JP3704453B2 - Image lens displacement detection method and system, and displacement correction method and system - Google Patents

Image lens displacement detection method and system, and displacement correction method and system Download PDF

Info

Publication number
JP3704453B2
JP3704453B2 JP2000101466A JP2000101466A JP3704453B2 JP 3704453 B2 JP3704453 B2 JP 3704453B2 JP 2000101466 A JP2000101466 A JP 2000101466A JP 2000101466 A JP2000101466 A JP 2000101466A JP 3704453 B2 JP3704453 B2 JP 3704453B2
Authority
JP
Japan
Prior art keywords
imaging
linear sensor
image
imaging lens
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000101466A
Other languages
Japanese (ja)
Other versions
JP2001281534A (en
Inventor
康治 木曽
義人 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Space Technologies Ltd
Original Assignee
NEC Space Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Space Technologies Ltd filed Critical NEC Space Technologies Ltd
Priority to JP2000101466A priority Critical patent/JP3704453B2/en
Publication of JP2001281534A publication Critical patent/JP2001281534A/en
Application granted granted Critical
Publication of JP3704453B2 publication Critical patent/JP3704453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は人工衛星に搭載され、地上を高精度で観測する光学センサの焦点調整を行う焦点補正システムに関する。
【0002】
【従来の技術】
人工衛星の地球観測システムにおいては、高分解能の特性を得るために、レンズを大型化して解像度や明るさを増し、さらにこの大型のレンズの焦点位置を高精度で調整する必要がある。また、この地球観測システムは、衛星の軌道の環境条件に対して極めて低い熱ひずみ特性が要求される。
従来、軌道上で焦点の調整を行う場合には、調整機構を動かして最良像位置を探す方法を採用していた。このレンズの焦点位置を検出し、撮像センサが常に最良像位置にあるように常に自動制御ループを閉じて制御する方法は、従来の構成では、光学系や制御系が複雑となって装置サイズが大きくなり、体積に限りがある衛星内に収容するためには、他の観測基材の搭載を犠牲にする必要があった。
また、衛星の打ち上げ前に焦点を固定してしまう方法もあるが、この方法では軌道上での太陽光の輻射の偏りによって発生する熱歪み等の外乱に対して、焦点変化が起きないように構造を工夫する必要があり、このため、熱変形の少ない特殊な材料の選択や温度特性の異なる材料の組み合わせや構造の組み合わせ等の設計・製作に費用を要し、非常に高価なシステムとなっていた。
【0003】
自動焦点検出方法並びに焦点補正方式である、いわゆるオートフォーカス方式には、自ら被写体に光を照射する光源を備え、被写体からの反射光から焦点ずれ量や被写体までの距離を測距し、結像レンズの位置を制御するアクティブ方式と、自らは光源を備えず対象物からの光から焦点ずれを検出するパッシブ方式とがある。衛星の場合には、パッシブ方式を採らざるを得ない。
オートフォーカスにおける誤差検出方式の代表的なものは、コントラスト法と位相差検出法である。コントラスト法は、対象物または結像レンズのいずれかを光軸方向に移動させながら、フォーカスセンサからコントラスト信号を取り込み、このコントラスト信号が最大となる合焦位置に常にあるように、対象物またはレンズを可動する方法であって、顕微鏡や露光装置等、対象物が光軸方向に移動可能なステージ等に置くことができるような光学装置によく用いられている。この方法は、対象物または結像レンズの位置が焦点の前にあるか後ろにあるかが分からないため、必ずレンズやステージを往復動作させる必要があり、制御系の収束するまでに時間がかかるという難点がある。
一方、位相差検出法は、結像レンズの焦点位置から再び発散した像光を、セパレートレンズによって異なる位置にある2つのラインセンサ上に再結像し、焦点位置の前後では2つのラインセンサ上に結ばれる像のコントラスト最大の位置(位相)が変わることから、所定の位相関係になるように結像レンズ位置を制御するもので、一般にカメラ等に多く用いられているが、セパレートレンズや複数のラインセンサを必要とし、系が複雑となる。
人工衛星の地球観測システムに搭載する焦点補正システムは、環境条件の変化が大きいことから、部品数が少なく安定で高信頼の構成であることが望まれる。
【0004】
【発明が解決しようとする課題】
本発明は上記の点に鑑みなされたもので、軌道上で焦点ずれを検出し補正することにより、上記の課題を解決した安定で高信頼の焦点補正システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の撮像レンズの位置ずれ検出方法は、撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、撮像レンズと撮像用リニアセンサとを搭載してリニアセンサの画素配列方向とは直交する方向に移動させて撮像対象の2次元の画像を取得する撮像系において、撮像レンズの結像面と画素配列方向とが交差するように配設された撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で撮像レンズによって形成される像のコントラストが最大となる受光位置座標、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記コントラストが最大となる受光位置座標が検出できない場合に、前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる受光位置座標と、前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、撮像レンズが撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出することを特徴とする。
また、本発明の撮像レンズの位置ずれ補正方法は、撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、撮像レンズと撮像用リニアセンサとを搭載してリニアセンサの画素配列方向とは直交する方向に移動させて2次元の画像を取得する撮像系において、撮像レンズの結像面と画素配列方向とが交差するように配設された撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で撮像レンズによって形成される像のコントラストが最大となる受光位置座標、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記コントラストが最大となる受光位置座標が検出できない場合に、前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる受光位置座標と、前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、撮像レンズが撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出し、算出した結果に基づいて撮像レンズを最適位置に移動させることを特徴とする。
また、本発明の撮像レンズの位置ずれ検出システムは撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、撮像レンズと撮像用リニアセンサとを搭載してリニアセンサの画素配列方向とは直交する方向に移動させて2次元の画像を取得する撮像系において、撮像レンズの結像面と画素配列方向とが交差するように配設された撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で撮像レンズによって形成される像のコントラストが最大となる受光位置座標、または前記画素配列方向とは直交する方向に移動し前記画素配列の外に外れた像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる受光位置座標の何れかまたは双方を検出する手段と、コントラストが最大となる受光位置座標と位置ずれ検出用リニアセンサの撮像レンズの結像面と交差した点の画素位置の座標との差から、撮像レンズが撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出する手段をそなえることを特徴とする。
また、本発明の撮像レンズの位置ずれ補正システムは、撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、撮像レンズと撮像用リニアセンサとを搭載してリニアセンサの画素配列方向とは直交する方向に移動させて地球表面の2次元の画像を取得する撮像系において、撮像レンズの結像面と画素配列方向とが交差するように配設された撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサと、位置ずれ検出用リニアセンサの、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる第1の受光位置座標、及び前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる第2の受光位置座標を検出する手段と、前記第1または第2の受光位置座標を選択し、選択した受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、撮像レンズが撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出する手段と、算出した結果に基づいて撮像レンズを最適位置に移動させる手段を備えることを特徴とする。
また、コントラストが最大となる受光位置座標を検出する手段が、位置ずれ検出用リニアセンサの光電変換された画像出力信号と画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段と、差分を取った信号の差分値の最大を与える画素のリニアセンサ受光面上の画素配列位置を検出する手段を備えてもよい。
また、コントラストが最大となる受光位置の座標を検出する手段が、さらに、位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、画像信号と画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に位置ずれ検出用リニアセンサの出力画像信号を接続する手段をさらに備えてもよい。
また、位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、画像信号と画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に位置ずれ検出用リニアセンサの出力画像信号を接続する手段が、さらに該手段の外部からの指示入力があったときに、画像信号に所定高さ以上の階調の段差の検出を開始する手段を備えてもよい。
【0006】
【発明の実施の形態】
本発明の実施の形態について図面を参照して説明する。
図1は、人工衛星搭載の地球観測システムの撮像光学系に組み込まれる、本発明の焦点補正システムの内の焦点ずれ検出系の構成を表した図である。衛星の地球観測システムの撮像光学系は、高解像撮像を行うため、複数の固体撮像センサを配設している。図1において、撮像用レンズ1によって取り込まれた画像情報は、複数の1次元ライセンサCCD2〜4により電気信号に変換される。CCD2とCCD3が地上の被写体の画像を取得するためのラインセンサであって、これらは受光面がレンズの光軸に対して直角に、レンズ1に対して正対して配設されている。これに対して、CCD4は焦点ずれを検出する補正用のCCDであって、その撮像面は、画素配列の軸とレンズ1の光軸との成す面内において、画素配列軸とレンズ光軸とが直角よりある角度をもって配設されている。例えばラインセンサCCD4の画素配列の中心部分がレンズ1の焦点面に設置されているとする。この時、画素配列の中心付近より離れた右左の画素の受光面は焦点位置から前後にずれているため、CCD4の取得画像の鮮明度は、画素ライン内で画素配列の中心部分が高く、中心より離れるにしたがって低くなる、単峰状の分布を持つことになる。
撮像用CCD2及び3のレンズ1の焦点位置への調整は地上において行う。同時にこのとき、焦点面に対して斜めに配設されたCCD4の画素配列上におけるレンズ1の焦点位置も予め測定され、記憶させておく。また、各CCD間の位置関係は、軌道上での環境変化に対しても変動を来さぬように機構的に確保されている。
以上のような構成並びに配置をとることによって、軌道上において画像取得時にCCD2及びCCD3の光軸上の位置が、レンズ1の移動によって初期に調整したレンズ1の焦点位置からずれた場合でも、このずれをCCD4の画像から検出することができ、焦点ずれを自動的に検出できる。
【0007】
次に、CCD4による焦点位置ずれを検出してレンズ位置を補正する、焦点補正システムの動作について説明する。
図2は本発明の焦点補正システムの一実施形態の構成ブロック図を示す。本発明の焦点補正システムは、被写体からの画像情報がレンズ部5を経由して測定用CCD6と補正用CCD7により電気信号に変換される。この電気信号は、画像処理部81及び82において、各画素毎に出力レベルが電気信号のレベルとして出力される。測定用CCD6の出力は画像信号85として地上に送信される。
補正用CCD7の画像処理部82で得られた画像信号には、CCD7がレンズの光軸に対して直角ではなく傾いて取り付けられているために、焦点の合った位置をピークとした波形が現れる。そのピーク位置を鮮明度検出部83において検出し、現在のレンズの焦点位置を検出することができる。そして、焦点調整回路84において、予め地上での調整時に記憶した、CCD7の画素配列上におけるレンズ部5の正しい焦点位置情報と、鮮明度検出部83から出力される、現在の焦点位置の検出結果とから、正しい焦点位置へ戻すための補正値を割り出し、レンズ焦点調整部9によりレンズ部5の焦点を最適値に調整することが可能となる。
【0008】
図3に焦点位置を検出する鮮明度検出部83のさらに詳細な構成を示す。画像処理部82を出力した補正用CCD7の画像信号は、エッジ検出部86に入力される。エッジ検出部は、2つのモードで動作する。1つはセルフ動作であり、2つ目は地上からのリモート動作である。セルフ動作では、エッジ検出部86が入力した画像信号にある所定の高さ以上の階調の段差を検出したとき、自動的に画像信号を遅延回路87と差分回路88に接続を行う。上記の階調の段差は地球表面の海岸線や河川等の、輪郭が鮮明なエッジ像に対応する。地上からのリモート動作は、衛星の地上管制ステーションでのモニタリングや衛星の軌道情報によって、補正用CCD上を地球表面の海岸線や河川等、輪郭が鮮明なエッジ像がよぎることが確認された場合、エッジ検出部86が地上からの焦点補正指示信号92を受けた後、入力した画像信号にある所定の高さ以上の階調の段差を検出する。そして、画像信号を遅延回路87と差分回路88に接続する。遅延回路87は画像信号をCCD7の1画素分ないし数画素分遅延させる。差分回路88は遅延していない画像信号と遅延した画像信号との差分をとる。すなわち、隣接ないしは数画素分離れた画素とのコントラストを抽出する。画素間の差分信号は差分値比較部89によって全画素について比較され、最大値検出部90によって差分の最大値が検出される。焦点位置検出部91では、差分が最大となっているCCD7の画素の位置、すなわちCCD7上の焦点位置情報が検出され、焦点調整回路9に出力される。焦点調整回路9は、焦点位置検出部91からのこの時点での焦点位置情報と、予め記憶されている、初期に調整された正しい焦点位置情報とを比較し、正しい焦点位置へ戻すための補正値を割り出し、レンズ焦点調整部9に出力する。レンズ焦点調整部9は、補正値に基づいてレンズ部5の光軸上の移動を制御する。焦点調整回路84の検出する焦点ずれの大きさの情報は、地上の管制ステーションにも通信される。
【0009】
このように、本実施形態の焦点補正システムは、撮像レンズ焦点面上でレンズ光軸に斜めにアレイセンサが配設され、さらに、定められた焦点位置の基準を有しているため、焦点位置ずれの正負の方向が判別でき、1回の補正動作によって即座に焦点補正が行われる。従って、高速の補正が可能となる。また、カメラの位相差検出型オートフォーカスシステムのように、2つのラインセンサ上それぞれに被写体像を結像するための特別な光学部品を必要としない。従って、低部品数ゆえに宇宙空間の過酷な環境変動に対しても高い安定性が得られる。
【0010】
上記の説明では、焦点補正システムを構成するエッジ検出部86が、入力した画像信号に、地球表面の海岸線や河川等の輪郭が鮮明なエッジ像に対応するある所定の高さ以上の階調の段差を検出したとき、画像信号を遅延回路87と差分回路88に接続し、遅延回路87は画像信号をCCD7の1画素分ないし数画素分遅延させると述べた。ここで遅延回路の遅延回路の遅延時間が1画素分ないし数画素分としているのは、上記のエッジ像がCCD7の画素ラインとほぼ交わるような場合を想定している。しかしながら、地球表面の海岸線や河川等の輪郭が鮮明なエッジ像は、画素ラインと平行する場合もありうる。この場合は、遅延回路87の遅延時間はCCD7の1ライン走査分とする。この場合、差分回路はCCD7の画素間の差分を取るのではなく、走査ライン間の差分を演算することになる。エッジ像が画素ラインと交わる線分か、平行する線分かはエッジ検出部の階調の段差判定によって自動的に切り換えるようにすることができる。すなわち、入力画像信号の画素間にある所定の高さ以上の階調の段差が検出できなければ、エッジ検出部はライン間の差分を行うように遅延時間の設定変更を遅延回路に指示するように構成すれよい。
【0011】
また、上記の説明では、セルフ動作にしろリモート動作にしろ、エッジ検出部での1回のエッジ検出によって、焦点調整回路が焦点補正値を計算し、レンズを補正位置に動かす場合を述べた。すなわち制御系が閉じたループの自動制御系ではなく、開いた制御系の動作の場合をのべた。
しかしながら、例えば、地球上の海岸線や河川等のエッジ画像が時間的に継続する間、制御系のループを閉じておき、自動制御ループとすることも可能であって、この場合、エッジ検出部において、入力画像信号中に所定の高さの階調の段差が検出されている間、画像信号を後段の回路部へ出力し続け、焦点調整回路84の出力が常に0を保持するような、第3の動作モードを設定すればよい。
【0012】
なお、本発明は上記の実施例に限定されるものではなく、例えば本実施例のCCDラインセンサはCMOSリニアアレイセンサ等の他の1次元センサであってもよい。また、固体撮像素子のみならず撮像管を含む2次元のイメージセンサを使った装置にも適用することができる。さらに、焦点ずれを検出し、これを帰還して自動的に焦点を補正する自動制御系を構成した各種の光学装置のオートフォーカスシステムにも適用することができる。
【0013】
【発明の効果】
以上説明したように、本発明の簡便な構成の焦点補正システムによれば、軌道上の環境条件等の外乱があって焦点位置がずれても自動的に調整することが可能となり、安定で高い信頼性が保たれ、人工衛星の地球観測システム運用効率の向上に寄与するところ大であるという特長を有するものである。
【図面の簡単な説明】
【図1】本発明の焦点補正システムの焦点ずれ検出系の構成を示した図である。
【図2】本発明の焦点補正システムの一システム構成例のブロック図を示す。
【図3】本発明の焦点補正システムを構成する鮮明度検出部のさらに詳細な構成を示す図である。
【符号の説明】
1 レンズ
2 CCD
3 CCD
4 CCD
5 レンズ部
6 測定用CCD
7 補正用CCD
9 レンズ焦点調整部
81 画像処理部
82 画像処理部
83 鮮明度検出部
84 焦点調整回路
85 画像信号
86 エッジ検出部
87 遅延回路
88 差分回路
89 差分値比較部
90 最大値検出部
91 焦点位置検出部
92 焦点補正指示信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a focus correction system for adjusting the focus of an optical sensor mounted on an artificial satellite and observing the ground with high accuracy.
[0002]
[Prior art]
In an artificial earth observation system, in order to obtain high resolution characteristics, it is necessary to increase the resolution and brightness by increasing the size of the lens and to adjust the focal position of the large lens with high accuracy. This earth observation system is required to have extremely low thermal strain characteristics with respect to the environmental conditions of the orbit of the satellite.
Conventionally, when adjusting the focus on the trajectory, a method of moving the adjustment mechanism to find the best image position has been adopted. This method of detecting the focal position of the lens and always closing and controlling the automatic control loop so that the imaging sensor is always at the best image position has a complicated optical system and control system in the conventional configuration, and the size of the apparatus is large. In order to be accommodated in a satellite that is large and has a limited volume, it was necessary to sacrifice the mounting of other observation substrates.
There is also a method of fixing the focal point before launching the satellite, but this method prevents the focal point from changing due to disturbance such as thermal distortion caused by the bias of sunlight radiation in orbit. It is necessary to devise the structure, and for this reason, it is costly to select a special material with little thermal deformation and to design and manufacture a combination of materials with different temperature characteristics and a combination of structures, resulting in a very expensive system. It was.
[0003]
The so-called autofocus method, which is an automatic focus detection method and a focus correction method, is equipped with a light source that irradiates the subject with light, measures the amount of defocus and the distance to the subject from the reflected light from the subject, and forms an image. There are an active system that controls the position of the lens and a passive system that does not include a light source and detects a defocus from light from an object. In the case of satellites, the passive method must be adopted.
Typical error detection methods in autofocus are a contrast method and a phase difference detection method. In the contrast method, while moving either the object or the imaging lens in the optical axis direction, a contrast signal is acquired from the focus sensor, and the object or lens is always in the in-focus position where the contrast signal is maximized. Is often used in an optical apparatus such as a microscope or an exposure apparatus that can place an object on a stage or the like that can move in the optical axis direction. Since this method does not know whether the position of the object or the imaging lens is in front of or behind the focal point, it is necessary to move the lens and stage back and forth, and it takes time until the control system converges. There is a difficulty.
On the other hand, in the phase difference detection method, image light diverged again from the focal position of the imaging lens is re-imaged on two line sensors at different positions by the separate lens, and on the two line sensors before and after the focal position. Since the position (phase) of the maximum contrast of the image connected to is changed, the position of the imaging lens is controlled so as to have a predetermined phase relationship, and is generally used in cameras and the like. The line sensor is required and the system becomes complicated.
The focus correction system mounted on the earth observation system of an artificial satellite is desired to have a stable and highly reliable configuration with a small number of parts because the environmental conditions change greatly.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and an object thereof is to provide a stable and highly reliable focus correction system that solves the above-described problems by detecting and correcting defocus on the trajectory.
[0005]
[Means for Solving the Problems]
According to the imaging lens position shift detection method of the present invention, an image formed by the imaging lens is photoelectrically converted by an imaging linear sensor, and the imaging lens and the imaging linear sensor are mounted and orthogonal to the pixel arrangement direction of the linear sensor. In an imaging system that acquires a two-dimensional image to be imaged by moving in the direction of the image, a positional deviation different from the imaging linear sensor arranged so that the imaging plane of the imaging lens and the pixel array direction intersect In the detection linear sensor, the light receiving position coordinate at which the contrast of the image formed by the imaging lens is maximized within the light receiving surface, the light receiving position coordinate at which the contrast of the image formed by the imaging lens within the light receiving surface is maximized, and the above The light receiving position coordinate at which the contrast is maximized is detected from the difference between the pixel position coordinate of the point of intersection with the imaging surface of the imaging lens of the position detection linear sensor. If not, the light receiving position coordinate where the contrast between the scan lines that are acquired back in time with respect to the moved image in the direction orthogonal is maximum and the pixel arrangement direction, the linear sensor the positional deviation detection The amount of deviation from the optimal position on the optical axis for optimal imaging of the imaging lens on the imaging linear sensor is calculated from the difference between the coordinates of the pixel position of the point intersecting the imaging surface of the imaging lens. It is characterized by that.
In addition, the imaging lens positional deviation correction method of the present invention photoelectrically converts an image formed by the imaging lens by the imaging linear sensor, and mounts the imaging lens and the imaging linear sensor to change the pixel arrangement direction of the linear sensor. In an imaging system that moves in an orthogonal direction to acquire a two-dimensional image, positional deviation detection is separate from the imaging linear sensor arranged so that the imaging plane of the imaging lens and the pixel array direction intersect the use linear sensor, the light receiving position coordinates contrast of an image formed by the imaging lens in the light receiving plane is maximized, the position and light receiving position coordinates contrast is maximum of the image formed by the imaging lens in the light-receiving surface The light receiving position coordinate at which the contrast is maximized can be detected from the difference from the coordinate of the pixel position of the point intersecting the imaging surface of the imaging lens of the linear sensor for deviation detection. If no, the light receiving position coordinate where the contrast between the scan lines that are acquired back in time with respect to the moved image in the direction orthogonal is maximum and the pixel arrangement direction, the linear sensor the positional deviation detection The amount of deviation from the optimal position on the optical axis for optimal imaging of the imaging lens on the imaging linear sensor is calculated from the difference between the pixel position coordinates of the point intersecting the imaging surface of the imaging lens. The imaging lens is moved to an optimum position based on the calculated result.
In addition, the imaging lens misregistration detection system of the present invention photoelectrically converts an image formed by the imaging lens by the imaging linear sensor, and includes the imaging lens and the imaging linear sensor, and the pixel array direction of the linear sensor is In an imaging system that acquires a two-dimensional image by moving in an orthogonal direction, a position shift detection that is different from the imaging linear sensor arranged so that the imaging plane of the imaging lens and the pixel arrangement direction intersect each other With respect to the image of the linear sensor that moves in a direction perpendicular to the pixel array direction and deviates from the pixel array, where the contrast of the image formed by the imaging lens within the light receiving surface is maximum, or out of the pixel array Means for detecting one or both of the light receiving position coordinates at which the contrast between the scanning lines acquired at a maximum time is maximized, and the light receiving position at which the contrast is maximized The optimal position on the optical axis for the imaging lens to optimally form an image on the imaging linear sensor based on the difference between the mark and the coordinates of the pixel position at the point where it intersects the imaging surface of the imaging lens of the linear sensor for detecting displacement A means for calculating a deviation amount from the distance is provided.
In addition, the imaging lens positional deviation correction system according to the present invention photoelectrically converts an image formed by the imaging lens by the imaging linear sensor, and includes the imaging lens and the imaging linear sensor to change the pixel array direction of the linear sensor. Is different from an imaging linear sensor arranged so that the imaging plane of the imaging lens and the pixel arrangement direction intersect in an imaging system that acquires a two-dimensional image of the earth surface by moving in an orthogonal direction The first light receiving position coordinate at which the contrast of the image formed by the imaging lens within the light receiving surface of the linear sensor for position shift detection and the linear sensor for position shift detection is maximized, and the pixel arrangement direction are orthogonal to each other. means for detecting a second light receiving position coordinates contrast between scan lines are acquired back in time with respect to an image that has moved in the direction is maximum, the first or second The difference from the linear sensor imaging lens imaging the light receiving position coordinates select, selected receiving position coordinates and the coordinates of the pixel position of a point intersecting with the imaging plane of the imaging lens of the positional shift detection linear sensor And a means for calculating a deviation amount from the optimal position on the optical axis for optimal image formation, and a means for moving the imaging lens to the optimal position based on the calculated result.
In addition, a means for detecting the light receiving position coordinate at which the contrast is maximum is provided for each pixel between the photoelectrically converted image output signal of the positional deviation detection linear sensor and the image signal obtained by delaying the image output signal by a predetermined time. Means for obtaining a difference in signal amplitude and means for detecting a pixel arrangement position on the light receiving surface of the linear sensor of a pixel that gives the maximum difference value of the differenced signal may be provided.
In addition, the means for detecting the coordinates of the light receiving position where the contrast is maximum further detects a step having a gradation higher than a predetermined height in the image signal output by photoelectric conversion of the positional deviation detection linear sensor. And a means for connecting the output image signal of the linear sensor for detecting displacement to a means for obtaining a difference in signal amplitude for each pixel between the image signal and the image signal obtained by delaying the image output signal by a predetermined time. May be.
An image obtained by delaying the image signal and the image output signal by a predetermined time when a step having a gradation higher than a predetermined height is detected in the image signal output by photoelectric conversion of the position shift detection linear sensor. The means for connecting the output image signal of the positional deviation detection linear sensor to the means for taking the signal amplitude difference for each pixel from the signal is further converted into the image signal when there is an instruction input from the outside of the means. There may be provided means for starting detection of a step having a gradation higher than a predetermined height.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a defocus detection system in a focus correction system of the present invention incorporated in an imaging optical system of an earth observation system mounted on an artificial satellite. The imaging optical system of the satellite earth observation system is provided with a plurality of solid-state imaging sensors in order to perform high-resolution imaging. In FIG. 1, image information captured by the imaging lens 1 is converted into electrical signals by a plurality of one-dimensional licensors CCD2-4. The CCD 2 and the CCD 3 are line sensors for acquiring an image of an object on the ground, and these light receiving surfaces are arranged to face the lens 1 at right angles to the optical axis of the lens. On the other hand, the CCD 4 is a correction CCD for detecting a defocus, and its imaging surface is within the plane formed by the pixel array axis and the optical axis of the lens 1, and the pixel array axis and the lens optical axis. Are arranged at an angle from a right angle. For example, it is assumed that the central portion of the pixel array of the line sensor CCD 4 is installed on the focal plane of the lens 1. At this time, since the light receiving surfaces of the right and left pixels far from the vicinity of the center of the pixel array are shifted back and forth from the focal position, the sharpness of the acquired image of the CCD 4 is high in the center of the pixel array in the pixel line. It will have a unimodal distribution that decreases with increasing distance.
Adjustment of the imaging CCDs 2 and 3 to the focal position of the lens 1 is performed on the ground. At the same time, the focal position of the lens 1 on the pixel array of the CCD 4 disposed obliquely with respect to the focal plane is also measured in advance and stored. Further, the positional relationship between the CCDs is mechanically ensured so as not to fluctuate with respect to environmental changes on the orbit.
By adopting the configuration and arrangement as described above, even when the positions on the optical axis of the CCD 2 and the CCD 3 on the orbit are shifted from the focal position of the lens 1 that was initially adjusted by the movement of the lens 1, this is possible. The shift can be detected from the image of the CCD 4 and the defocus can be automatically detected.
[0007]
Next, the operation of the focus correction system that detects the focus position shift by the CCD 4 and corrects the lens position will be described.
FIG. 2 is a block diagram showing the configuration of an embodiment of the focus correction system of the present invention. In the focus correction system of the present invention, image information from a subject is converted into an electrical signal by the measurement CCD 6 and the correction CCD 7 via the lens unit 5. The output level of the electrical signal is output as the electrical signal level for each pixel in the image processing units 81 and 82. The output of the measurement CCD 6 is transmitted to the ground as an image signal 85.
The image signal obtained by the image processing unit 82 of the correction CCD 7 has a waveform with a peak at the focused position because the CCD 7 is mounted at an angle rather than perpendicular to the optical axis of the lens. . The peak position can be detected by the sharpness detection unit 83, and the current focal position of the lens can be detected. Then, in the focus adjustment circuit 84, the correct focus position information of the lens unit 5 on the pixel array of the CCD 7 stored in advance during the adjustment on the ground and the current focus position detection result output from the sharpness detection unit 83. Thus, it is possible to determine a correction value for returning to the correct focus position and adjust the focus of the lens unit 5 to the optimum value by the lens focus adjustment unit 9.
[0008]
FIG. 3 shows a more detailed configuration of the sharpness detection unit 83 that detects the focal position. The image signal of the correction CCD 7 output from the image processing unit 82 is input to the edge detection unit 86. The edge detection unit operates in two modes. One is a self operation, and the second is a remote operation from the ground. In the self operation, the image signal is automatically connected to the delay circuit 87 and the difference circuit 88 when a step having a gradation higher than a predetermined height in the image signal input by the edge detection unit 86 is detected. The gradation steps described above correspond to edge images with clear outlines, such as coastlines and rivers on the earth's surface. In remote operation from the ground, when it is confirmed that edge images with clear outlines such as coastlines and rivers on the earth surface cross over the correction CCD by monitoring at the satellite ground control station and orbit information of the satellite, After the edge detection unit 86 receives the focus correction instruction signal 92 from the ground, the edge detection unit 86 detects a step having a gradation higher than a predetermined height in the input image signal. Then, the image signal is connected to the delay circuit 87 and the difference circuit 88. The delay circuit 87 delays the image signal by one pixel to several pixels of the CCD 7. The difference circuit 88 calculates the difference between the non-delayed image signal and the delayed image signal. That is, the contrast between adjacent or separated pixels is extracted. The difference signal between the pixels is compared for all the pixels by the difference value comparison unit 89, and the maximum value of the difference is detected by the maximum value detection unit 90. The focal position detection unit 91 detects the position of the pixel of the CCD 7 where the difference is the maximum, that is, the focal position information on the CCD 7 and outputs it to the focal adjustment circuit 9. The focus adjustment circuit 9 compares the focus position information at this time point from the focus position detection unit 91 with the correct focus position information that has been stored in advance and has been adjusted in advance, and corrects it to return to the correct focus position. The value is calculated and output to the lens focus adjustment unit 9. The lens focus adjustment unit 9 controls the movement of the lens unit 5 on the optical axis based on the correction value. Information on the magnitude of defocus detected by the focus adjustment circuit 84 is also communicated to the ground control station.
[0009]
As described above, the focus correction system of the present embodiment has the array sensor disposed obliquely to the lens optical axis on the imaging lens focal plane, and further has a predetermined focal position reference. The positive or negative direction of the deviation can be discriminated, and the focus correction is immediately performed by one correction operation. Therefore, high-speed correction is possible. Further, unlike the phase difference detection type autofocus system of the camera, no special optical component for forming a subject image on each of the two line sensors is required. Therefore, high stability can be obtained against severe environmental fluctuations in outer space due to the low number of parts.
[0010]
In the above description, the edge detection unit 86 constituting the focus correction system has, in the input image signal, a gradation of a predetermined height or higher corresponding to an edge image having a clear contour such as a coastline or river on the earth surface. When the step is detected, the image signal is connected to the delay circuit 87 and the difference circuit 88, and the delay circuit 87 delays the image signal by one pixel or several pixels of the CCD 7. Here, the delay time of the delay circuit of the delay circuit is set to one pixel or several pixels, assuming that the edge image substantially intersects the pixel line of the CCD 7. However, an edge image with a clear outline such as a coastline or river on the surface of the earth may be parallel to the pixel line. In this case, the delay time of the delay circuit 87 is one line scan of the CCD 7. In this case, the difference circuit does not take the difference between the pixels of the CCD 7 but calculates the difference between the scanning lines. Whether the edge image intersects the pixel line or the parallel line segment can be automatically switched by the gradation step determination of the edge detection unit. That is, if a step having a gradation of a predetermined height or more between pixels of the input image signal cannot be detected, the edge detection unit instructs the delay circuit to change the delay time so as to perform a difference between lines. It may be configured.
[0011]
In the above description, a case has been described in which the focus adjustment circuit calculates the focus correction value and moves the lens to the correction position by one edge detection by the edge detection unit, whether the self operation or the remote operation. In other words, the operation of an open control system is described instead of the closed loop automatic control system.
However, for example, while the edge image of a coastline or river on the earth continues in time, it is possible to close the control system loop to make an automatic control loop. While the gradation step having a predetermined height is detected in the input image signal, the image signal is continuously output to the subsequent circuit unit, and the output of the focus adjustment circuit 84 always maintains 0. 3 operation modes may be set.
[0012]
The present invention is not limited to the above-described embodiment. For example, the CCD line sensor of this embodiment may be another one-dimensional sensor such as a CMOS linear array sensor. Further, the present invention can be applied not only to a solid-state imaging device but also to an apparatus using a two-dimensional image sensor including an imaging tube. Furthermore, the present invention can also be applied to an autofocus system of various optical apparatuses that constitute an automatic control system that detects a defocus and feeds back this to automatically correct the focus.
[0013]
【The invention's effect】
As described above, according to the focus correction system having a simple configuration of the present invention, it is possible to automatically adjust even if there is a disturbance such as an environmental condition on the orbit and the focus position is shifted, which is stable and high. It has the feature that it is highly reliable and contributes to the improvement of the operational efficiency of the earth observation system for artificial satellites.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a defocus detection system of a focus correction system of the present invention.
FIG. 2 is a block diagram showing a system configuration example of the focus correction system of the present invention.
FIG. 3 is a diagram showing a more detailed configuration of a sharpness detection unit constituting the focus correction system of the present invention.
[Explanation of symbols]
1 Lens 2 CCD
3 CCD
4 CCD
5 Lens unit 6 CCD for measurement
7 CCD for correction
DESCRIPTION OF SYMBOLS 9 Lens focus adjustment part 81 Image processing part 82 Image processing part 83 Sharpness detection part 84 Focus adjustment circuit 85 Image signal 86 Edge detection part 87 Delay circuit 88 Difference circuit 89 Difference value comparison part 90 Maximum value detection part 91 Focus position detection part 92 Focus correction instruction signal

Claims (10)

撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、前記撮像レンズと前記撮像用リニアセンサとを搭載して前記リニアセンサの画素配列方向とは直交する方向に移動させて撮像対象の2次元の画像を取得する撮像系において、
前記撮像レンズの結像面と画素配列方向とが交差するように配設された前記撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出し、前記位置ずれ検出用リニアセンサが画素間にある所定の高さ以上の階調の段差を検出できない場合に、前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる受光位置座標と、前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出する、
ことを特徴とする撮像レンズの位置ずれ検出方法。
An image formed by the imaging lens is photoelectrically converted by an imaging linear sensor, and the imaging lens and the imaging linear sensor are mounted and moved in a direction orthogonal to the pixel arrangement direction of the linear sensor. In an imaging system that acquires a two-dimensional image,
An image formed by the imaging lens within a light receiving surface of a linear sensor for detecting displacement that is different from the imaging linear sensor arranged so that the imaging surface of the imaging lens and the pixel arrangement direction intersect. The imaging lens is optimal for the imaging linear sensor, based on the difference between the light receiving position coordinate where the contrast of the image becomes the maximum and the coordinate of the pixel position at the point where the imaging surface of the imaging lens of the positional deviation detection linear sensor intersects. When the amount of deviation from the optimal position on the optical axis for image formation on the optical axis is calculated and the linear sensor for position deviation detection cannot detect a gradation step of a predetermined height or more between the pixels, the pixel a light receiving position coordinate where the contrast is greatest between the scan lines that are acquired back in time with respect to the moved image in the direction perpendicular to the array direction, the imaging of the positional shift detection linear sensor From the difference between the coordinates of the pixel position of a point intersecting with the imaging plane of the lens, the imaging lens is calculated an amount of deviation from the optimum position on the optical axis for optimally imaged on the linear sensor the imaging,
A method for detecting a positional deviation of an imaging lens.
撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、前記撮像レンズと前記撮像用リニアセンサとを搭載して前記リニアセンサの画素配列方向とは直交する方向に移動させて2次元の画像を取得する撮像系において、
前記撮像レンズの結像面と画素配列方向とが交差するように配設された前記撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出し、前記位置ずれ検出用リニアセンサが画素間にある所定の高さ以上の階調の段差を検出できない場合に、前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる受光位置座標と、前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出し、前記算出した結果に基づいて前記撮像レンズを前記最適位置に移動させることを特徴とする撮像レンズの位置ずれ補正方法。
An image formed by the imaging lens is photoelectrically converted by an imaging linear sensor, and the imaging lens and the imaging linear sensor are mounted and moved in a direction orthogonal to the pixel arrangement direction of the linear sensor to obtain a two-dimensional In the imaging system that acquires images,
An image formed by the imaging lens within a light receiving surface of a linear sensor for detecting displacement that is different from the imaging linear sensor arranged so that the imaging surface of the imaging lens and the pixel arrangement direction intersect. The imaging lens is optimal for the imaging linear sensor, based on the difference between the light receiving position coordinate where the contrast of the image becomes the maximum and the coordinate of the pixel position at the point where the imaging surface of the imaging lens of the positional deviation detection linear sensor intersects. When the amount of deviation from the optimal position on the optical axis for image formation on the optical axis is calculated and the linear sensor for position deviation detection cannot detect a gradation step of a predetermined height or more between the pixels, the pixel a light receiving position coordinate where the contrast is greatest between the scan lines that are acquired back in time with respect to the moved image in the direction perpendicular to the array direction, the imaging of the positional shift detection linear sensor Calculating the amount of deviation from the optimal position on the optical axis for optimal imaging of the imaging lens on the imaging linear sensor, from the difference between the coordinates of the pixel position of the point intersecting the imaging plane of the lens, An image pickup lens position shift correction method, wherein the image pickup lens is moved to the optimum position based on the calculated result.
撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、前記撮像レンズと前記撮像用リニアセンサとを搭載して前記リニアセンサの画素配列方向とは直交する方向に移動させて2次元の画像を取得する撮像系において、
前記撮像レンズの結像面と画素配列方向とが交差するように配設された前記撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサの、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる第1の受光位置座標、及び前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる第2の受光位置座標を検出する手段と、
前記第1または第2の受光位置座標を選択し、選択した受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出する手段、
を特徴とする撮像レンズの位置ずれ検出システム。
An image formed by the imaging lens is photoelectrically converted by an imaging linear sensor, and the imaging lens and the imaging linear sensor are mounted and moved in a direction orthogonal to the pixel arrangement direction of the linear sensor to obtain a two-dimensional In the imaging system that acquires images,
An image formed by the imaging lens within a light receiving surface of a linear sensor for detecting displacement that is different from the imaging linear sensor arranged so that the imaging surface of the imaging lens and the pixel arrangement direction intersect. The first light receiving position coordinates at which the contrast of the first image is maximized, and the second contrast at which the contrast between the scan lines acquired backwards with respect to the image moved in the direction orthogonal to the pixel array direction is maximized. Means for detecting light receiving position coordinates;
The first or second light receiving position coordinates are selected, and the difference between the selected light receiving position coordinates and the coordinates of the pixel position of the point intersecting with the imaging surface of the imaging lens of the positional deviation detection linear sensor, Means for calculating a deviation amount from an optimum position on the optical axis for the imaging lens to optimally form an image on the imaging linear sensor;
An imaging lens misalignment detection system characterized by the above.
前記コントラストが最大となる受光位置座標を検出する手段が、前記位置ずれ検出用リニアセンサの光電変換された画像出力信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段と、前記差分を取った信号の差分値の最大を与える画素の前記リニアセンサ受光面上の画素配列位置を検出する手段を備えることを特徴とする前記請求項3記載の撮像レンズの位置ずれ検出システム。  The means for detecting the light receiving position coordinate at which the contrast is maximized is provided for each pixel between a photoelectrically converted image output signal of the positional deviation detection linear sensor and an image signal obtained by delaying the image output signal by a predetermined time. And a means for detecting a pixel arrangement position on the light receiving surface of the linear sensor for a pixel that gives the maximum difference value of the signal obtained from the difference. An imaging lens misregistration detection system as described. 前記コントラストが最大となる受光位置座標を検出する手段が、さらに、前記位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、前記画像信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に前記位置ずれ検出用リニアセンサの出力画像信号を接続する手段をさらに備えたことを特徴とする請求項4記載の撮像レンズの位置ずれ検出システム。  When the means for detecting the light receiving position coordinate at which the contrast is maximized further detects a step having a gradation higher than a predetermined height in the image signal output by photoelectric conversion of the positional deviation detection linear sensor. And means for connecting the output image signal of the linear sensor for detecting displacement to a means for obtaining a difference in signal amplitude for each pixel between the image signal and the image signal obtained by delaying the image output signal by a predetermined time. The imaging lens position shift detection system according to claim 4, further comprising: 前記位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、前記画像信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に前記位置ずれ検出用リニアセンサの出力画像信号を接続する手段が、さらに該手段の外部からの指示入力があったときに、前記画像信号に所定高さ以上の階調の段差の検出を開始する手段を備えたことを特徴とする請求項4記載の撮像レンズの位置ずれ検出システム。  The image signal and the image output signal are delayed by a predetermined time when a step having a gradation higher than a predetermined height is detected in the image signal output by photoelectric conversion of the linear sensor for detecting misalignment. The means for connecting the output image signal of the positional deviation detection linear sensor to the means for taking the signal amplitude difference for each pixel from the image signal, and when there is an instruction input from the outside of the means, 5. The imaging lens position shift detection system according to claim 4, further comprising means for starting detection of a step having a gradation of a predetermined height or more in an image signal. 撮像レンズが結像する像を撮像用リニアセンサによって光電変換し、前記撮像レンズと前記撮像用リニアセンサとを搭載して前記リニアセンサの画素配列方向とは直交する方向に移動させて地球表面の2次元の画像を取得する撮像系において、
前記撮像レンズの結像面と画素配列方向とが交差するように配設された前記撮像用リニアセンサとは別なる位置ずれ検出用リニアセンサと、前記位置ずれ検出用リニアセンサの、受光面内で前記撮像レンズによって形成される像のコントラストが最大となる第1の受光位置座標、及び前記画素配列方向とは直交する方向に移動した像に対して時間を遡って取得されている走査ライン間のコントラストが最大となる第2の受光位置座標を検出する手段と、
前記第1または第2の受光位置座標を選択し、選択した受光位置座標と前記位置ずれ検出用リニアセンサの前記撮像レンズの結像面と交差した点の画素位置の座標との差から、前記撮像レンズが前記撮像用リニアセンサに最適に結像するための光軸上の最適位置からのずれ量を算出する手段と、
前記算出した結果に基づいて前記撮像レンズを前記最適位置に移動させる手段、
を備えることを特徴とする撮像レンズの位置ずれ補正システム。
An image formed by the imaging lens is photoelectrically converted by an imaging linear sensor, and the imaging lens and the imaging linear sensor are mounted and moved in a direction orthogonal to the pixel arrangement direction of the linear sensor to In an imaging system that acquires a two-dimensional image,
Within the light receiving surface of the positional deviation detection linear sensor different from the imaging linear sensor arranged so that the imaging plane of the imaging lens and the pixel arrangement direction intersect, and the positional deviation detection linear sensor The first light receiving position coordinates at which the contrast of the image formed by the imaging lens is maximized, and between scan lines acquired retrospectively with respect to the image moved in the direction orthogonal to the pixel arrangement direction Means for detecting a second light receiving position coordinate at which the contrast of
The first or second light receiving position coordinates are selected, and the difference between the selected light receiving position coordinates and the coordinates of the pixel position of the point intersecting with the imaging surface of the imaging lens of the positional deviation detection linear sensor, Means for calculating a deviation amount from an optimum position on the optical axis for the imaging lens to optimally form an image on the imaging linear sensor;
Means for moving the imaging lens to the optimum position based on the calculated result;
An image pickup lens position shift correction system comprising:
前記コントラストが最大となる受光位置座標を検出する手段が、前記位置ずれ検出用リニアセンサの光電変換された画像出力信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段と、前記差分を取った信号の差分値の最大を与える画素の前記リニアセンサ受光面上の画素配列位置を検出する手段を備えることを特徴とする請求項7記載の撮像レンズの位置ずれ補正システム。  The means for detecting the light receiving position coordinate at which the contrast is maximized is provided for each pixel between a photoelectrically converted image output signal of the positional deviation detection linear sensor and an image signal obtained by delaying the image output signal by a predetermined time. 8. The apparatus according to claim 7, further comprising: means for taking a difference in signal amplitude; and means for detecting a pixel arrangement position on the light receiving surface of the linear sensor for a pixel that gives a maximum difference value of the signal obtained by taking the difference. Position correction system for imaging lenses. 前記コントラストが最大となる受光位置の座標を検出する手段が、さらに、前記位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、前記画像信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に前記位置ずれ検出用リニアセンサの出力画像信号を接続する手段をさらに備えたことを特徴とする請求項8記載の撮像レンズの位置ずれ補正システム。  The means for detecting the coordinates of the light receiving position where the contrast is maximized further detects a step having a gradation higher than a predetermined height in the image signal output by photoelectric conversion of the position deviation detection linear sensor. Means for connecting the output image signal of the linear sensor for detecting displacement to a means for obtaining a difference in signal amplitude for each pixel between the image signal and an image signal obtained by delaying the image output signal by a predetermined time 9. The imaging lens misalignment correction system according to claim 8, further comprising: 前記位置ずれ検出用リニアセンサの光電変換して出力した画像信号に、ある所定の高さ以上の階調の段差を検出したときに、前記画像信号と前記画像出力信号を所定の時間遅延させた画像信号との間で画素毎に信号振幅の差分をとる手段に前記位置ずれ検出用リニアセンサの出力画像信号を接続する手段が、さらに該手段の外部からの指示入力があったときに、前記画像信号に所定高さ以上の階調の段差の検出を開始する手段を備えたことを特徴とする請求項8記載の撮像レンズの位置ずれ補正システム。  The image signal and the image output signal are delayed by a predetermined time when a step having a gradation higher than a predetermined height is detected in the image signal output by photoelectric conversion of the linear sensor for detecting misalignment. The means for connecting the output image signal of the positional deviation detection linear sensor to the means for taking the signal amplitude difference for each pixel from the image signal, and when there is an instruction input from the outside of the means, 9. The system for correcting misalignment of an imaging lens according to claim 8, further comprising means for starting detection of a step having a gradation greater than or equal to a predetermined height in the image signal.
JP2000101466A 2000-04-03 2000-04-03 Image lens displacement detection method and system, and displacement correction method and system Expired - Lifetime JP3704453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101466A JP3704453B2 (en) 2000-04-03 2000-04-03 Image lens displacement detection method and system, and displacement correction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101466A JP3704453B2 (en) 2000-04-03 2000-04-03 Image lens displacement detection method and system, and displacement correction method and system

Publications (2)

Publication Number Publication Date
JP2001281534A JP2001281534A (en) 2001-10-10
JP3704453B2 true JP3704453B2 (en) 2005-10-12

Family

ID=18615511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101466A Expired - Lifetime JP3704453B2 (en) 2000-04-03 2000-04-03 Image lens displacement detection method and system, and displacement correction method and system

Country Status (1)

Country Link
JP (1) JP3704453B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418512B (en) * 2001-10-26 2006-07-05 Symbol Technologies Inc Semiconductor device adapted for imaging bar code symbols
JP4348118B2 (en) 2003-06-04 2009-10-21 富士フイルム株式会社 Solid-state imaging device and imaging device
KR100587528B1 (en) 2004-12-29 2006-06-08 한국항공우주연구원 Image processing system for electro-optical camera of satellite payload
WO2016135888A1 (en) * 2015-02-25 2016-09-01 三菱電機株式会社 Image-forming optical device and missile

Also Published As

Publication number Publication date
JP2001281534A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US8018524B2 (en) Image-pickup method and apparatus having contrast and phase difference forcusing methods wherein a contrast evaluation area is changed based on phase difference detection areas
JP5549230B2 (en) Ranging device, ranging module, and imaging device using the same
US8890994B2 (en) Image capturing apparatus
JP5168798B2 (en) Focus adjustment device and imaging device
US7405762B2 (en) Camera having AF function
KR102130756B1 (en) Auto focus adjusting method and auto focus adjusting apparatus
JP6187571B2 (en) Imaging device
US9160918B2 (en) Focus control apparatus and method for performing focus control by phase difference detection, and image capturing apparatus
KR20080056018A (en) Device for correcting quantity of ambient light, method for correcting quantity of ambient light, electronic information apparatus, control program and readable recording medium
WO2010041721A1 (en) Image capturing apparatus and method and program for controlling same
KR101774167B1 (en) Focus position detection device, focus position detection method, and computer program for focus position detection
EP0127451A1 (en) Automatic focus control system for video camera
JP2012049999A (en) Imaging apparatus and posture adjustment program
US11233961B2 (en) Image processing system for measuring depth and operating method of the same
KR20060063724A (en) Imaging apparatus, imaging method and imaging processing program
JP3704453B2 (en) Image lens displacement detection method and system, and displacement correction method and system
JP4334784B2 (en) Autofocus device and imaging device using the same
JPH11122517A (en) Image pickup device and storage medium read by computer
CN110784643B (en) Control apparatus, image pickup apparatus, storage medium, and control method
JP4546781B2 (en) Imaging apparatus and color misregistration correction program
JP2008015353A (en) Imaging device
JP4282300B2 (en) Camera ranging device
JP2013104732A (en) Wavefront sensor and compensation optical system
JPH03220515A (en) Focus position detection system
JP2020148952A (en) Imaging device, and control method of the same, program thereof as well as storage media thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Ref document number: 3704453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term