JP3704690B2 - Magnetic bearing control device - Google Patents

Magnetic bearing control device Download PDF

Info

Publication number
JP3704690B2
JP3704690B2 JP30960194A JP30960194A JP3704690B2 JP 3704690 B2 JP3704690 B2 JP 3704690B2 JP 30960194 A JP30960194 A JP 30960194A JP 30960194 A JP30960194 A JP 30960194A JP 3704690 B2 JP3704690 B2 JP 3704690B2
Authority
JP
Japan
Prior art keywords
command
rotor
levitation
predetermined time
integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30960194A
Other languages
Japanese (ja)
Other versions
JPH08145057A (en
Inventor
精 石田
憲昭 岩渕
透 鹿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP30960194A priority Critical patent/JP3704690B2/en
Publication of JPH08145057A publication Critical patent/JPH08145057A/en
Application granted granted Critical
Publication of JP3704690B2 publication Critical patent/JP3704690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Description

【0001】
【産業上の利用分野】
本発明は、回転軸や可動子を非接触支持する磁気軸受の制御装置に関し、とくに起動停止を円滑にするものに関する。
【0002】
【従来の技術】
従来、回転軸や可動子を制御形の磁気軸受により非接触支持すると、機械摩擦がないため寿命が飛躍的に伸びたり、発塵しないためにクリーンな環境を維持することができるとともに、支持力が大きく、支持特性が可変であるなど、多くの特徴が得られるので、制御形の磁気軸受はすでに多く実用化が図られている。
その構成は、例えば図3に示すように、回転軸に回転子1が固着され、その回りにギャップを介して固定子2が設けられている。固定子2は、回転軸に直交し
、かつ互いに直交する二つの方向で対向する二つの電磁石を形成しており、二つの方向に支持力を得ることができる。それぞれの方向の回転子1の浮上位置は、固定子2近傍に設けた変位センサ3により検出される。変位センサ3の信号Xは
、浮上位置指令XSと比較器7により比較されて浮上制御器5に入力され、電力増幅器4に励磁指令が与えられる。これによって、電力増幅器4が各固定子2の対向する電磁石コイルに励磁電流を選択的あるいは協調的に供給し、固定子2と回転子1との間に磁気吸引力が生じる。この磁気吸引力は、浮上制御器5が働いて制御されるため、回転子1は固定子2の間の指定位置に浮上する。すなわち、回転軸は予め指定した浮上位置に非接触支持される。
この軸受が作動していない時は、回転軸は下方に位置しているが、回転軸または回転子1の下側が電磁石の固定子2に直接接触することを防止するため、回転軸または回転子1を補助軸受に接触して支持している。
また、軸受が作動しているときは、回転子は前記動作により固定子の間の指定位置に非接触浮上している。
軸受を起動すると、回転軸または回転子は下方の位置から一気に浮上し、軸受を停止すると浮上位置から下方に落下し、固定子ないし補助軸受に接触する。浮上時はショックは小さいが、停止時は落下する回転軸または回転子が固定子か補助軸受に当たって止まるためショックが大きく、磁気軸受を備えた機械装置などに大きな衝撃を与えるという問題があった。
【0003】
この問題を改善する方法として、特開平5−223123号および実開昭63−173518号が開示されている。
特開平5−223123号の起動停止方法は、回転軸の位置を検出するセンサの出力信号に、浮上・着座時の衝撃を緩和するためのコマンド信号を加えるようにしたものである。
起動時には、まず起動直前の回転軸の位置が初期位置としてメモリに記憶される。その後、浮上位置指令は、初めに初期位置が指令されて徐々に中央位置まで変更される。したがって、回転軸は下方の位置から中央位置までスムーズに浮上される。
停止時には、中央位置を指令している浮上位置指令は、メモリに記憶された初期位置まで徐々に変更され、その後完全に停止される。したがって、回転軸は中央位置から初期位置までスムーズに下降し、ショックを生じることなく停止することができる。起動前の回転軸の位置を初期位置として記憶するので、磁気軸受の設置方向がいかなる方向であっても、同様にスムーズな起動停止ができるようになっている。
実開昭63−173518号は、起動・停止時に所定時間の間だけ、PID回路を介して一時遅れ要素などにより浮上位置指令に変化を与えて、磁気吸引力を徐々に変化させ、スムーズな起動停止をするものである。
【0004】
【発明が解決しようとする課題】
ところが、特開平5−223123号の従来技術では、初期位置記憶用メモリ、D/Aコンバータ、A/Dコンバータ、ソフト指令器、制御器など多くの構成要素が必要で、コストアップとなる問題があった。
また、実開昭63−173518号の従来技術では、二つのアンプのうち一方のみの入力信号を一次遅れ要素を介して与えているので、制御系が全体として非線形系となって、安定性が著しく損なわれて不安定となるという問題があった。
また、PID回路が最初から作動しているので、出力信号はすぐに飽和し、非制御状態となり、衝撃が解消されないという問題があった。
本発明は、これらの問題を鑑みてなされたものであり、安定して浮上位置指令を変化させ、スムーズな起動停止をする磁気軸受の制御装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記問題を解決するため、本発明は、回転軸に固着された回転子と、前記回転子の回りに空隙を介して設けた電磁石で構成する固定子と、前記回転子の浮上位置を検出する変位センサと、前記固定子に電力を供給する電力増幅器と、比例・微分器と積分器とを備え、前記電力増幅器に励磁指令を与える浮上制御器と、浮上位置指令と前記変位センサとの信号を比較する比較器と、起動・停止指令を受けて所定時間おいて発するON指令S1とそのON指令S1から所定時間おいて前記浮上制御器の積分器ON指令S2を出力するシーケンサと、を備えた磁気軸受の制御装置において、前記ON指令S1を入力する一次遅れ回路と、前記比較器と前記浮上制御器との間に設けられ前記一次遅れ回路の出力と前記比較器の出力を乗算して前記浮上制御器に出力する乗算器とを備えたことを特徴としている
また、前記シーケンサは、起動指令を受けてから所定時間をおいて、電源をONにし、その後所定時間をおいて指令S1をHiにし、更に所定時間をおいて指令S2をHiにして前記浮上制御器に設けた積分器を作動させ、停止指令を受けると同時に指令S1をLoにするとともに、S2をLoにして前記積分器を解除した後、電源をOFFするように構成したものである。
【0006】
【作用】
上記手段により、起動時には、起動指令を受けて指令S1,S2がHiになると、ソフト化回路の一次遅れ回路により浮上制御系のループゲインが一次遅れで徐々に大きくなり回転子が徐々に上昇されるとともに、浮上制御器の積分器が動作して指令位置と回転子の位置の偏差がなくなるので、衝撃を生じることなくスムーズな起動動作を行う。
停止時には、停止指令を受けて指令S1,S2がLoになると、積分器が解除されると同時に、ソフト化回路の一次遅れ回路により浮上制御系のループゲインが一次遅れで徐々に小さくなるとともに、指令位置からの偏差が大きくなり回転子が徐々に下降するので、衝撃を生じることなくスムーズに固定子または補助軸受に当たり停止する。
なお、従来技術のように浮上位置指令を切り替えることもないので、浮上位置指令の切替点で不安定になるという問題も生じない。
【0007】
【実施例】
以下、本発明を図に示す実施例について説明する。
図1は本発明の実施例を示すブロック図である。
図において、1は回転軸に固着された軸受の回転子、2は回転子1の回りに空隙を介して設けられた電磁石で構成する軸受の固定子、3は回転子1の位置を検出する変位センサ、4は入力信号を二つの信号に分割し調整して電流を増幅し、固定子2の対向する電磁石コイルに電流を選択的あるいは協調的に電力を供給する電力増幅器、5は電力増幅器4に励磁指令を与える浮上制御器、51は浮上制御器5に設けた比例・微分器、52は積分器である。6はシーケンサ61とソフト化回路62からなるソフト化制御器で、ソフト化回路62は抵抗とコンデンサからなる一時遅れ回路63と乗算器64とで構成してある。7は浮上位置指令XSと変位センサ3の信号Xを比較する比較器である。
シーケンサ61は、図2に示すタイムチャートに沿って動作するように構成されており、起動指令SSの立ち上がり信号を受けると、所定時間をおいて制御系全体の電源を投入し、その後所定の時間をおいてソフト化回路62のON指令S1をHiにし一次遅れ回路63に入力する。一次遅れ回路63の出力S3は乗算器64の一方の入力となっており、比較器7の出力S4をもう一方の入力とする乗算器64は出力S5を浮上制御器5に入力する。
指令S1をHiにしてから更に所定時間をおいて、浮上制御器5の積分器ON指令S2をHiにし浮上制御器5に入力する。このとき、浮上制御器5に設けた積分器52はS2がHiの時は動作し、Loの時は動作しないようにしてある。
また、停止指令SSの立ち下がり信号を受けると、シーケンサ6は指令S1、S2をLoにすると同時に、所定時間をおいて制御系全体の電源を解除する。なお、図1では制御系全体の電源を省略している。
【0008】
このような構成において、起動・停止指令SSがHiになると、ソフト化制御器6のシーケンサ61は制御系全体の電源を投入すると共に、所定時間をおいて指令S1をHiにしてソフト化回路62に入力する。指令S1は一次遅れで乗算器64に入力されるので、浮上制御器5の入力信号S5は図2に示すように、徐々に大きくなり、次第に正規の浮上制御系のループゲインが得られることになる。
初めの段階ではループゲインが小さいので、軸受の固定子2の支持力が小さく、回転子1は下方に位置したままであるが、徐々にループゲインが上がるので、支持力が徐々に大きくなって回転子1は引き上げられる。そして、ついには正規のループゲインになって、回転子1は固定子2の中央付近まで上昇される。
この時、シーケンサ61の指令S2がHiとなり、浮上制御器5の積分器52が作動を開始するので、図2に実線で示す励磁指令信号S6が得られ、浮上の指令位置と回転子1との位置の偏差がなくなり、指令位置に回転子1が保持される
。なお、積分器52が作動しない時の励磁指令信号は点線で示すようになる。
浮上・停止指令がLoになると、シーケンサ61の指令S1,S2は同時にLoとなるので、浮上制御器5の積分器52が解除されると同時に、乗算器64の一方の入力信号である出力3が一次遅れで徐々に小さくなっていく。このとき、浮上制御系のループゲインが徐々に小さくなっていき、比較器7の出力信号S4、すなわち二つの入力信号の偏差XS−Xが大きくなって、回転子1が徐々に下降していく。そして、ついには回転子1が固定子2ないしは補助軸受に当たって停止し、その後、制御系全体の電源が解除される。
このように、起動時には、浮上制御系のループゲインを徐々に変化させた後、積分器を作動させるので、励磁指令が滑らかに立ち上がり、衝撃を生じることなく回転子を徐々に上昇させることができ、停止時にもループゲインを徐々に低下させて回転子を下降させるので、下降時の衝撃も極めて軽微に停止することができる。
【0009】
【発明の効果】
以上述べたように、本発明によれば、起動停止時に、浮上制御系のループゲインを徐々に変化させて回転子を徐々に上昇または下降させるので、ほとんど衝撃を生じることなくスムーズな起動停止をすることができ、かつ低コストで安定した動作をする磁気軸受の制御装置を提供できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を示すブロック図である。
【図2】本発明の実施例のシーケンスを示すタイムチャートである。
【図3】従来例を示すブロック図である。
【符号の説明】
1 回転子、2 固定子、3 変位センサ、4 電力増幅器、5 浮上制御器、51 比例・微分器、52 積分器、6 ソフト化制御器、61 シーケンサ、62 ソフト化回路、63 一次遅れ回路、64 乗算器、7 比較器
[0001]
[Industrial application fields]
The present invention relates to a control device for a magnetic bearing that supports a rotating shaft and a mover in a non-contact manner, and particularly relates to a device that facilitates starting and stopping.
[0002]
[Prior art]
Conventionally, if the rotating shaft and mover are supported by a control-type magnetic bearing in a non-contact manner, there is no mechanical friction, so the life can be drastically increased and no dust is generated. Since many features such as large and variable support characteristics are obtained, many control-type magnetic bearings have already been put to practical use.
For example, as shown in FIG. 3, a rotor 1 is fixed to a rotating shaft, and a stator 2 is provided around the rotor 1 via a gap. The stator 2 forms two electromagnets that are orthogonal to the rotation axis and that are opposed to each other in two directions orthogonal to each other, and can obtain a supporting force in the two directions. The floating position of the rotor 1 in each direction is detected by a displacement sensor 3 provided in the vicinity of the stator 2. The signal X of the displacement sensor 3 is compared with the flying position command XS by the comparator 7 and input to the flying controller 5, and an excitation command is given to the power amplifier 4. As a result, the power amplifier 4 selectively or cooperatively supplies excitation current to the opposing electromagnet coils of each stator 2, and a magnetic attractive force is generated between the stator 2 and the rotor 1. Since the magnetic attraction force is controlled by the levitation controller 5, the rotor 1 is levitated at a designated position between the stators 2. That is, the rotating shaft is supported in a non-contact manner at a floating position designated in advance.
When this bearing is not in operation, the rotating shaft is positioned below, but the rotating shaft or the rotor 1 prevents the lower side of the rotating shaft or the rotor 1 from coming into direct contact with the stator 2 of the electromagnet. 1 is supported in contact with the auxiliary bearing.
Further, when the bearing is operating, the rotor floats in a non-contact manner at a designated position between the stators by the above operation.
When the bearing is started, the rotating shaft or the rotor floats from a lower position at once, and when the bearing is stopped, the rotating shaft or the rotor falls downward from the floating position and contacts the stator or the auxiliary bearing. Although the shock is small at the time of ascent, there is a problem that the shock is large because the rotating shaft or rotor that falls falls on the stator or the auxiliary bearing and stops at the time of stop.
[0003]
JP-A-5-223123 and JP-A-63-173518 are disclosed as methods for solving this problem.
The start / stop method disclosed in Japanese Patent Application Laid-Open No. 5-223123 is such that a command signal for mitigating the impact at the time of floating / sitting is added to the output signal of the sensor for detecting the position of the rotating shaft.
At the time of start-up, the position of the rotary shaft immediately before start-up is first stored in the memory as the initial position. Thereafter, the floating position command is first changed to the central position after the initial position is first commanded. Therefore, the rotating shaft is smoothly levitated from the lower position to the center position.
At the time of stop, the floating position command that commands the center position is gradually changed to the initial position stored in the memory, and then completely stopped. Therefore, the rotating shaft can be smoothly lowered from the central position to the initial position, and can be stopped without causing a shock. Since the position of the rotating shaft before starting is stored as the initial position, smooth starting and stopping can be similarly performed regardless of the direction in which the magnetic bearing is installed.
Japanese Utility Model No. 63-173518 provides smooth start-up by gradually changing the magnetic attraction force by changing the floating position command through a PID circuit with a temporary delay element, etc., for a predetermined period of time when starting and stopping. It will stop.
[0004]
[Problems to be solved by the invention]
However, the conventional technique disclosed in Japanese Patent Application Laid-Open No. 5-223123 requires many components such as an initial position storage memory, a D / A converter, an A / D converter, a software command unit, and a controller, which increases the cost. there were.
In the prior art of Japanese Utility Model Publication No. 63-173518, only one of the two amplifiers is given an input signal through a first-order lag element, so that the control system becomes a non-linear system as a whole, and stability is improved. There was a problem that it was severely damaged and unstable.
In addition, since the PID circuit has been operating from the beginning, the output signal is saturated immediately and becomes uncontrolled, and there is a problem that the shock cannot be eliminated.
The present invention has been made in view of these problems, and an object of the present invention is to provide a control device for a magnetic bearing that stably changes a flying position command and smoothly starts and stops.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, the present invention detects a rotor fixed to a rotating shaft, a stator composed of an electromagnet provided around the rotor via a gap, and a floating position of the rotor. A displacement sensor, a power amplifier that supplies power to the stator, a proportional / differentiator, and an integrator, a levitation controller that provides an excitation command to the power amplifier, a levitation position command, and a signal from the displacement sensor And a sequencer that outputs an ON command S1 issued at a predetermined time in response to a start / stop command and an integrator ON command S2 of the levitation controller after a predetermined time from the ON command S1. In the magnetic bearing control device, the primary delay circuit for inputting the ON command S1, and the output of the primary delay circuit provided between the comparator and the levitation controller are multiplied by the output of the comparator. Said levitation It is characterized in that a multiplier for outputting the control vessel.
Further, the sequencer turns on the power after a predetermined time from receiving the start command, then sets the command S1 to Hi after a predetermined time, and sets the command S2 to Hi after a predetermined time, and then the levitation control. The integrator provided in the generator is operated to receive the stop command, and at the same time the command S1 is set to Lo, and the power is turned off after the integrator is released by setting S2 to Lo.
[0006]
[Action]
By the above means, at the time of start-up, when the start-up command is received and the commands S1 and S2 become Hi, the loop gain of the levitation control system is gradually increased by the first-order delay by the first-order lag circuit of the softening circuit, and the rotor is gradually raised In addition, since the integrator of the levitation controller operates and the deviation between the command position and the rotor position disappears, a smooth start-up operation is performed without causing an impact.
At the time of stop, when the stop command is received and the commands S1 and S2 become Lo, the integrator is released, and at the same time, the loop gain of the levitation control system is gradually reduced by the first order delay by the first order delay circuit of the softening circuit, Since the deviation from the command position increases and the rotor gradually descends, it hits the stator or auxiliary bearing smoothly without causing an impact and stops.
In addition, since the flying position command is not switched as in the prior art, there is no problem that the flying position command becomes unstable at the switching point.
[0007]
【Example】
The present invention will be described below with reference to embodiments shown in the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention.
In the figure, 1 is a rotor of a bearing fixed to a rotating shaft, 2 is a stator of a bearing constituted by an electromagnet provided around the rotor 1 via a gap, and 3 is a position of the rotor 1. A displacement sensor 4 is a power amplifier that divides an input signal into two signals, adjusts and amplifies the current, and supplies power to the opposing electromagnetic coils of the stator 2 selectively or cooperatively, and 5 is a power amplifier. 4 is a levitation controller that gives an excitation command to 4, 51 is a proportional / differentiator provided in the levitation controller 5, and 52 is an integrator. Reference numeral 6 denotes a software controller composed of a sequencer 61 and a software circuit 62. The software circuit 62 includes a temporary delay circuit 63 composed of a resistor and a capacitor, and a multiplier 64. A comparator 7 compares the flying position command XS and the signal X of the displacement sensor 3.
The sequencer 61 is configured to operate in accordance with the time chart shown in FIG. 2, and when receiving the rising signal of the start command SS, the entire control system is turned on after a predetermined time, and then for a predetermined time. Then, the ON command S1 of the software circuit 62 is set to Hi and is input to the first-order lag circuit 63. The output S3 of the primary delay circuit 63 is one input of the multiplier 64, and the multiplier 64 having the output S4 of the comparator 7 as the other input inputs the output S5 to the levitation controller 5.
After a predetermined time from setting the command S1 to Hi, the integrator ON command S2 of the levitation controller 5 is set to Hi and is input to the levitation controller 5. At this time, the integrator 52 provided in the levitation controller 5 operates when S2 is Hi, and does not operate when S2 is Lo.
Further, when receiving the falling signal of the stop command SS, the sequencer 6 sets the commands S1 and S2 to Lo and simultaneously releases the power supply of the entire control system after a predetermined time. In FIG. 1, the power supply for the entire control system is omitted.
[0008]
In such a configuration, when the start / stop command SS becomes Hi, the sequencer 61 of the software controller 6 turns on the power of the entire control system, and at a predetermined time, the command S1 is set Hi and the software circuit 62 To enter. Since the command S1 is input to the multiplier 64 with a first-order lag, the input signal S5 of the levitation controller 5 gradually increases as shown in FIG. 2, and the loop gain of the normal levitation control system is gradually obtained. Become.
Since the loop gain is small in the first stage, the bearing force of the stator 2 of the bearing is small and the rotor 1 remains positioned below. However, since the loop gain gradually increases, the bearing force gradually increases. The rotor 1 is pulled up. Finally, a normal loop gain is obtained, and the rotor 1 is raised to the vicinity of the center of the stator 2.
At this time, the command S2 of the sequencer 61 becomes Hi and the integrator 52 of the levitation controller 5 starts to operate, so that an excitation command signal S6 indicated by a solid line in FIG. And the rotor 1 is held at the command position. The excitation command signal when the integrator 52 does not operate is shown by a dotted line.
When the levitation / stop command becomes Lo, the commands S1 and S2 of the sequencer 61 are simultaneously Lo, so that the integrator 52 of the levitation controller 5 is released and at the same time, the output 3 which is one input signal of the multiplier 64. Gradually decreases with a first-order lag. At this time, the loop gain of the levitation control system gradually decreases, the output signal S4 of the comparator 7, that is, the deviation XS-X between the two input signals increases, and the rotor 1 gradually decreases. . Finally, the rotor 1 hits the stator 2 or the auxiliary bearing and stops, and then the power supply of the entire control system is released.
In this way, at startup, the integrator is operated after gradually changing the loop gain of the levitation control system, so that the excitation command rises smoothly and the rotor can be gradually raised without causing an impact. Even when stopped, the loop gain is gradually lowered to lower the rotor, so that the impact at the time of lowering can be stopped very lightly.
[0009]
【The invention's effect】
As described above, according to the present invention, when starting and stopping, since the rotor gain is gradually raised or lowered by gradually changing the loop gain of the levitation control system, smooth start and stop can be performed with little impact. It is possible to provide a control device for a magnetic bearing that can be operated at low cost and stably.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a time chart showing the sequence of the embodiment of the present invention.
FIG. 3 is a block diagram showing a conventional example.
[Explanation of symbols]
1 rotor, 2 stator, 3 displacement sensor, 4 power amplifier, 5 levitation controller, 51 proportional / differentiator, 52 integrator, 6 software controller, 61 sequencer, 62 software circuit, 63 first order lag circuit, 64 multipliers, 7 comparators

Claims (2)

回転軸に固着された回転子と、前記回転子の回りに空隙を介して設けた電磁石で構成する固定子と、前記回転子の浮上位置を検出する変位センサと、前記固定子に電力を供給する電力増幅器と、比例・微分器と積分器とを備え、前記電力増幅器に励磁指令を与える浮上制御器と、浮上位置指令と前記変位センサとの信号を比較する比較器と、起動・停止指令を受けて所定時間おいて発するON指令S1とそのON指令S1から所定時間おいて前記浮上制御器の積分器ON指令S2を出力するシーケンサと、を備えた磁気軸受の制御装置において、
前記ON指令S1を入力する一次遅れ回路と、
前記比較器と前記浮上制御器との間に設けられ前記一次遅れ回路の出力と前記比較器の出力を乗算して前記浮上制御器に出力する乗算器と
を備えたことを特徴とする磁気軸受の制御装置。
A rotor fixed to a rotating shaft, a stator composed of an electromagnet provided around the rotor via a gap, a displacement sensor for detecting a floating position of the rotor, and supplying power to the stator A levitation controller that provides an excitation command to the power amplifier, a comparator that compares signals of the levitation position command and the displacement sensor, and a start / stop command In response to the ON command S1 issued at a predetermined time and a sequencer that outputs the integrator ON command S2 of the levitation controller at a predetermined time from the ON command S1, a magnetic bearing control device comprising:
A primary delay circuit for inputting the ON command S1,
A magnetic bearing provided between the comparator and the levitation controller, and a multiplier that multiplies the output of the first-order lag circuit and the output of the comparator and outputs the result to the levitation controller. Control device.
前記シーケンサは、起動指令を受けてから所定時間をおいて、電源をONにし、
その後所定時間をおいて指令S1をHiにし、更に所定時間をおいて指令S2をHiにして前記浮上制御器に設けた積分器を作動させ、停止指令を受けると同時に指令S1をLoにするとともに、S2をLoにして前記積分器を解除した後、電源をOFFするように構成した請求項1記載の磁気軸受の制御装置。
The sequencer turns on the power after a predetermined time from receiving the start command,
Thereafter, the command S1 is set to Hi after a predetermined time, the command S2 is set to Hi after a predetermined time, and the integrator provided in the levitation controller is operated to receive the stop command and simultaneously set the command S1 to Lo. 2. The magnetic bearing control device according to claim 1, wherein the power supply is turned off after S2 is set to Lo and the integrator is released.
JP30960194A 1994-11-18 1994-11-18 Magnetic bearing control device Expired - Fee Related JP3704690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30960194A JP3704690B2 (en) 1994-11-18 1994-11-18 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30960194A JP3704690B2 (en) 1994-11-18 1994-11-18 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH08145057A JPH08145057A (en) 1996-06-04
JP3704690B2 true JP3704690B2 (en) 2005-10-12

Family

ID=17995000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30960194A Expired - Fee Related JP3704690B2 (en) 1994-11-18 1994-11-18 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP3704690B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005077A (en) * 2000-06-20 2002-01-09 Ntn Corp Magnetic levitation pump unit
CN104533887A (en) * 2014-12-10 2015-04-22 马继刚 Method of utilizing hydraulic servo principle for conducting hydraulic suspension on shaft parts
CN104533952B (en) * 2014-12-10 2019-06-25 马继刚 A kind of self-adjustable hydraulic pressure suspension method
CN106545574A (en) * 2016-10-27 2017-03-29 上海交通大学 A kind of oscillation crosswise control device of cardan shaft
JP7093683B2 (en) * 2018-06-15 2022-06-30 川崎重工業株式会社 Magnetic bearing control device and magnetic bearing control method
CN109630546B (en) * 2019-02-21 2023-08-08 珠海格力电器股份有限公司 Magnetic suspension bearing system control method and device

Also Published As

Publication number Publication date
JPH08145057A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US7456537B1 (en) Control system for bearingless motor-generator
US6353273B1 (en) Hybrid foil-magnetic bearing
US6020665A (en) Permanent magnet synchronous machine with integrated magnetic bearings
EP1065395B1 (en) Controlled magnetic bearing device
EP0920109A3 (en) Bearingless rotary machine
JP3704690B2 (en) Magnetic bearing control device
CN111963570A (en) Control method and system of magnetic suspension bearing system and related components
JPH0232868B2 (en)
JP4293695B2 (en) Magnetic bearing control device
JP2000170766A (en) Generator set utilizing magnetic bearing
JP2001309688A (en) Magnetic bearing control device
JP3938331B2 (en) Magnetic bearing generator motor
JP2009303284A (en) Flywheel-type uninterruptible power supply device and its controlling method
JP2005290998A (en) Vacuum pump, and control method thereof
JP2002300760A (en) Motor/generator, and its electric power storage/voltage control method
US5046151A (en) Magnetic bearing device
JP2018129882A (en) Magnetic bearing device and vacuum pump
JP3187513B2 (en) Apparatus and method for controlling magnetic bearing
JP2615666B2 (en) Control method at lift-off in magnetic levitation device
WO1997013985A1 (en) Magnetic bearing device
JP2546997B2 (en) Non-contact support method
JP3785524B2 (en) Control type magnetic bearing device
JP2808816B2 (en) Magnetic non-contact bearing device
Van Verdeghem et al. Hybrid Active-Passive Operation of a Passively Levitated Self-Bearing Machine
JP2567876Y2 (en) Control device for rotor for magnetic bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees