JP3705185B2 - Method for producing foamed fiber - Google Patents

Method for producing foamed fiber Download PDF

Info

Publication number
JP3705185B2
JP3705185B2 JP2001327534A JP2001327534A JP3705185B2 JP 3705185 B2 JP3705185 B2 JP 3705185B2 JP 2001327534 A JP2001327534 A JP 2001327534A JP 2001327534 A JP2001327534 A JP 2001327534A JP 3705185 B2 JP3705185 B2 JP 3705185B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
spinning
nitrogen
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327534A
Other languages
Japanese (ja)
Other versions
JP2003129342A (en
Inventor
義嗣 船津
亨樹 宮園
敦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001327534A priority Critical patent/JP3705185B2/en
Publication of JP2003129342A publication Critical patent/JP2003129342A/en
Application granted granted Critical
Publication of JP3705185B2 publication Critical patent/JP3705185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は発泡繊維の製造方法に関するものであり、詳しくは力学特性が改善された発泡繊維の製糸性に優れ、かつ環境への負荷が少ない製造方法に関する。
【0002】
【従来の技術】
発泡繊維、すなわち不連続な気孔を含むフィラメントまたはステープル状の繊維は、低密度であることから軽量であり、かつ気孔を有することから保温性に優れるため、カーペット用、詰綿用、冬物衣料のライニング用の他にも服地用としても好適に使用される。
【0003】
さて、ポリエステルに代表される合成繊維の発泡技術としては、例えば特開平4-214407号公報に開示されているように炭酸ナトリウム、クエン酸、ポリカーボネートを添加するものである。しかし、この方法では確かに発泡はするものの得られる繊維の力学特性は不十分であり、かつ口金孔近辺の汚れも激しく、製糸性も満足できるものではないといった問題があった。加えて該技術で使用する炭酸ナトリウム、クエン酸、ポリカーボネートは基本的に合成繊維を形成する熱可塑性樹脂とは異なる物であるため、リサイクル性を損なうため環境への負荷も懸念されるといった課題もあった。
【0004】
一方、発泡成形の分野では溶融ポリマーに二酸化炭素などを添加する技術が多数知られている。ところがポリエステルやポリアミドの溶融紡糸での添加についてはわずかに特開平11-172528号公報などに見られるのみであり、さらに該公報は二酸化炭素の添加による伸度向上効果を述べているのみであり、発泡繊維の製造技術については何ら示唆を与えていない。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解消し、力学特性が改善された発泡繊維の製糸性に優れ、かつ環境への負荷が少ない製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは二酸化炭素や窒素の溶融紡糸における添加・混合技術ならびに発泡技術、さらには得られる繊維の力学特性の改善について鋭意検討を重ねてきた。その中で、二酸化炭素や窒素の添加量がある一定条件を満たす成分を用いて複合紡糸を行うことによって従来技術の欠点を解消できることを見出し本発明に到達したものである。
【0007】
すなわち、本発明は熱可塑性樹脂に二酸化炭素および/または窒素を0.5〜6重量%添加し、溶融混合させた熱可塑性樹脂混合物(A)と熱可塑性樹脂に二酸化炭素および/または窒素を0.5重量%未満添加し、溶融混合させた熱可塑性樹脂混合物(B)の2つの樹脂混合物を用いて複合紡糸を行うことを特徴とする発泡繊維の製造方法を提供するものである。
【0008】
【発明の実施の形態】
本発明の要件は二酸化炭素および/または窒素を0.5〜6重量%添加し、溶融混合させた熱可塑性樹脂混合物(A)と二酸化炭素および/または窒素を0.5重量%未満添加し、溶融混合させた熱可塑性樹脂混合物(B)の2つの樹脂混合物を用いて複合紡糸を行うことである。このような条件で溶融紡糸を行うことで力学特性が改善された発泡繊維を環境への少ない負荷で製造できるのである。その理由を以下に説明する。
【0009】
二酸化炭素や窒素を溶融樹脂に添加混合し、発泡させる技術については公知であり、本発明者らも溶融紡糸への適用を検討した。しかし、溶融紡糸においては口金汚れや曳糸性悪化による製糸性の不良、さらには得られる繊維の力学特性の低下といった問題が判明した。そこで、本発明者らは紡糸線での挙動について解析を進めたところ、口金吐出孔付近での発泡が製糸性悪化の要因であることを見出した。しかし発泡そのものを抑制すると目的とする発泡繊維が得られないという相反する問題に行き着いた。
【0010】
このため本発明者らは曳糸性および力学特性を担う成分(B)と発泡を主に行わせる成分(A)を用いて複合紡糸を行うことで上述した問題を解決できることを見出したのである。
【0011】
本発明でいう「発泡繊維」とは不連続な気孔を含む繊維であり、具体的には繊維横断面に複数個、好ましくは10個以上の気孔を有している繊維である。気孔の数および孔径は樹脂の粘度や製糸条件に依存するため特に限定されないが、気孔の全体量の目安となる比重は、窒素および/または二酸化炭素を添加せずに同一の製糸条件で得た繊維に比べて3%以上小さいことが好ましい。
【0012】
本発明で(A)および(B)成分に用いる熱可塑性樹脂は特に限定するものではないが、ポリエステルやポリアミドを用いることが繊維物性、製造コストの観点から好ましく、更に好ましくはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリヘキサメチレンアジパミドまたはポリカプラミドであり、最も好ましくはポリエチレンテレフタレートである。また本発明でいう結晶性熱可塑性樹脂には発明の主旨を損ねない範囲で他の成分が共重合されていても良く、さらに艶消剤、難燃剤、滑剤等の添加剤を少量含有しても良い。なお(A)および(B)成分の樹脂は異なっていても良いが、使用樹脂および製造工程の簡素化のため組成(分子量、添加剤、共重合成分などを除く)は同一であることが好ましい。
【0013】
また樹脂の重合度も任意であるが、破泡による糸切れなどを抑えつつ、かつ十分に発泡させるために、重合度の目安となる樹脂の溶融粘度が290℃、20sec-1で1000〜5000poiseであることが好ましい。
【0014】
さらに(A)および(B)成分の樹脂は発泡径を小さくするため、ポリスチレンなどの発泡核剤を0.5〜2%程度添加しても構わない。しかし樹脂組成を均一にするためには樹脂の伸長粘度を高めることが好ましく、3以上の官能基を有する化合物を主鎖に含む分岐高分子であることが好ましい。樹脂がポリエステルである場合、このような化合物としては例えばトリメリット酸、トリメシン酸、ピロメリット酸およびそのエステル化物、エポキシ類などが挙げられる。
【0015】
本発明で熱可塑性樹脂に添加する物質は基質となる樹脂と反応せず、かつ環境への負荷が少ないものという点で窒素または二酸化炭素が選ばれる。これらのいずれも、あるいは二つを同時に用いることも可能であるが、効果の観点からは二酸化炭素を用いる方が好ましい。
【0016】
窒素および/または二酸化炭素を樹脂に添加する手法としては特に制限されるものではなく、例えば溶融前のポリマーチップのバンカー内に加圧状態で窒素および/または二酸化炭素ガスを導入する、あるいは溶融した樹脂に窒素および/または二酸化炭素(気体・液体問わず)を注入するといった公知の手法が採用される。ただし、装置改造が少ない点などからエクストルーダーで溶融した樹脂に窒素および/または二酸化炭素を注入する手法が好ましい。
【0017】
窒素および/または二酸化炭素の添加量は発泡を主に行わせる成分(A)では0.5〜6重量%である。これよりも添加量が少ないと効果が見られず、また多いと発泡が激しくなり製糸性が悪化する。好ましい添加量は二酸化炭素であれば1〜4重量%、窒素であれば0.5〜1重量%である。なお、本発明における添加量は実施例記載の手法により求められる値とする。
【0018】
また曳糸性および力学特性を担う成分(B)の窒素および/または二酸化炭素の添加量は0.5重量%未満である。これよりも添加量が多いと発泡により曳糸性および得られる繊維の力学特性が悪化する。
【0019】
本発明で行う複合紡糸の形態は、成分(A)、(B)がともに繊維長手方向に連続して存在していれば特に限定されるものではなく、目的に応じて任意の形態が採用でき、例えば成分(A)を鞘、成分(B)を芯にした芯鞘複合紡糸を行えば表面に気孔が存在する吸放湿性に優れた繊維が得られ、成分(A)と成分(B)のサイドバイサイド型の複合紡糸を行えば片面だけに気孔が存在する繊維が得られる。また製糸性の向上のためには表面が発泡しないことが好ましく、成分(A)を芯、成分(B)を鞘とすることが好ましい。
【0020】
また成分(A)と成分(B)の比率も任意であるが、得られる繊維の力学特性向上のためには成分(B)が吐出量全体の40重量%以上であることが好ましい。
【0021】
吐出した樹脂を繊維化する際の手段としては特に限定されるものではなく、加熱筒や保温筒などによる口金近辺の雰囲気制御、整流空気などの流体による冷却、仕上げ剤の付与などは任意である。ただし口金孔近辺での発泡の抑制という観点から、吐出後の樹脂は速やかに冷却されることが望ましく、溶融紡糸条件としては各孔での吐出線速度は10cm/sec以上であり、吐出後2秒以内に固化が完了する程度の冷却速度が好ましい。
【0022】
引き取り手法についてもローラーやエアーアスピレーターなど任意の手法で引き取ることができ、紡糸速度も特に限定されるものではないが、気孔の形状を維持するため紡糸線上で変形が完了する高速紡糸は好ましい実施形態である。樹脂がポリエステルの場合、分子量にも依存するが、紡糸速度5000m/min以上であることが好ましい。
【0023】
【実施例】
以下実施例により、本発明を具体的かつより詳細に説明する。ただし、本発明は以下の実施例に制限されるものではない。なお、実施例中の物性値は以下の方法によって測定した。
A.290℃、20sec-1での溶融粘度
東洋精機社製キャピログラフ1型を用いて20sec-1および2000sec-1付近の剪断速度域で測定を行い、近似により20sec-1および2000sec-1の溶融粘度を求めた。
B.窒素または二酸化炭素の添加量
Fisher-Rosemount社製コリオリ式流量計マイクロモーションエリート型を用い、窒素および/または二酸化炭素の吐出量を計測した。樹脂の吐出量は、窒素および/または二酸化炭素を添加した樹脂を吐出し、これを水槽で受けて急冷させた後、大気中で24時間風乾したものの重量から求め、これと窒素および/または二酸化炭素の吐出量から下記式を用いて樹脂に対する添加量を算出した。
【0024】
【数1】

Figure 0003705185
C.強度・伸度
オリエンテック社製テンシロン引張試験機を用い、初期試料長200mm、引張速度200mm/minで測定した。
D.比重
ミラージュ貿易株式会社製電子比重計SD−120Lを用いて測定した。
実施例1〜4、比較例1
290℃、20sec-1での溶融粘度が2600poiseであるポリエチレンテレフタレートを2軸エクストルーダーで溶融し、シリンダー途中に設けた注入口から二酸化炭素を添加したものを成分(A)、重合時にトリメリット酸のエステル化物を0.2重量%添加し、重合度を調整することで、290℃、20sec-1での溶融粘度を2000poiseとしたポリエチレンテレフタレート組成物を成分(B)として、成分(A)を芯、成分(B)を鞘とした芯鞘複合紡糸を行った。なお紡糸温度は295℃、樹脂総吐出量は47.3g/min(芯:鞘比率=5:5)であり、孔数36の口金を用い、室温のローラーを用いて3000m/minの速度で引き取った。二酸化炭素の添加量は成分(A)吐出量に対し0(比較例1)、0.5(実施例1)、2(実施例2)、4(実施例3)、6(実施例4)重量%とした。これを90℃、140℃の加熱ローラーを用いて速度600m/minで延伸を行った。延伸倍率は延伸後の繊維の伸度が約35%となるよう調整した。各条件で製糸性は概ね良好であったが、添加量6%の場合(実施例4)では製糸終了後に口金面に汚れが付着しており、これよりも添加量が多い場合には製糸性の悪化が懸念される。
【0025】
製糸条件および延伸糸物性を表1に示す。また添加量の増加とともに延伸糸の比重が低下して、二酸化炭素を添加していない比較例1に対して、実施例1は3.06%、実施例2は8.5%、実施例3は17.5%、実施例4は26.2%小さくなっており、発泡繊維が得られていることが分かる。
【0026】
【表1】
Figure 0003705185
比較例2
鞘側の成分(B)に二酸化炭素を2%添加した以外は実施例2と同様の手法で紡糸ならびに延伸を行った。しかし製糸性は悪く、ごく少量の延伸糸しか得られなかった。製糸条件および延伸糸物性を表2に併せて示す。成分(B)に二酸化炭素が添加されていない実施例2と比較して、比重は低下しているが、同一の延伸倍率では強度・伸度が大幅に低下していることが分かる。
【0027】
実施例5
290℃、20sec-1での溶融粘度が2200poiseであるポリエチレンテレフタレートにポリスチレン(旭化成社製スタイロン685)を1%混合したものを2軸エクストルーダーで溶融し、シリンダー途中に設けた注入口から二酸化炭素を2重量%となるよう添加したものを成分(A)、290℃、20sec-1での溶融粘度が2000poiseであるポリエチレンテレフタレートを成分(B)として成分(A)を鞘、成分(B)を芯とした芯鞘複合紡糸を行った。なお紡糸温度は290℃、樹脂総吐出量は48.8g/min(芯:鞘比率=6:4)であり、孔数36の口金を用い、室温のローラーを用いて6500m/minの速度で引き取った。製糸性は概ね良好であり、得られた繊維の物性(表2)も比重、力学特性とも十分な特性を有している。
【0029】
【表2】
Figure 0003705185
【0030】
【発明の効果】
本発明の製造方法で得られる発泡繊維は力学特性が改善され、種々の用途に好適に使用できる。さらに複合紡糸を行うことで曳糸性が向上し安定した製糸が可能である。加えて窒素および/または二酸化炭素を用いるため発泡剤による環境負荷が軽減される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing foamed fibers, and more particularly relates to a method for producing foamed fibers with improved mechanical properties, which are excellent in yarn-making properties and have a low environmental impact.
[0002]
[Prior art]
Foamed fibers, that is, filaments or staple-like fibers containing discontinuous pores, are lightweight because of their low density, and have excellent heat retention properties because of their pores. In addition to lining, it is also suitably used for clothing.
[0003]
As a foaming technique for synthetic fibers typified by polyester, sodium carbonate, citric acid, and polycarbonate are added as disclosed in, for example, JP-A-4-214407. However, although this method certainly foams, there are problems that the mechanical properties of the obtained fiber are insufficient, the soiling around the mouthpiece hole is severe, and the yarn-making property is not satisfactory. In addition, sodium carbonate, citric acid, and polycarbonate used in the technology are basically different from the thermoplastic resin that forms the synthetic fiber. there were.
[0004]
On the other hand, in the field of foam molding, many techniques for adding carbon dioxide or the like to a molten polymer are known. However, the addition of polyester and polyamide in melt spinning is only slightly seen in JP-A-11-172528, and the publication only describes the effect of improving elongation by the addition of carbon dioxide, There is no suggestion about the technology for producing foamed fibers.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a production method that solves the above-mentioned problems of the prior art, is excellent in yarn-making properties of foamed fibers with improved mechanical properties, and has a low environmental impact.
[0006]
[Means for Solving the Problems]
The present inventors have intensively studied addition / mixing technology and foaming technology in melt spinning of carbon dioxide and nitrogen, and improvement of mechanical properties of the resulting fiber. Among them, the inventors have found that the disadvantages of the prior art can be solved by performing composite spinning using components that satisfy certain conditions such as the amount of carbon dioxide or nitrogen added.
[0007]
That is, the present invention adds 0.5 to 6% by weight of carbon dioxide and / or nitrogen to a thermoplastic resin, and melts and mixes the thermoplastic resin mixture (A) and 0.5% by weight of carbon dioxide and / or nitrogen to the thermoplastic resin. The present invention provides a method for producing foamed fibers, characterized in that composite spinning is performed using two resin mixtures of a thermoplastic resin mixture (B) added by less than and melt-mixed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The requirement of the present invention is that 0.5 to 6% by weight of carbon dioxide and / or nitrogen is added, and less than 0.5% by weight of the melt-mixed thermoplastic resin mixture (A) and carbon dioxide and / or nitrogen are melt-mixed. The composite spinning is performed using two resin mixtures of the thermoplastic resin mixture (B). By performing melt spinning under such conditions, it is possible to produce foamed fibers with improved mechanical properties with a low environmental load. The reason will be described below.
[0009]
A technique for adding and mixing carbon dioxide and nitrogen into a molten resin and foaming is well known, and the present inventors have also studied application to melt spinning. However, in melt spinning, it has been found that there are problems such as poor spinnability due to the contamination of the die and the deterioration of the spinnability, and the deterioration of the mechanical properties of the resulting fiber. Therefore, the present inventors have advanced the analysis on the behavior of the spinning wire, and found that foaming in the vicinity of the nozzle discharge hole is a factor of deterioration of the yarn production property. However, when the foaming itself is suppressed, the conflicting problem that the desired foamed fiber cannot be obtained has been reached.
[0010]
For this reason, the present inventors have found that the above-mentioned problems can be solved by performing composite spinning using the component (B) responsible for spinnability and mechanical properties and the component (A) that mainly causes foaming. .
[0011]
The “foamed fiber” in the present invention is a fiber having discontinuous pores, and specifically, a fiber having a plurality of, preferably 10 or more pores in the fiber cross section. The number of pores and the pore diameter are not particularly limited because they depend on the viscosity of the resin and the spinning conditions, but the specific gravity that is a measure of the total amount of pores was obtained under the same spinning conditions without adding nitrogen and / or carbon dioxide. It is preferable that it is 3% or less smaller than the fiber.
[0012]
The thermoplastic resin used for the components (A) and (B) in the present invention is not particularly limited, but it is preferable to use polyester or polyamide from the viewpoint of fiber properties and production cost, more preferably polyethylene terephthalate, polypropylene terephthalate. , Polybutylene terephthalate, polyethylene naphthalate, polyhexamethylene adipamide or polycoupleramide, most preferably polyethylene terephthalate. In addition, the crystalline thermoplastic resin referred to in the present invention may be copolymerized with other components within a range that does not impair the gist of the invention, and further contains a small amount of additives such as matting agents, flame retardants, and lubricants. Also good. The resins of the components (A) and (B) may be different, but the composition (excluding molecular weight, additives, copolymerization components, etc.) is preferably the same for the purpose of simplifying the resin used and the production process. .
[0013]
Also, the degree of polymerization of the resin is arbitrary, but in order to sufficiently foam while suppressing yarn breakage due to bubble breakage, the melt viscosity of the resin which is a measure of the degree of polymerization is 290 ° C., 1000 sec to 5000 poise at 20 sec −1 It is preferable that
[0014]
Furthermore, in order to reduce the foam diameter of the resins (A) and (B), about 0.5 to 2% of a foam nucleating agent such as polystyrene may be added. However, in order to make the resin composition uniform, it is preferable to increase the elongational viscosity of the resin, and it is preferably a branched polymer containing a compound having three or more functional groups in the main chain. When the resin is a polyester, such as the compounds such as trimellitic acid, trimesic acid, pyromellitic acid AND ITS ester, such as epoxies and the like.
[0015]
In the present invention, nitrogen or carbon dioxide is selected because the substance added to the thermoplastic resin does not react with the resin serving as the substrate and has a low environmental impact. Either of these or two of them can be used simultaneously, but it is preferable to use carbon dioxide from the viewpoint of the effect.
[0016]
The method for adding nitrogen and / or carbon dioxide to the resin is not particularly limited. For example, nitrogen and / or carbon dioxide gas is introduced into the bunker of the polymer chip before melting or is melted or melted. A known technique such as injecting nitrogen and / or carbon dioxide (both gas and liquid) into the resin is employed. However, a method of injecting nitrogen and / or carbon dioxide into a resin melted with an extruder is preferable because of little modification of the apparatus.
[0017]
The addition amount of nitrogen and / or carbon dioxide is 0.5 to 6% by weight in the component (A) that mainly causes foaming. If the added amount is less than this, the effect is not seen, and if it is more, the foaming becomes intense and the yarn-making property is deteriorated. A preferable addition amount is 1 to 4% by weight for carbon dioxide, and 0.5 to 1% by weight for nitrogen. In addition, let the addition amount in this invention be a value calculated | required by the method of an Example description.
[0018]
Further, the addition amount of nitrogen and / or carbon dioxide of the component (B) responsible for the spinnability and mechanical properties is less than 0.5% by weight. If the amount added is larger than this, the spinnability and the mechanical properties of the resulting fiber deteriorate due to foaming.
[0019]
The form of the composite spinning performed in the present invention is not particularly limited as long as both components (A) and (B) are continuously present in the longitudinal direction of the fiber, and any form can be adopted depending on the purpose. For example, if the core-sheath composite spinning with the component (A) as the sheath and the component (B) as the core is performed, a fiber having excellent moisture absorption and release with pores on the surface can be obtained, and the components (A) and (B) When side-by-side composite spinning is performed, fibers having pores only on one side can be obtained. Further, in order to improve the spinning property, it is preferable that the surface does not foam, and it is preferable that the component (A) is the core and the component (B) is the sheath.
[0020]
The ratio of the component (A) to the component (B) is also arbitrary, but the component (B) is preferably 40% by weight or more of the total discharge amount in order to improve the mechanical properties of the obtained fiber.
[0021]
The means for fiberizing the discharged resin is not particularly limited. Arbitrary control of the vicinity of the base with a heating cylinder or a heat retaining cylinder, cooling with a fluid such as rectified air, and application of a finishing agent are arbitrary. . However, from the viewpoint of suppressing foaming in the vicinity of the nozzle hole, it is desirable that the resin after discharge is cooled quickly, and as a melt spinning condition, the discharge linear velocity at each hole is 10 cm / sec or more. A cooling rate such that solidification is completed within 2 seconds is preferable.
[0022]
The take-up method can be taken by any method such as a roller or an air aspirator, and the spinning speed is not particularly limited, but high-speed spinning in which deformation is completed on the spinning line to maintain the pore shape is a preferred embodiment. It is. When the resin is polyester, the spinning speed is preferably 5000 m / min or more, depending on the molecular weight.
[0023]
【Example】
Hereinafter, the present invention will be described specifically and in detail by way of examples. However, the present invention is not limited to the following examples. In addition, the physical-property value in an Example was measured with the following method.
A. 290 ° C., was measured at a shear rate range near 20sec -1 and 2000 sec -1 using a melt viscosity Toyo Seiki Capillograph type 1 at 20sec -1, the melt viscosity of 20sec -1 and 2000 sec -1 by approximation Asked.
B. Addition amount of nitrogen or carbon dioxide
The discharge amount of nitrogen and / or carbon dioxide was measured using a Coriolis flow meter micro motion elite type manufactured by Fisher-Rosemount. The amount of resin discharged is determined from the weight of a resin added with nitrogen and / or carbon dioxide, which is rapidly cooled by receiving it in a water tank and then air-dried for 24 hours in the atmosphere. The addition amount with respect to resin was computed from the discharge amount of carbon using the following formula.
[0024]
[Expression 1]
Figure 0003705185
C. Strength / Elongation Measured using a Tensilon tensile tester manufactured by Orientec Co., Ltd. with an initial sample length of 200 mm and a tensile speed of 200 mm / min.
D. The specific gravity was measured using an electronic hydrometer SD-120L manufactured by Mirage Trading Co., Ltd.
Examples 1-4, Comparative Example 1
Polyethylene terephthalate with a melt viscosity of 2600poise at 290 ° C and 20sec -1 is melted with a biaxial extruder and carbon dioxide is added from the injection port provided in the middle of the cylinder as component (A), trimellitic acid during polymerization By adding 0.2% by weight of the esterified product and adjusting the degree of polymerization, a polyethylene terephthalate composition having a melt viscosity of 2000 poise at 290 ° C. and 20 sec −1 as component (B), component (A) as the core, Core-sheath composite spinning with the component (B) as a sheath was performed. The spinning temperature is 295 ° C., the total resin discharge rate is 47.3 g / min (core: sheath ratio = 5: 5), a 36-hole nozzle is used, and a room temperature roller is used to pick up at a speed of 3000 m / min. It was. The amount of carbon dioxide added is 0 (Comparative Example 1), 0.5 (Example 1), 2 (Example 2), 4 (Example 3), 6 (Example 4)% by weight relative to the component (A) discharge amount. It was. This was stretched at a speed of 600 m / min using a heating roller at 90 ° C. and 140 ° C. The draw ratio was adjusted so that the elongation of the drawn fiber was about 35%. The spinning performance was generally good under each condition, but in the case where the addition amount was 6% (Example 4), dirt was adhered to the base after the completion of the spinning, and when the addition amount was larger than this, the spinning performance. There is concern about the deterioration.
[0025]
Table 1 shows the yarn making conditions and the drawn yarn physical properties. In addition, the specific gravity of the drawn yarn decreased with the increase in the amount added, with respect to Comparative Example 1 in which no carbon dioxide was added, Example 1 was 3.06%, Example 2 was 8.5%, Example 3 was 17.5%, Example 4 is 26.2% smaller, indicating that foamed fibers are obtained.
[0026]
[Table 1]
Figure 0003705185
Comparative Example 2
Spinning and drawing were performed in the same manner as in Example 2 except that 2% of carbon dioxide was added to the sheath side component (B). However, the yarn forming property was poor and only a very small amount of drawn yarn was obtained. The yarn making conditions and drawn yarn physical properties are also shown in Table 2. As compared with Example 2 in which carbon dioxide is not added to the component (B), the specific gravity is reduced, but it can be seen that the strength and elongation are greatly reduced at the same draw ratio.
[0027]
Example 5
A mixture of polyethylene terephthalate with a melt viscosity of 2200poise at 290 ° C and 20sec -1 mixed with 1% polystyrene (Stylon 685 manufactured by Asahi Kasei Co., Ltd.) was melted with a twin screw extruder, and carbon dioxide was injected from the injection port provided in the middle of the cylinder. 2% by weight of component (A), 290 ° C., polyethylene terephthalate having a melt viscosity of 2000 poise at 20 sec −1 of 2000 poise as component (B), component (A) as sheath, and component (B) as The core-sheath composite spinning was performed using a core. The spinning temperature is 290 ° C, the total resin discharge rate is 48.8 g / min (core: sheath ratio = 6: 4), a 36-hole nozzle is used, and a room temperature roller is used to pick up at a speed of 6500 m / min. It was. The spinning property is generally good, and the physical properties (Table 2) of the obtained fiber have sufficient specific gravity and mechanical properties.
[0029]
[Table 2]
Figure 0003705185
[0030]
【The invention's effect】
The foamed fiber obtained by the production method of the present invention has improved mechanical properties and can be suitably used for various applications. Furthermore, by performing composite spinning, the spinnability is improved and stable spinning is possible. In addition, since nitrogen and / or carbon dioxide is used, the environmental burden due to the blowing agent is reduced.

Claims (4)

熱可塑性樹脂に二酸化炭素および/または窒素を0.5〜6重量%添加し溶融混合させた熱可塑性樹脂混合物(A)と、熱可塑性樹脂に二酸化炭素および/または窒素を0.5重量%未満添加し溶融混合させた熱可塑性樹脂混合物(B)の2つの樹脂混合物を用いて複合紡糸を行い発泡させる発泡繊維の製造方法。  A thermoplastic resin mixture (A) in which 0.5 to 6% by weight of carbon dioxide and / or nitrogen is added to the thermoplastic resin and melt-mixed, and less than 0.5% by weight of carbon dioxide and / or nitrogen in the thermoplastic resin A method for producing foamed fibers, in which a composite spinning is performed using two resin mixtures of the thermoplastic resin mixture (B) that has been added and melt-mixed, and foamed. 熱可塑性樹脂がポリエステルであることを特徴とする請求項1記載の発泡繊維の製造方法。  The method for producing foamed fibers according to claim 1, wherein the thermoplastic resin is polyester. 紡糸速度が5000m/min以上であることを特徴とする請求項1または2記載の発泡繊維の製造方法。  The method for producing foamed fibers according to claim 1 or 2, wherein the spinning speed is 5000 m / min or more. 熱可塑性樹脂が3以上の官能基を有する化合物を主鎖に含む分岐高分子であることを特徴とする請求項1〜3いずれか1項記載の発泡繊維の製造方法。Claims 1-3 method of manufacturing a foamed fiber according to any one of the preceding, wherein the thermoplastic resin is a branched polymer containing in the backbone a compound having 3 or more functional groups.
JP2001327534A 2001-10-25 2001-10-25 Method for producing foamed fiber Expired - Fee Related JP3705185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327534A JP3705185B2 (en) 2001-10-25 2001-10-25 Method for producing foamed fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327534A JP3705185B2 (en) 2001-10-25 2001-10-25 Method for producing foamed fiber

Publications (2)

Publication Number Publication Date
JP2003129342A JP2003129342A (en) 2003-05-08
JP3705185B2 true JP3705185B2 (en) 2005-10-12

Family

ID=19143752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327534A Expired - Fee Related JP3705185B2 (en) 2001-10-25 2001-10-25 Method for producing foamed fiber

Country Status (1)

Country Link
JP (1) JP3705185B2 (en)

Also Published As

Publication number Publication date
JP2003129342A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
CN101880921B (en) Microfiber bundle
KR20080048080A (en) High crimp bicomponent fibers
MXPA04012281A (en) Poly(trimethylene terephthalate) bicomponent fibers.
CN1304652C (en) A microcellular foamed fiber, and a process of preparing for the same
CN115380136A (en) Process for producing aliphatic polyester fiber, and multifilament
JP3705185B2 (en) Method for producing foamed fiber
KR100559102B1 (en) Composite high-nitrile filaments
EP1243675A1 (en) Microfiber and its manufacturing method
JP3738794B2 (en) Stretched polyamide fiber and method for producing the same
CN108048946A (en) A kind of hydrophilic fire-retardant polyester fibre material and preparation method thereof
WO2002050350A1 (en) Method for manufacturing polyester mixed fiber yarn
EP4036287A1 (en) Polycarbonate fibers, fiber structure and resin composite body
CA2500434C (en) A microcellular foamed fiber, and a process of preparing for the same
JPH04333616A (en) Production of high-tenacity monofilament
JPS61155437A (en) Polyolefin resin composition
CZ20056A3 (en) Process of spinning multifilament thread, fibrous yarn, polyester fibrous yarn and cord comprising the polyester fibrous yarn
JP4224622B2 (en) Racket gut and method for manufacturing the same
JPH03234811A (en) Melt spinning of polyester fiber
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
JP2003105633A (en) Method for producing thermoplastic synthetic fiber
JP2003096616A (en) Method for producing thermoplastic synthetic fiber improved in mechanical property
KR100839510B1 (en) A process of preparing for microcellular foamed fiber
JP2994701B2 (en) Melt viscosity-reducing agent for polyester resin, and polyester fiber
JPS61138720A (en) Production of antistatic polyester composite fiber
JP4660969B2 (en) Thermoplastic synthetic fiber and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees