinding comprising grinding wheel driving means for driving, and relative movement means for relatively moving the workpiece and the first and second grinding wheel platforms, and grinding the workpiece by the first and second grinding wheels In the device
Rough grinding means for performing rough grinding of the workpiece by the first grinding wheel by down-cut in which the rotation direction of the workpiece and the first grinding wheel at the grinding point is the same direction;
Finish grinding of the workpiece by the second grinding wheel is provided with a finish grinding means for performing up-cutting in which the workpiece at the grinding point and the rotation direction of the second grinding wheel are opposite to each other. Grinding equipment.
工作物をその中心軸線回りに回転させる工作物駆動手段と、砥石車を軸支する砥石台と、前記砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記砥石車によって研削する研削方法において、
研削点における前記工作物と前記砥石車の回転方向が同方向となるダウンカットによって荒研削を行った後、前記工作物駆動手段による工作物の回転方向、前記砥石車駆動手段による砥石車の回転方向の何れか一方を切り替え、研削点における前記工作物と前記砥石車の回転方向が逆方向となるアップカットによって仕上げ研削を行うことを特徴とする研削方法。
Relative movement of the workpiece driving means for rotating the workpiece around its central axis, a grinding wheel base for pivotally supporting the grinding wheel, a grinding wheel driving means for rotationally driving the grinding wheel, and the workpiece and the grinding wheel base A grinding method for grinding the workpiece by the grinding wheel,
After rough grinding is performed by down-cutting in which the workpiece and the grinding wheel are rotated in the same direction at a grinding point, the workpiece is rotated by the workpiece driving means, and the grinding wheel is rotated by the grinding wheel driving means. A grinding method characterized in that any one of directions is switched, and finish grinding is performed by up-cut in which the rotation direction of the workpiece and the grinding wheel at the grinding point is opposite.
工作物をその中心軸線回りに回転させる工作物駆動手段と、第一及び第二の砥石車をそれぞれ軸支する第一及び第二の砥石台と、前記第一及び第二の砥石車を回転駆動する砥石車駆動手段と、前記工作物と前記第一及び第二の砥石台とを相対移動する相対移動手段とを備え、前記工作物を前記第一及び第二の砥石車によって研削する研削方法において、
前記第一の砥石車による前記工作物の荒研削を、研削点における前記工作物と前記第一の砥石車の回転方向が同方向となるダウンカットで行い、
前記第二の砥石車による前記工作物の仕上げ研削を、研削点における前記工作物と前記第二の砥石車の回転方向が逆方向となるアップカットで行う
ことを特徴とする研削方法。
A workpiece driving means for rotating the workpiece around its central axis, first and second grinding wheel platforms for supporting the first and second grinding wheels, respectively, and the first and second grinding wheels Grinding comprising grinding wheel driving means for driving, and relative movement means for relatively moving the workpiece and the first and second grinding wheel platforms, and grinding the workpiece by the first and second grinding wheels In the method
Rough grinding of the workpiece by the first grinding wheel is performed by a down cut in which the rotation direction of the workpiece and the first grinding wheel at the grinding point is the same direction,
A grinding method, wherein the finish grinding of the workpiece by the second grinding wheel is performed by up-cut in which the rotation direction of the workpiece and the second grinding wheel at a grinding point is opposite.
JP2002131294A 2002-05-07 2002-05-07 Grinding apparatus and grinding method Expired - Fee Related JP3705236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131294A JP3705236B2 (en) 2002-05-07 2002-05-07 Grinding apparatus and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131294A JP3705236B2 (en) 2002-05-07 2002-05-07 Grinding apparatus and grinding method

Publications (2)

Publication Number Publication Date
JP2003326443A JP2003326443A (en) 2003-11-18
JP3705236B2 true JP3705236B2 (en) 2005-10-12

Family

ID=29695861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131294A Expired - Fee Related JP3705236B2 (en) 2002-05-07 2002-05-07 Grinding apparatus and grinding method

Country Status (1)

Country Link
JP (1) JP3705236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125913A (en) * 2007-11-28 2009-06-11 Nagano Automation Kk Grinding device
JP5549391B2 (en) * 2010-06-10 2014-07-16 株式会社ジェイテクト Grinder

Also Published As

Publication number Publication date
JP2003326443A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP3705236B2 (en) Grinding apparatus and grinding method
JP2006035387A (en) Method and apparatus for grinding cam with re-entrant surface
JP2008238380A (en) Working apparatus
JP5475343B2 (en) Rotary saw grinding equipment
JP2007320008A (en) Cam grinder and cam grinding method
JP3907977B2 (en) Crankshaft grinding method and grinding apparatus
JPH1177493A (en) Grinding device and grinding method
JP4157246B2 (en) Processing equipment
JPH0623666A (en) Automatic positioning method for grinding wheel for internal grinding accompanied by dressing
JPS61146471A (en) Dressing device
JP3781415B2 (en) Grinding equipment
JPH0752007A (en) Rotary grinding machine and grinding method
EP1687118B1 (en) Improvements in and relating to grinding machines
JP3148054B2 (en) Grinding method and apparatus
JP4400226B2 (en) Grinding method and grinding apparatus
JP7275271B2 (en) Dressing device and method for dressing grinding tools
JPWO2019120831A5 (en)
JP2774760B2 (en) Centerless grinding device for stepped workpiece and grinding method
JP3635724B2 (en) Angular grinding method and apparatus for centerless grinding machine
JPH09285963A (en) Device and method for correcting grinding wheel
JP2000317733A (en) Method and machine for precisely working tooth flank of toothed product
JPH079313A (en) Compound grinder
JPH0224047A (en) Grinding method for internal surface
JP2000108030A (en) Grinding device
JP4151594B2 (en) Grinding method of inclined surface in the rotation axis direction of workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees