JP3703468B2 - Plasticizer and production method thereof - Google Patents

Plasticizer and production method thereof Download PDF

Info

Publication number
JP3703468B2
JP3703468B2 JP2003129477A JP2003129477A JP3703468B2 JP 3703468 B2 JP3703468 B2 JP 3703468B2 JP 2003129477 A JP2003129477 A JP 2003129477A JP 2003129477 A JP2003129477 A JP 2003129477A JP 3703468 B2 JP3703468 B2 JP 3703468B2
Authority
JP
Japan
Prior art keywords
naphthenic
vacuum distillation
distillation residue
mass
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003129477A
Other languages
Japanese (ja)
Other versions
JP2004331813A (en
Inventor
高之 岡本
Original Assignee
三共油化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三共油化工業株式会社 filed Critical 三共油化工業株式会社
Priority to JP2003129477A priority Critical patent/JP3703468B2/en
Publication of JP2004331813A publication Critical patent/JP2004331813A/en
Application granted granted Critical
Publication of JP3703468B2 publication Critical patent/JP3703468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ゴム用可塑剤に代表される可塑剤に関するものである。より具体的には、ナフテン系ベースオイルとナフテン系減圧蒸留残さとを混合してなる可塑剤に関するものである。
【0002】
【従来の技術】
本出願人の出願に係るナフテン系ベースオイルとナフテン系アスファルトとを混合してなるゴム用可塑剤が知られている(特許文献1参照)。ここで、「アスファルト」とは、一般に石油アスファルトのことをいい、この石油アスファルトは、日本工業規格(JIS K 2207―1966)によって明確に定義されている。すなわち、石油アスファルトとは、ストレートアスファルト、ブローンアスファルトのほかに、防水工事用アスファルトがある。さらに、ストレートアスファルトもブローンアスファルトも、25℃における針入度により分類され、防水工事用アスファルトはその用途により分類されている。具体的には、ストレートアスファルトの針入度は段階的に0を超え300以下と規定され、ブローンアスファルトの針入度は段階的に0を超え40以下と規定されている。また、防水工事用アスファルトは、第1種から第4種まであり、そのうち最も大きな針入度(25℃)は、第4種の50以下と規定されている。要するに、針入度に着目したときのアスファルトとは、その名称や分類を問わず、針入度300以下のものを指すのである。本出願における可塑剤構成成分のナフテン系減圧蒸留残さは、アスファルトとは異なるものである。
【0003】
【特許文献1】
特開2002−97369
【0004】
【発明が解決しようとする課題】
アスファルトは、その針入度が300以下であり、常温では流動性がなく、可塑剤の製造に当たってベースオイルと混合しづらいという問題があった。本発明が解決しようとする課題は、上記事情を改善した可塑剤を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために発明者は、それまではその大半が燃料用基材として消費されていた減圧蒸留残さに着目し、研究を重ねた結果、特にナフテン系減圧蒸留残さの針入度は、アスファルトのそれより高い場合があることを発見した。そして、このような針入度の高いナフテン系減圧蒸留残さを、ナフテン系ベースオイルとともに可塑剤の構成成分として用いることにより、課題解決が可能であることを見出した。本発明は、そのような知見に基づいてなされたものである。
【0006】
すなわち、本発明に係る可塑剤は、OSHA基準及びPCA3質量%未満の基準の双方を満足するナフテン系ベースオイルと、ナフテン系減圧蒸留残さと、を構成成分として含有する。ナフテン系減圧蒸留残さの25℃における針入度は、300を超えていること、特に800を超えていることが好ましい。ナフテン系減圧蒸留残さの混合比率は、可塑剤全体が100質量%であるのに対し10〜90質量%の範囲であることが好ましい。また、前記ナフテン系減圧蒸留残さが、常圧換算温度400〜500℃の範囲で蒸留した残さであること、また、前記ナフテン系減圧蒸留残さが、API度10〜25の範囲のナフテン系原油から製造したものであること、が好ましい。他方、ベースオイルについては、40℃における動粘度が、40〜600mm/sの範囲であること、が好ましい。また、OSHA基準及びPCA3質量%未満の基準の双方を満足していること、が必要である
【0007】
さらに、本発明に係る可塑剤の製造方法は、ナフテン系常圧蒸留残さを、常圧換算温度400〜500℃の範囲で減圧蒸留して減圧蒸留残さを取り出す減圧蒸留工程と、当該減圧蒸留工程により得た減圧蒸留残さを、全体が100質量%であるのに対し10〜90質量%の範囲の混合比率で、OSHA基準及びPCA3質量%未満の基準の双方を満足するナフテン系ベースオイルに混合する混合工程と、を有するものである。ナフテン系減圧蒸留残さの25℃における針入度は、300を超えていること、特に800を超えていることが好ましい。
【0008】
【発明の実施の形態】
(可塑剤の構成成分)
本発明に係る可塑剤は、(以下、適宜「可塑剤」という)は、OSHA基準及びPCA3質量%未満の基準の双方を満足するナフテン系ベースオイルと、ナフテン系減圧蒸留残さと、を構成成分として含有する。ここで、ナフテン系ベースオイル及びナフテン系減圧蒸留残さは、何れもナフテン系原油を出発原料として得ることのできるものである。ナフテン系減圧蒸留残さの針入度が300以下のものは、ナフテン系アスファルトと呼ばれ、他方、針入度300を超えるものは、ナフテン系減圧蒸留残さ、と区別して呼ばれる。ナフテン系アスファルトは、その針入度が低いため常温における流動性が不足して混合作業に不都合が生じやすいが、より針入度が高いナフテン系減圧蒸留残さであれば、その点を大幅に改善することができる。
【0009】
(混合比率)
ナフテン系減圧蒸留残さの混合比率は、可塑剤全体が100質量%であるのに対し10〜90質量%であることが好ましい。この混合比率は、可塑剤の使用用途に応じて加減するとよい。また、ナフテン系減圧蒸留残さが、常圧換算温度400〜500℃の範囲で蒸留した残さであること、また、前記ナフテン系減圧蒸留残さが、API度10〜25の範囲のナフテン系原油から製造したものであること、が好ましい。本発明においては、ナフテン系常圧蒸留残さを、常圧換算温度400〜500℃の範囲という温度で減圧蒸留することにより針入度(25℃)300超という極めて高い針入度の減圧蒸留残さを製造して本出願に係る可塑剤の構成成分とすることに特徴がある。
【0010】
他方、ベースオイルについては、40℃における動粘度が、40〜600mm/sの範囲であることが好ましい。さらに、OSHA基準及びPCA3質量%未満の基準の双方を満足していること、が必要である
【0011】
(針入度)
針入度(25℃)の試験方法には、JIS K 2207に規定する針入度試験方法(以下、「JIS方法」という)がある。しかし、このJIS方法は、そもそもアスファルトの針入度を測定するためのものであるから、300を超える針入度について使用することができない。そこで、本発明に係るナフテン系減圧蒸留残さの針入度の試験は、既知の針入度を持つストレートアスファルトとナフテン系減圧蒸留残さとの混合比率を変化させ、変化させたときの混合試料の針入度からナフテン系減圧蒸留残さ単独の針入度を推測する方法で行った。
【0012】
(API度)
ナフテン系原油のAPI度は、JIS K 2249「原油及び石油製品―密度試験方法及び密度・質量・容積換算表」に規定する振動式密度試験方法で密度(15℃)を測定し、これをJIS K 2249の附属書2「原油及び石油製品の密度(15℃)、API度及び比重60/60°Fの相互換算方法」により換算することにより求めることができる。ナフテン系残さを製造するためのナフテン系原油のAPI度は、10〜25の範囲であることが好ましい。
【0013】
(動粘度)
動粘度(40℃)の測定は、JIS K 2207に規定する毛管法、すなわち、試験温度(40℃)にした一定容量の試料が毛管内を流れる時間に動粘度定数を乗じて求める方法を採用することができる。ベースオイルの好ましい動粘度(40℃)は、40〜600mm/sの範囲である。
【0014】
(安全基準)
ここで、OSHA基準とは、米国労働安全衛生局(OSHA)が、IARC(国際がん研究機関)の実験に基づいて、1985年11月に発表した安全基準のことをいう。OSHA基準は、発ガンの危険性があるベースオイル精製法をブラックリスト形式で列記した基準であって、そのようにして列記された精製法によるベースオイルには発ガン危険がある旨の警告ラベルの表示が必要であるとしている。ブラックリストに列挙された精製法によるベースオイルとして、たとえば、硫酸白土精製油、軽度溶剤精製油及び軽度水素化精製油があり、したがって、列挙されていない高度水素化精製法や高度溶剤精製法によるベースオイルには警告ラベルの表示が不要とされている。
【0015】
さらに、PCA3質量%未満の基準とは、ベースオイルについて、DMSO(ジメチルスルホキシド)により抽出される多環芳香族の量が3質量%未満とすることを内容とするEUの統一安全基準のことをいう。PCA3質量%未満の基準の測定法は、IP346に定められている。上記のOSHA基準とPCA3質量%未満の基準は、何れもベースオイルについての安全基準であって、ナフテン系であるとパラフィン系であるとを問わずアスファルト及び減圧蒸留残さについて適用されるものではない。アスファルトも減圧蒸留残さも、その沸点との関係から発ガン性のある有害物質をほとんど含まないはずであり、したがって、論理的に危険性が極めて低いと一般にいわれている。このため、アスファルト及び減圧蒸留残さの安全度を測るための具体的基準は、現時点において制定されていない。したがって、OSHA基準とPCA3質量%未満の基準の双方を満たすベースオイルとナフテン系減圧蒸留残さとを混合して可塑剤を製造したときに、当該可塑剤は、結果としてOSHA基準とPCA3質量%未満の基準の双方を満たすことになる。
【0016】
(可塑剤の製造方法)
本発明に係る可塑剤の製造方法において、ナフテン系原油を常圧蒸留してナフテン系常圧蒸留残さを得る。このとき、LPG、ナフサ、ガソリン、灯油、軽油等も留出し、それらを別々に回収することができる。このようにして得た常圧蒸留残さを、常圧換算温度400〜500℃の範囲で減圧蒸留してA重油留分、ナフテン系ベースオイル及び減圧蒸留残さを取り出す。このようにして得た減圧蒸留残さを、全体が100質量%であるのに対し10〜90質量%の範囲の混合比率で、ナフテン系ベースオイルに混合して可塑剤を製造する。ナフテン系減圧蒸留残さの25℃における針入度は、300を超えていること、特に800を超えていることが好ましい。出発原料であるナフテン系原油のAPI度は、10〜25の範囲であること、かつ、ナフテン系ベースオイルは、OSHA基準及びPCA3質量%未満の基準の双方を満足していることが必要である。なお、ナフテン系減圧蒸留残さを得るためのプロセスは、利便性向上とコスト抑制等を図るために常圧蒸留と減圧蒸留とを一連に行うようになっているが、他のプロセスを採用することを妨げない。たとえば、時間的・場所的に異なる方法によりナフテン系常圧蒸留残さを製造し、又は供給を受け、そのようにして得たナフテン系常圧蒸留残さを減圧蒸留するようにしてもよい。
【0017】
(可塑剤の製造装置)
図1に基づいて説明する。可塑剤製造装置1は、常圧蒸留装置5、加熱炉9、減圧蒸留装置15及び混合装置21を備えている。常圧蒸留装置5は、常圧蒸留留分とナフテン系常圧蒸留残さとを分離するための装置である。また、加熱炉9は、常圧蒸留装置5から取り出したナフテン系常圧蒸留残さを所定温度まで加熱して減圧蒸留装置15に供給するための装置である。さらに、減圧蒸留装置15は、供給されたナフテン系常圧蒸留残さを減圧蒸留し、重油及び潤滑油等の留分とナフテン系減圧蒸留残さとを分離し、分離したナフテン系減圧蒸留残さを混合装置21へ供給するための装置である。最後に、混合装置21は、ナフテン系減圧蒸留残さとナフテン系ベースオイルとを所定比率で混合して製品である可塑剤を得るための装置である。混合装置21は、混合室22内にナフテン系減圧蒸留残さとナフテン系ベースオイルとを注入し、内部に設置してある攪拌羽根23の回転により攪拌して両者を混合するように構成してある。両者を混合しながら循環させることによる攪拌方法や空気等のガスを噴出させる方法による攪拌方法等を適宜採用することもできる。後述するように、ナフテン系減圧蒸留残さの針入度がアスファルトのそれに比べて極めて高いことに基づく流動性の高さにより、加熱せずに上記の混合方法を採用することができるのである。
【0018】
【実施例】
本発明に係る可塑剤と可塑剤の製造方法について、より具体的に説明する。本実施例により、本発明が限定されるものでないことは言うまでもなく、種々の変形が可能である。本発明に係る可塑剤は、図1に示す可塑剤製造装置1によりオーストラリア産ナフテン系原油を用いて可塑剤を製造する場合について説明する。まず、API度10〜25であるオーストラリア産ナフテン系原油Gを、常圧蒸留装置5に導入し、そこでナフテン系原油を常圧蒸留して、LPG、ナフサ、ガソリン、灯油、軽油等の留分とナフテン系常圧蒸留残さBjとを分離する。分離したナフテン系常圧蒸留残さBjは、ライン7を介して加熱炉9へ送り、そこで350〜380℃前後まで加熱する。加熱したナフテン系常圧蒸留残さは、これをライン10を介して減圧蒸留装置15に供給する。減圧蒸留装置15内では、常圧換算温度が400〜500℃前後となるように温度、減圧度等の設定値を調整しておき、この減圧蒸留により重油及び潤滑油等の留分とナフテン系減圧蒸留残さBgとを分離する。このようにして得た減圧蒸留残さBg(Bg1,Bg2)の性状は、表1に示す通りである。分離したナフテン系減圧蒸留残さBgは、ライン17を介して混合装置21に送り、そこでナフテン系ベースオイルBnと混合した。
【0019】
【表1】

Figure 0003703468
【0020】
表1に示すように、ナフテン系減圧蒸留残さBg1の針入度は、推定値1000となった。この針入度の推定は、次の方法により行った。すなわち、まず、所定量のストレートアスファルトの針入度を、前記したJIS方法により測定する。そして、測定して得た針入度(以下「既知の針入度」という)のストレートアスファルトと、ナフテン系減圧蒸留残さとを混合し混合試料を得る。このとき、この混合比率を少しずつ変化させ、所定の混合比率で混合したときの針入度をJIS方法で測定する。測定した針入度と混合比率との関係をプロットすると、表2に示すようになる。この表2は、対数グラフであり、縦軸は針入度を表し横軸は混合比率を表している。横軸におけるゼロ質量%はナフテン系減圧蒸留残さを混合せずストレートアスファルトだけの場合を、同じく100質量%はストレートアスファルトを混合せずナフテン系減圧蒸留残さだけの場合を、それぞれ示している。前述したように、JIS方法で測定できるのは針入度300までであるから、300を超える針入度は、300以下である実測値範囲のグラフを延長して推測針入度を得る方法をとる。表2に示すように、ナフテン系減圧蒸留残さの混合率がゼロ質量%、すなわち、ストレートアスファルト単独の針入度は、8であった。この針入度8が、当該ストレートアスファルトの既知の針入度ということになる。次に、全体が100質量%であるのに対しナフテン系減圧蒸留残さを30質量%としたときの混合試料の針入度が34、同じく50質量%としたときの針入度が90であった。さらに、同じく75質量%としたときの針入度が、ほぼ300となった。これが、JIS方法による測定の限界である。実際には、上記した混合比率の変化よりも細かく変化させて測定する。上記測定結果をふまえてナフテン系減圧蒸留残さBg1の混合比率100質量%のとき、すなわち、ストレートアスファルトを混合しないときの針入度を推測すると、表2から理解されるように、ほぼ1000に達することになる。これと同じ方法で推定したナフテン系減圧蒸留残さBg2の針入度は、ほぼ3000であった。
【0021】
【表2】
Figure 0003703468
【0022】
ナフテン系ベースオイルBnには、本出願人の製造販売に係るナフテン系ベースオイル「SNHシリーズ(商標)」のうち、「SNH46(商標)」及び「SNH440(商標)」を用いた。便宜のために、前者をナフテン系ベースオイルBn1と呼び、後者をナフテン系ベースオイルBn2と呼ぶことにする。表3に示すように、ナフテン系ベースオイルBn1の動粘度(40℃)は45.93mm/sであり、ナフテン系ベースオイルBn2の動粘度(40℃)は437.5mm/sである。両ナフテン系ベースオイルBn1,Bn2は、何れも高圧・高温水素化精製法により精製してあるため、両者ともOSHA基準を満たしている。さらに、表3に示す通り、何れのナフテン系ベースオイルもDMSO抽出物量(IP346)が3質量%未満であるため、両者ともPCA3質量%未満の基準をも満たしている。
【0023】
【表3】
Figure 0003703468
【0024】
〔実施例(1)〕
実施例(1)に係る可塑剤K1は、ナフテン系減圧蒸留残さBg1とナフテン系ベースオイルBn1を混合して製造した。このときナフテン系減圧蒸留残さBg1の混合比率は、表4に示すように、全体が100質量%であるのに対し44質量%に設定した。したがって、ナフテン系ベースオイルBn1の混合比率は、全体に対して56質量%となった。ナフテン系ベースオイルBn1の動粘度(40℃)が45.93mm/sであることと相俟って、ナフテン系減圧蒸留残さBg1の針入度が推定値1000であることから、その混合は常温で行うことができアスファルトのように混合する際の加熱を要しなかった。
【0025】
〔実施例(2)〕
実施例(2)に係る可塑剤K2は、上記した実施例(1)のナフテン系ベースオイルBn1の代わりにナフテン系ベースオイルBn2を混合して製造した。表4に示すように、その混合比率は、全体が100質量%であるのに対し、ナフテン系減圧蒸留残さBg1を65質量%、ナフテン系ベースオイルBn2を35質量%とした。この場合は、ナフテン系ベースオイルBn2の動粘度(40℃)が437.5mm/sであり、ナフテン系減圧蒸留残さBg1の針入度が推定値1000であることから、その混合は常温で行うことができアスファルトのように混合する際の加熱を要しなかった。
【0026】
【表4】
Figure 0003703468
【0027】
【発明の効果】
本発明に係る可塑剤及びその製造方法によれば、ナフテン系減圧蒸留残さの針入度がアスファルトのそれに比べて極めて高いことに基づく流動性の高さにより、両者の混合を極めて簡単に行うことができる。換言すると、このナフテン系減圧蒸留残さをナフテン系ベースオイルと混合するに当って加熱の必要がないため、加熱を不要とする分、設備費用及び熱等のユーティリティコストを抑えることができ、これらの費用抑制と上記の混合容易性とが、可塑剤のコスト抑制に貢献する。
【図面の簡単な説明】
【図1】 可塑剤の製造装置を示す概略図である。
【符号の説明】
1 可塑剤製造装置
5 常圧蒸留装置
9 加熱炉
15 減圧蒸留装置
21 混合装置
22 混合室
23 攪拌羽根[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasticizer represented by a plasticizer for rubber. More specifically, the present invention relates to a plasticizer formed by mixing a naphthenic base oil and a naphthenic vacuum distillation residue.
[0002]
[Prior art]
A rubber plasticizer obtained by mixing a naphthenic base oil and a naphthenic asphalt according to the application of the present applicant is known (see Patent Document 1). Here, “asphalt” generally refers to petroleum asphalt, and this petroleum asphalt is clearly defined by Japanese Industrial Standard (JIS K 2207-1966). That is, petroleum asphalt includes waterproof asphalt in addition to straight asphalt and blown asphalt. Furthermore, straight asphalt and blown asphalt are classified according to the penetration at 25 ° C., and waterproof construction asphalt is classified according to its use. Specifically, the penetration of straight asphalt is specified in a stepwise manner to exceed 0 and 300 or less, and the penetration of blown asphalt is specified in a stepwise manner to exceed 0 and 40 or less. Moreover, the asphalt for waterproofing construction is classified into the first type to the fourth type, and the maximum penetration (25 ° C.) is defined as 50 or less of the fourth type. In short, the asphalt when paying attention to the penetration is that having a penetration of 300 or less regardless of its name or classification. The naphthenic vacuum distillation residue of the plasticizer component in the present application is different from asphalt.
[0003]
[Patent Document 1]
JP2002-97369
[0004]
[Problems to be solved by the invention]
Asphalt has a penetration of 300 or less, has no fluidity at room temperature, and has a problem that it is difficult to mix with base oil in producing a plasticizer. The problem to be solved by the present invention is to provide a plasticizer that improves the above-mentioned circumstances.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the inventor paid attention to the vacuum distillation residue, most of which was consumed as a fuel substrate until now, and as a result of repeated research, the penetration of naphthenic vacuum distillation residue was I found that it may be higher than that of asphalt. And it discovered that a problem could be solved by using such a naphthenic vacuum distillation residue having a high penetration as a constituent of a plasticizer together with a naphthenic base oil. The present invention has been made based on such knowledge.
[0006]
That is, the plasticizer according to the present invention contains, as constituent components, a naphthenic base oil that satisfies both the OSHA standard and a standard of less than 3% by mass of PCA, and a naphthenic vacuum distillation residue. The penetration of naphthenic vacuum distillation residue at 25 ° C. is preferably over 300, more preferably over 800. The mixing ratio of the naphthene-based vacuum distillation residue is preferably in the range of 10 to 90% by mass while the whole plasticizer is 100% by mass. Further, the naphthenic vacuum distillation residue is a residue distilled at a normal pressure conversion temperature of 400 to 500 ° C., and the naphthenic vacuum distillation residue is from a naphthenic crude oil having an API degree of 10 to 25. It is preferable that it is manufactured. On the other hand, the base oil preferably has a kinematic viscosity at 40 ° C. in the range of 40 to 600 mm 2 / s . Moreover, it is necessary to satisfy both the OSHA standard and the standard of less than 3% by mass of PCA.
[0007]
Furthermore, the method for producing a plasticizer according to the present invention includes a vacuum distillation step in which a naphthene-based atmospheric distillation residue is subjected to vacuum distillation in the range of atmospheric pressure conversion temperature of 400 to 500 ° C. to extract the vacuum distillation residue, and the vacuum distillation step. Is mixed with a naphthenic base oil satisfying both the OSHA standard and the standard of less than 3% by mass of PCA at a mixing ratio in the range of 10 to 90% by mass with respect to 100% by mass as a whole. And a mixing step. The penetration of naphthenic vacuum distillation residue at 25 ° C. is preferably over 300, more preferably over 800.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(Component of plasticizer)
The plasticizer according to the present invention (hereinafter referred to as “plasticizer” as appropriate) is composed of a naphthenic base oil that satisfies both the OSHA standard and the PCA standard of less than 3% by mass, and a naphthenic vacuum distillation residue as constituent components. contains. Here, both the naphthenic base oil and the naphthenic vacuum distillation residue can be obtained using naphthenic crude oil as a starting material. A naphthenic vacuum distillation residue having a penetration of 300 or less is called a naphthenic asphalt, while a naphthenic vacuum distillation residue having a penetration of 300 or less is called a naphthenic vacuum distillation residue. Naphthenic asphalt has a low penetration, so fluidity at room temperature is insufficient and inconvenience is likely to occur in mixing operations. However, if naphthenic vacuum distillation residue has a higher penetration, this point is greatly improved. can do.
[0009]
(Mixing ratio)
The mixing ratio of the naphthene-based vacuum distillation residue is preferably 10 to 90% by mass while the total plasticizer is 100% by mass. This mixing ratio may be adjusted according to the usage of the plasticizer. Further, the naphthenic vacuum distillation residue is a residue distilled at a normal pressure conversion temperature of 400 to 500 ° C., and the naphthenic vacuum distillation residue is produced from a naphthenic crude oil having an API degree of 10 to 25. It is preferable that In the present invention, the naphthenic atmospheric distillation residue is distilled under reduced pressure at a temperature in the range of atmospheric pressure conversion temperature of 400 to 500 ° C. to obtain a vacuum distillation residue with a very high penetration of over 300 (25 ° C.). Is characterized as a component of the plasticizer according to the present application.
[0010]
On the other hand, the base oil preferably has a kinematic viscosity at 40 ° C. in the range of 40 to 600 mm 2 / s. Furthermore, it is necessary to satisfy both the OSHA standard and the standard of PCA of less than 3% by mass.
[0011]
(Penetration)
As a penetration degree (25 ° C.) test method, there is a penetration degree test method (hereinafter referred to as “JIS method”) defined in JIS K 2207. However, since this JIS method is primarily for measuring the penetration of asphalt, it cannot be used for penetrations exceeding 300. Therefore, the penetration test of the naphthenic vacuum distillation residue according to the present invention is performed by changing the mixing ratio of straight asphalt having a known penetration and naphthenic vacuum distillation residue and changing the mixed sample. This was carried out by estimating the penetration of the naphthenic vacuum distillation residue alone from the penetration.
[0012]
(API degree)
The API of naphthenic crude oil is measured by measuring the density (15 ° C) with the vibration type density test method specified in JIS K 2249 “Crude oil and petroleum products-density test method and density / mass / volume conversion table”. It can be determined by conversion according to Annex 2 “Density of crude oil and petroleum products (15 ° C.), API degree and specific conversion 60/60 ° F. mutual conversion method” of K 2249. The API degree of the naphthenic crude oil for producing the naphthenic residue is preferably in the range of 10-25.
[0013]
(Kinematic viscosity)
The kinematic viscosity (40 ° C) is measured by the capillary method specified in JIS K 2207, that is, the method in which the constant time sample flowing at the test temperature (40 ° C) flows through the capillary is multiplied by the kinematic viscosity constant. can do. A preferable kinematic viscosity (40 ° C.) of the base oil is in the range of 40 to 600 mm 2 / s.
[0014]
(Safety standards)
Here, the OSHA standard refers to a safety standard published by the US Occupational Safety and Health Administration (OSHA) in November 1985 based on an experiment by the IARC (International Cancer Research Institute). The OSHA standard is a standard that lists the base oil refining methods that have a risk of carcinogenesis in blacklist format, and a warning label that indicates that there is a risk of carcinogenesis for the base oils by the refining methods listed in that way. Is said to be necessary. Examples of base oils based on blacklisted refining methods include, for example, sulfated clay refined oil, light solvent refined oil, and light hydrorefined oil, and therefore base oils based on unlisted advanced hydrorefining and advanced solvent refining methods. Is not required to display a warning label.
[0015]
Furthermore, the standard of less than 3% by weight of PCA refers to the unified safety standard of the EU, in which the amount of polycyclic aromatics extracted with DMSO (dimethyl sulfoxide) is less than 3% by weight for the base oil. . The standard measurement method of less than 3% by weight of PCA is defined in IP346. The above OSHA standards and standards of less than 3% by weight of PCA are safety standards for base oils, and are not applied to asphalt and vacuum distillation residue regardless of whether they are naphthenic or paraffinic. It is generally said that neither asphalt nor vacuum distillation residue should contain almost any carcinogenic harmful substance due to its boiling point, and therefore it is logically very dangerous. For this reason, the concrete standard for measuring the safety | security degree of asphalt and vacuum distillation residue is not enacted at present. Therefore, when a plasticizer is produced by mixing a base oil that satisfies both the OSHA standard and the PCA standard of less than 3% by mass with a naphthenic vacuum distillation residue, the plasticizer results in an OSHA standard of less than 3% by mass of the PCA. Both criteria will be met.
[0016]
(Method for producing plasticizer)
In the method for producing a plasticizer according to the present invention, naphthenic crude oil is subjected to atmospheric distillation to obtain a naphthene atmospheric distillation residue. At this time, LPG, naphtha, gasoline, kerosene, light oil, and the like can be distilled out and recovered separately. The atmospheric distillation residue thus obtained is distilled under reduced pressure in the range of the atmospheric pressure conversion temperature of 400 to 500 ° C. to take out A heavy oil fraction, naphthenic base oil and vacuum distillation residue. The vacuum distillation residue thus obtained is mixed with a naphthenic base oil at a mixing ratio in the range of 10 to 90% by mass to 100% by mass to produce a plasticizer. The penetration of naphthenic vacuum distillation residue at 25 ° C. is preferably over 300, more preferably over 800. The API degree of the naphthenic crude oil as the starting material is in the range of 10 to 25, and the naphthenic base oil needs to satisfy both the OSHA standard and the standard of less than 3% by mass of PCA. The process for obtaining the naphthenic vacuum distillation residue is a series of atmospheric distillation and vacuum distillation to improve convenience and reduce costs, but other processes should be adopted. Not disturb. For example, a naphthenic atmospheric distillation residue may be produced or supplied by different methods in terms of time and place, and the naphthenic atmospheric distillation residue thus obtained may be distilled under reduced pressure.
[0017]
(Plasticizer production equipment)
This will be described with reference to FIG. The plasticizer manufacturing apparatus 1 includes an atmospheric distillation apparatus 5, a heating furnace 9, a vacuum distillation apparatus 15, and a mixing apparatus 21. The atmospheric distillation apparatus 5 is an apparatus for separating an atmospheric distillation fraction and a naphthenic atmospheric distillation residue. The heating furnace 9 is an apparatus for heating the naphthenic atmospheric distillation residue taken out from the atmospheric distillation apparatus 5 to a predetermined temperature and supplying it to the vacuum distillation apparatus 15. Further, the vacuum distillation apparatus 15 performs distillation under reduced pressure on the supplied naphthenic atmospheric distillation residue, separates fractions such as heavy oil and lubricating oil, and naphthenic vacuum distillation residue, and mixes the separated naphthenic vacuum distillation residue. This is a device for supplying to the device 21. Finally, the mixing device 21 is a device for obtaining a plasticizer as a product by mixing a naphthenic vacuum distillation residue and a naphthenic base oil at a predetermined ratio. The mixing device 21 is configured to inject the naphthenic vacuum distillation residue and the naphthenic base oil into the mixing chamber 22 and mix them by stirring with the rotation of a stirring blade 23 installed inside. A stirring method by circulating both of them while mixing them, a stirring method by jetting a gas such as air, or the like can be appropriately employed. As will be described later, the above mixing method can be employed without heating because of the high fluidity based on the penetration of the naphthenic vacuum distillation residue as compared with that of asphalt.
[0018]
【Example】
The plasticizer and the method for producing the plasticizer according to the present invention will be described more specifically. It goes without saying that the present invention is not limited to this embodiment, and various modifications are possible. The plasticizer which concerns on this invention demonstrates the case where a plasticizer is manufactured using the naphthenic crude oil from Australia with the plasticizer manufacturing apparatus 1 shown in FIG. First, an Australian naphthenic crude oil G having an API degree of 10 to 25 is introduced into an atmospheric distillation unit 5 where the naphthenic crude oil is subjected to atmospheric distillation to fractions such as LPG, naphtha, gasoline, kerosene, and light oil. And naphthenic atmospheric distillation residue Bj are separated. The separated naphthenic atmospheric distillation residue Bj is sent to the heating furnace 9 through the line 7, where it is heated to around 350 to 380 ° C. The heated naphthenic atmospheric distillation residue is supplied to the vacuum distillation apparatus 15 via the line 10. In the vacuum distillation apparatus 15, set values such as temperature and degree of vacuum are adjusted so that the atmospheric pressure converted temperature is around 400 to 500 ° C., and by this vacuum distillation, fractions such as heavy oil and lubricating oil and naphthenic system are adjusted. The vacuum distillation residue Bg is separated. The properties of the vacuum distillation residue Bg (Bg1, Bg2) thus obtained are as shown in Table 1. The separated naphthenic vacuum distillation residue Bg was sent to the mixing device 21 via the line 17, where it was mixed with the naphthenic base oil Bn.
[0019]
[Table 1]
Figure 0003703468
[0020]
As shown in Table 1, the penetration of the naphthenic vacuum distillation residue Bg1 was an estimated value of 1000. This penetration was estimated by the following method. That is, first, the penetration of a predetermined amount of straight asphalt is measured by the JIS method described above. Then, straight asphalt having a penetration (hereinafter referred to as “known penetration”) obtained by measurement and a naphthenic vacuum distillation residue are mixed to obtain a mixed sample. At this time, this mixing ratio is changed little by little, and the penetration when mixing at a predetermined mixing ratio is measured by the JIS method. The relationship between the measured penetration and the mixing ratio is plotted as shown in Table 2. Table 2 is a logarithmic graph, in which the vertical axis represents the penetration and the horizontal axis represents the mixing ratio. Zero mass% on the horizontal axis indicates the case of only straight asphalt without mixing naphthenic vacuum distillation residue, and similarly 100 mass% indicates the case of only naphthenic vacuum distillation residue without mixing straight asphalt. As described above, since the JIS method can measure the penetration up to 300, the penetration exceeding 300 is a method of obtaining the estimated penetration by extending the graph of the actual measurement value range of 300 or less. Take. As shown in Table 2, the mixing ratio of the naphthenic vacuum distillation residue was zero mass%, that is, the penetration of straight asphalt alone was 8. This penetration 8 is the known penetration of the straight asphalt. Next, while the total was 100% by mass, the penetration of the mixed sample when the naphthenic vacuum distillation residue was 30% by mass was 34, and the penetration when the same was 50% by mass was 90. It was. Furthermore, the penetration when it was 75% by mass was almost 300. This is the limit of measurement by the JIS method. Actually, the measurement is performed by changing the ratio more finely than the change in the mixing ratio. Based on the above measurement results, when the mixing ratio of the naphthenic vacuum distillation residue Bg1 is 100% by mass, that is, when the straight asphalt is not mixed, the penetration is estimated to reach almost 1000 as understood from Table 2. It will be. The penetration of the naphthenic vacuum distillation residue Bg2 estimated by the same method was about 3000.
[0021]
[Table 2]
Figure 0003703468
[0022]
Among the naphthenic base oils “SNH series (trademark)” related to the manufacture and sale of the present applicant, “SNH46 (trademark)” and “SNH440 (trademark)” were used as the naphthenic base oil Bn. For convenience, the former is called naphthenic base oil Bn1, and the latter is called naphthenic base oil Bn2. As shown in Table 3, the kinematic viscosity (40 ° C.) of the naphthenic base oil Bn1 is 45.93 mm 2 / s, and the kinematic viscosity (40 ° C.) of the naphthenic base oil Bn 2 is 437.5 mm 2 / s. Both naphthenic base oils Bn1 and Bn2 are refined by a high pressure / high temperature hydrorefining method, and therefore both satisfy the OSHA standard. Further, as shown in Table 3, since any naphthenic base oil has a DMSO extract amount (IP346) of less than 3% by mass, both satisfy the criteria of less than 3% by mass of PCA.
[0023]
[Table 3]
Figure 0003703468
[0024]
[Example (1)]
The plasticizer K1 according to Example (1) was produced by mixing naphthenic vacuum distillation residue Bg1 and naphthenic base oil Bn1. At this time, as shown in Table 4, the mixing ratio of the naphthene-based vacuum distillation residue Bg1 was set to 44% by mass with respect to 100% by mass as a whole. Therefore, the mixing ratio of the naphthenic base oil Bn1 was 56% by mass with respect to the whole. Combined with the kinematic viscosity (40 ° C.) of the naphthenic base oil Bn1 being 45.93 mm 2 / s, the penetration of the naphthenic vacuum distillation residue Bg1 is an estimated value 1000. It did not require heating when mixing like asphalt.
[0025]
[Example (2)]
The plasticizer K2 according to Example (2) was produced by mixing naphthenic base oil Bn2 instead of naphthenic base oil Bn1 of Example (1) described above. As shown in Table 4, the mixing ratio was 100% by mass as a whole, whereas the naphthenic vacuum distillation residue Bg1 was 65% by mass and the naphthenic base oil Bn2 was 35% by mass. In this case, the kinematic viscosity (40 ° C.) of the naphthenic base oil Bn2 is 437.5 mm 2 / s, and the penetration of the naphthenic vacuum distillation residue Bg1 is an estimated value 1000, so that the mixing is performed at room temperature. It did not require heating when mixing like asphalt.
[0026]
[Table 4]
Figure 0003703468
[0027]
【The invention's effect】
According to the plasticizer and the method for producing the same according to the present invention, mixing of both is very simple due to the high fluidity based on the high penetration of naphthenic vacuum distillation residue compared to that of asphalt. Can do. In other words, since there is no need to heat the naphthenic vacuum distillation residue with the naphthenic base oil, utility costs such as equipment costs and heat can be reduced because heating is unnecessary. Suppression and the ease of mixing contribute to cost reduction of the plasticizer.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus for producing a plasticizer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasticizer manufacturing apparatus 5 Atmospheric distillation apparatus 9 Heating furnace 15 Vacuum distillation apparatus 21 Mixing apparatus 22 Mixing chamber 23 Stirring blade

Claims (6)

OSHA基準及びPCA3質量%未満の基準の双方を満足するナフテン系ベースオイルと、25℃における針入度が300を超えるナフテン系減圧蒸留残さと、を構成成分として含有する
ことを特徴とする可塑剤。
A plasticizer comprising a naphthenic base oil satisfying both an OSHA standard and a standard of PCA of less than 3% by mass, and a naphthenic vacuum distillation residue having a penetration of 300 at 25 ° C. exceeding 300 as constituent components.
前記ナフテン系減圧蒸留残さの混合比率が、全体が100質量%であるのに対し10〜90質量%である
ことを特徴とする請求項1記載の可塑剤。
The plasticizer according to claim 1, wherein a mixing ratio of the naphthenic vacuum distillation residue is 10 to 90% by mass with respect to 100% by mass as a whole.
前記ナフテン系減圧蒸留残さが、常圧換算温度400〜500℃の範囲で蒸留した残さである
ことを特徴とする請求項1又は2記載の可塑剤。
The plasticizer according to claim 1 or 2, wherein the naphthenic vacuum distillation residue is a residue distilled at a normal pressure conversion temperature of 400 to 500 ° C.
前記ナフテン系減圧蒸留残さが、API度10〜25の範囲のナフテン系原油から製造したものである
ことを特徴とする請求項1乃至3の何れか記載の可塑剤。
The plasticizer according to any one of claims 1 to 3, wherein the naphthenic vacuum distillation residue is produced from a naphthenic crude oil having an API degree of 10 to 25.
前記ベースオイルの40℃における動粘度が、40〜600mm/sの範囲である
ことを特徴とする請求項1乃至4何れか記載の可塑剤。
The plasticizer according to any one of claims 1 to 4, wherein the base oil has a kinematic viscosity at 40 ° C in a range of 40 to 600 mm 2 / s.
ナフテン系常圧蒸留残さを、常圧換算温度400〜500℃の範囲で減圧蒸留して減圧蒸留残さを取り出す減圧蒸留工程と、
当該減圧蒸留工程により得た減圧蒸留残さを、全体が100質量%であるのに対し10〜90質量%の範囲の混合比率で、OSHA基準及びPCA3質量%未満の基準の双方を満足するナフテン系ベースオイルに混合する混合工程と、を有する
ことを特徴とする可塑剤の製造方法。
A vacuum distillation step in which the naphthenic atmospheric distillation residue is subjected to vacuum distillation in the range of atmospheric pressure conversion temperature of 400 to 500 ° C. to extract the vacuum distillation residue;
A naphthenic system that satisfies both the OSHA standard and the PCA standard of less than 3% by mass with a mixing ratio in the range of 10 to 90% by mass with respect to 100% by mass of the vacuum distillation residue obtained by the vacuum distillation process. And a mixing step of mixing with the base oil.
JP2003129477A 2003-05-07 2003-05-07 Plasticizer and production method thereof Expired - Lifetime JP3703468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129477A JP3703468B2 (en) 2003-05-07 2003-05-07 Plasticizer and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129477A JP3703468B2 (en) 2003-05-07 2003-05-07 Plasticizer and production method thereof

Publications (2)

Publication Number Publication Date
JP2004331813A JP2004331813A (en) 2004-11-25
JP3703468B2 true JP3703468B2 (en) 2005-10-05

Family

ID=33505303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129477A Expired - Lifetime JP3703468B2 (en) 2003-05-07 2003-05-07 Plasticizer and production method thereof

Country Status (1)

Country Link
JP (1) JP3703468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292017B2 (en) * 2008-08-21 2013-09-18 Jx日鉱日石エネルギー株式会社 Method for producing rubber process oil
JP6175367B2 (en) * 2013-12-18 2017-08-02 サカタインクス株式会社 Ink composition for offset printing and method using the composition

Also Published As

Publication number Publication date
JP2004331813A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
Ilyin et al. Rheological comparison of light and heavy crude oils
EP2840127B1 (en) Method for preparing stabilized hydrocarbon oil blend
US8758595B2 (en) Process oil, process for production of deasphalted oil, process for production of extract, and process for production of process oil
JP2010511734A (en) Heat transfer oil with high self-ignition temperature
Ghavibazoo et al. Effect of crumb rubber modifier dissolution on storage stability of crumb rubber–modified asphalt
Yu et al. Rheological and microstructural properties of foamed epoxy asphalt
Anwar Parvez et al. Utilization of sulfur and crumb rubber in asphalt modification
JP5185584B2 (en) Lubricating oil composition and method for producing the same
CN107636123B (en) High performance process oils based on distilled aromatic extracts
JP2008031211A (en) Process oil for rubber
Liu et al. Analysis of the performance and mechanism of desulfurized rubber and low‐density polyethylene compound‐modified asphalt
Elkashef et al. Thermal and cold flow properties of bio-derived rejuvenators and their impact on the properties of rejuvenated asphalt binders
JP5230691B2 (en) Paving asphalt and method for producing the same
Royer et al. The degradation of poly (ethylene glycol) in an Inconel 718 feedstock in the metal injection moulding process
Li et al. Chemical and physical effects of polyurethane-precursor-based reactive modifier on the low-temperature performance of bitumen
WO2010110093A1 (en) Rubber compounding oil and method for producing same
JP3703468B2 (en) Plasticizer and production method thereof
Saboo et al. Study of flow behavior for predicting mixing temperature of bitumen
Dong et al. Investigation on compatibility and microstructure of PCBs‐modified asphalt
US20090233821A1 (en) Process for improving lubricating qualities of lower quality base oil
EP3294839A1 (en) High performance process oil
JP6300749B2 (en) Rigid asphalt composition, goose asphalt mixture and method for producing them
JP2004331815A (en) Residue of reduced pressure distillation, method for producing the same, and plasticizer containing the residue of reduced pressure distillation
JP2000248119A (en) Rubber processing oil and rubber composition
JP3865394B2 (en) Method for manufacturing straight asphalt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040819

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Ref document number: 3703468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term