JP3703438B2 - Differentiation of hair condition - Google Patents
Differentiation of hair condition Download PDFInfo
- Publication number
- JP3703438B2 JP3703438B2 JP2002074219A JP2002074219A JP3703438B2 JP 3703438 B2 JP3703438 B2 JP 3703438B2 JP 2002074219 A JP2002074219 A JP 2002074219A JP 2002074219 A JP2002074219 A JP 2002074219A JP 3703438 B2 JP3703438 B2 JP 3703438B2
- Authority
- JP
- Japan
- Prior art keywords
- hair
- state
- infrared absorption
- absorption spectrum
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000004209 hair Anatomy 0.000 title claims description 108
- 230000004069 differentiation Effects 0.000 title claims description 10
- 238000000862 absorption spectrum Methods 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 32
- 238000012360 testing method Methods 0.000 claims description 28
- 238000000491 multivariate analysis Methods 0.000 claims description 18
- 238000012850 discrimination method Methods 0.000 claims description 15
- 238000000513 principal component analysis Methods 0.000 claims description 14
- 239000002537 cosmetic Substances 0.000 claims description 13
- 230000001953 sensory effect Effects 0.000 claims description 13
- 231100000640 hair analysis Toxicity 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000000611 regression analysis Methods 0.000 claims description 5
- 239000003676 hair preparation Substances 0.000 claims description 3
- 238000011088 calibration curve Methods 0.000 description 19
- 238000001228 spectrum Methods 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001364 causal effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 230000003694 hair properties Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、毛髪用の化粧料の評価などに有用な毛髪の状態の鑑別法に関する。
【0002】
【従来の技術】
毛髪の状態を鑑別することは、毛髪用の化粧料の評価などには必須の事項であり、従来この様な毛髪の状態の鑑別は、非侵襲的な方法としては、専門パネラーによる官能検査があるのみであり、その他としては、侵襲的に毛髪を採取し、グロスメーターにより、つやの示性値としてのグロス値を測定する方法や摩擦感テスターにより、なめらかさの示性値である抵抗値を測定する方法などが存在している。即ち、毛髪の状態の鑑別において、非侵襲的に鑑別を行う方法の開発、取り分け、定量性のある鑑別法の開発が望まれていた。又、毛髪の状態の代理値として毛髪内の水分量があり、これを通常のフーリエ変換を使用しない近赤外吸収スペクトルであって、回折格子を用いた分散型の近赤外吸収スペクトルより解析し、毛髪の示性値の代替として用いることは知られているが、近赤外吸収スペクトルの解析より得られた水の特性と毛髪の状態との間の因果関係については検討されていない。又、分光分析と特定の示性値とをPLS分析等の重回帰分析、主成分分析などの多変量解析を行い、相関関係を明らかにする手技は知られているが、毛髪の状態と近赤外吸収スペクトルとについて、多変量解析を行い、近赤外吸収スペクトルより毛髪の状態を鑑別するような試みも為されていない。加えて、つややかさやなめらかさ等の毛髪の状態を近赤外吸収スペクトルの多変量解析より鑑別することも行われていなかったし、行うような発想自体も存在していなかった。毛髪のつややかさやなめらかさと水の存在状態やその存在量との因果関係は全く知られていなかった。
【0003】
【発明が解決しようとする課題】
本発明は、この様な状況下為されたものであり、毛髪用の化粧料の選択や評価、毛髪の状態の変化のモニタリングなどに有用な、毛髪の状態の鑑別において、非侵襲的に鑑別を行う方法、取り分け、非侵襲的な毛髪の鑑別法であって、定量性のある鑑別法を提供することを課題とする。
【0004】
【課題を解決するための手段】
この様な状況に鑑みて、本発明者らは毛髪の状態の鑑別法であって、予め状態の異なる2種以上の毛髪の近赤外吸収スペクトルを測定し、前記近赤外吸収スペクトルとグロスメーターによる測定値、摩擦感テスターによる測定値、つややかさの官能試験結果及びなめらかさの官能試験結果の値から選ばれる1種乃至は2種以上の示性値とを多変量解析し、試験毛髪試料の近赤外吸収スペクトルと前記多変量解析の結果から前記試験毛髪試料の示性値を算出することにより前記試験毛髪試料を鑑別することを特徴とする、毛髪の状態の鑑別法により、試験毛髪試料の毛髪の状態を非侵襲的に、且つ、定量的に鑑別できることを見出し、発明を完成させるに至った。即ち、本発明は、以下に示す技術に関するものである。
(1)毛髪の状態の鑑別法であって、予め状態の異なる2種以上の毛髪の近赤外吸収スペクトルを測定し、前記近赤外吸収スペクトルとグロスメーターによる測定値、摩擦感テスターによる測定値、つややかさ及びなめらかさの官能試験結果の値から選ばれる1種乃至は2種以上の示性値とを多変量解析し、試験毛髪試料の近赤外吸収スペクトルと前記多変量解析の結果から前記試験毛髪試料の示性値を算出することにより前記試験毛髪試料を鑑別することを特徴とする、毛髪の状態の鑑別法。
(2)前記近赤外吸収スペクトルが、フーリエ変換近赤外吸収スペクトル及び/又はダイオードアレー検出器によるものであることを特徴とする、(1)に記載の毛髪の状態の鑑別法。
(3)多変量解析が、重回帰分析乃至は主成分分析であることを特徴とする、(1)又は(2)に記載の毛髪の状態の鑑別法。
(4)毛髪の状態の鑑別項目が、なめらかさ及び/又はつややかさであることを特徴とする、(1)〜(3)何れか1項に記載の毛髪の状態の鑑別法。
(5)近赤外吸収スペクトルの測定波長の領域が、4700〜5000cm-1であることを特徴とする、(1)〜(4)何れか1項に記載の毛髪の状態の鑑別法。
(6)毛髪用の化粧料による処理の前後に於ける毛髪の状態を、(1)〜(5)何れか1項に記載の毛髪の状態の鑑別法によって鑑別することによって化粧料を評価することを特徴とする、毛髪用の化粧料の評価法。
(7)(1)〜(5)何れか1項に記載の毛髪の状態の鑑別法で鑑別することによって毛髪の状態のモニタリングすることを特徴とする、毛髪の状態のモニタリング方法。
以下、本発明について、更に詳細に説明を加える。
【0005】
【発明の実施の形態】
本発明の毛髪の状態の鑑別法は、毛髪の状態の鑑別法であって、予め状態の異なる2種以上の毛髪の近赤外吸収スペクトルを測定し、前記近赤外吸収スペクトルとグロスメーターによる測定値、摩擦感テスターによる測定値、つややかさの官能試験結果及びなめらかさの官能試験結果の値から選ばれる1種乃至は2種以上の示性値とを多変量解析により分析し、試験毛髪試料の近赤外吸収スペクトルと前記多変量解析の結果から前記試験毛髪試料の示性値を算出することを特徴とする。かかる鑑別に用いる近赤外吸収スペクトルは通常の回折格子を用いた分散型のものによるスペクトル、ダイオードアレーを用いた装置によるスペクトル、更にこれらをフーリエ変換したスペクトルの何れもが使用可能である。更に好ましいものは、分散型の装置によるスペクトルを更にフーリエ変換したもの、ダイオードアレイ検出器によるスペクトル、ダイオードアレイ検出器によるスペクトルを更にフーリエ変換したものが例示できる。ここで、多変量解析であるが、多変量解析とは、分光データなどの化学的な特性と物性などの特性値との関係を計量学的な処理によって関係づけ、解析する手法であり、重回帰分析或いは主成分分析などが知られている。この内、重回帰分析としてはPLS分析が好適に例示できる。このPLS分析であるが、この分析法は特定の試料に於ける波長などの連続的な因子の変化に対して、吸光度などの変数の出現する分光スペクトルパターンと当該試料のある示性値の間の関係を分析する場合において、各示性値と因子ごとの変数の変化を分析する手技として確立されているものである。又、主成分分析は、同様な分析において、変動に寄与する第一主成分を分析し、しかる後この第一主成分軸に対して直交する第二主成分軸を分析し、この2つの主成分軸がつくる座標におけるパターン変化で物性を比較、推定する方法である。この様なPLS分析或いは主成分分析と言った、多変量解析は、市販されているソフトウェアを使用して行うことができる。この様な多変量解析用のソフトウェアとしては、例えば、GLサイエンス社より販売されている、ピロウェット(PIROUETT)、サイバネットシステム社より販売されている、マットラボ(MATLAB)横川電気株式会社より販売されている、アンスクランブラーII(UnscranblerII)、セパノヴァ(SEPANOVA)社より販売されているシムカ(SIMCA)等のソフトウェアが例示できる。又、これらに加えてシムカ(SIMCA)と言われるアルゴリズムを加えることができる。かかるアルゴリズムは前記ソフトウェア中に組み込まれている場合が多く、主成分分析の表示に有用である。これらのソフトウェアを利用して、近赤外吸収スペクトルを解析し、その結果を本発明の鑑別法で用いる場合、大凡の処理ステップは次に示す手順による。この時、使用するフーリエ変換近赤外吸収スペクトルは測定して得られた原スペクトルでも良いし、前記原スペクトルをデータ加工したものでも良い。データ加工の方法としては、例えば、二次微分値、三次微分値などの多次微分値などが好ましく例示できる。この内、好ましいものは原スペクトル或いはその二次微分値である。かくして、分析すると毛髪の状態と毛髪のフーリエ変換近赤外吸収スペクトルの間には良好な相関関係がある。
【0006】
PLS分析の場合
(1)毛髪の分散型或いはダイオードアレイタイプの近赤外吸収スペクトル或いはそれらのフーリエ変換スペクトルを所望により、二次微分等データ加工を行い、波長と近赤外吸収スペクトル乃至はその加工データとの行列を作成する。
(2)前記行列と示性値との行列を作成し、示性値の動きに対して、動きの大きい近赤外吸収スペクトル乃至はその加工データを抽出し、その波長を特定する。
(3)抽出した近赤外吸収スペクトル乃至はその加工データと示性値より検量線を作成する。同時に、示性値ごとに検量線上へのプロットを作成しておく。
(4)試験試料のフーリエ変換近赤外吸収スペクトルを測定し、所望により二次微分等のデータ加工する。
(5)(4)のデータより(2)で特定された波長のデータを抽出する。
(6)(5)で抽出されたデータを検量線上への写像を作成する。或いは、データを検量線上へプロットする。
(7)(3)の示性値ごとのプロットと(5)の写像乃至はプロットとを比較し、試料の示性値を推測する。
尚、(2)以下の作業はコンピューターソフトウェアを利用することにより行うことができる。
主成分分析の場合
(1)毛髪の分散型或いはダイオードアレイタイプの近赤外吸収スペクトル或いはそれらのフーリエ変換スペクトルを所望により、二次微分等データ加工を行い、波長と近赤外吸収スペクトル乃至はその加工データとの行列を作成する。
(2)前記行列について主成分分析を行い、第一主成分軸を作成する。
(3)第一主成分と直交する第二主成分軸を作成する。
(4)第一主成分軸と第二主成分軸が作る平面上に(1)のスペクトルの第一主成分と第二主成分が作る点をプロットする。
(5)所望によりシムカなどのアルゴリズムを用いてグルーピングを行う。
(6)(1)と同様に試験試料の近赤外スペクトルを測定し、(4)と同様のプロットを行う。
(7)(4)のプロット乃至は(5)のグルーピングを指標に試験試料の鑑別を行う。
【0007】
本発明の毛髪の鑑別法で使用されるフーリエ変換近赤外吸収スペクトルとしては、4000〜12000cm -1 の内の少なくとも100cm -1 が好ましい波長領域であり、特に好ましい波長領域では4700〜5000cm -1 である。これは、この波長領域に於けるスペクトルが毛髪の状態の示性値を良く反映しているからである。この範囲の近赤外吸収スペクトルは毛髪内の蛋白質の存在状態とその挙動を的確に捉えられていることもその一因と考えられる。
【0008】
本発明の毛髪の状態の鑑別法で対象とする毛髪の状態の表現項目としては、なめらかさとつややかさが挙げられる。これらの項目は相互に関連しながら異なる内容も含む表現項目であり、本発明の毛髪の状態の鑑別法に於いては、これらのどちらかを対象とすることもできるし、両方を対象とすることもできる。又、これらの表現項目の示性値としては、グロスメーターによる測定値、摩擦感テスターによる測定値、つややかさの官能試験結果及びなめらかさの官能試験結果から選ばれる1種乃至は2種以上が挙げられる。ここで、官能評価は、通常化粧料の分野で使用されているものが使用でき、具体的には、良い〜悪いを5段階乃至は3段階に分けてスコアリングする方法が好ましく例示できる。即ち、5段階の評価法であれば、スコア5:良い、スコア4:やや良い、スコア3:普通、スコア2:やや悪い、スコア1:悪いと言う評価軸を例示できるし、3段階の評価であれば、スコア3:良い、スコア2:普通、スコア1:悪いと言う評価軸が例示できる。グロスメーター或いは摩擦感テスターは市販の機器があり、これを利用することができる。
【0009】
PLS分析を行い、フーリエ変換近赤外吸収スペクトルの二次微分値と示性値との2変数の検量線を作成するためには、示性値の異なる少なくとも2種の毛髪を用意する必要があるが、この様な示性値の異なる毛髪は、自然に存在する毛髪の示性値を測定し、これらのうちで示性値の異なるものを選択して用いることもできるし、1種の毛髪を人工的に処理して示性値の異なる毛髪とし、これを用いることもできる。
【0010】
かくして、準備した検量線上に検量線作成に使用した毛髪のフーリエ変換近赤外吸収スペクトルの二次微分値の広がりをプロットしたり、二次微分値軸上に示性値をプロットしたりすることにより、大凡の毛髪のフーリエ変換近赤外吸収スペクトルの二次微分値と毛髪の状態の示性値との関係を知ることが出来、試験試料の毛髪のフーリエ変換近赤外吸収スペクトルのPLS分析にて、示性値が関連あると特定された波長の二次微分値のプロットをこれらと比較することにより試験試料である毛髪の示性値を算出することができる。この時簡易的に検量線上に、或いは、二次微分値軸上に検量線作成に使用した毛髪のプロットの二次微分値のメジアンや平均値などの群代表値をプロットしておき、試験試料の毛髪の二次微分値の群代表値をプロットし、群代表値同士で比較し、示性値を算出することもできる。ここで、注目すべきは、一つのフーリエ変換近赤外吸収スペクトルを測定することにより、本発明の鑑別法に従って摩擦感、グロス(光沢)の程度、官能値などの多数の毛髪の状態の示性値を算出できることであり、言い換えれば、1つの測定結果より、毛髪の状態の多面的評価ができることである。
【0011】
かくして算出された毛髪の状態の示性値は、毛髪用の化粧料の処理効果の指標として、或いは、ダメージを受けた毛髪の回復を確認するなど、毛髪の状態のモニタリングなどに、又、毛髪の状態にあわせた毛髪用の化粧料の選択に使用することができる。この内、毛髪用の化粧料の処理効果の指標として用いる場合には、毛髪の近赤外吸収スペクトルを化粧料の処理の前後に測定しておき、これらのスペクトルデータの処理より、処理前後の毛髪の状態の示性値を算出し、その変化を効果の指標とすればよい。この様な毛髪用の化粧料の処理効果の指標として、或いは、ダメージを受けた毛髪の回復を確認するなど、毛髪の状態のモニタリングなどに、又、毛髪の状態にあわせた毛髪用の化粧料の選択は本発明の方法によって算出した毛髪の状態の示性値の代わりに毛髪のフーリエ変換近赤外吸収スペクトルのPLS分析で特定された波長の二次微分値そのものを用いることもできる。これは、毛髪の状態の示性値と毛髪のフーリエ変換近赤外吸収スペクトルのPLS分析で特定された波長の二次微分値との間に良好な相関関係が存在するからである。この様な毛髪のフーリエ変換近赤外吸収スペクトルの二次微分値の使用も本発明の技術的範囲に属する。
【0012】
【実施例】
以下に、実施例を挙げて、本発明について更に詳細に説明を加えるが、本発明が、これら実施例にのみ限定されないことは言うまでもない。
【0013】
<実施例1>
予め用意した状態の異なる3種の毛髪をグロスメーターで光沢値を測定した。同時にこの毛髪のフーリエ変換近赤外吸収スペクトル(波長4700〜5000cm-1)を測定し、二次微分を行った。光沢値と二次微分値についてPLS分析をアンスクランブラーIIを用いて行いPLS分析により検量線を作成した。検量線は図1に示す。これより、グロスメーターによる光沢値との間には良好な相関関係があることが判る。検量線上に光沢値をプロットすると光沢値ごとのブロックが形成されるようになり、この検量線を用いることにより、試験試料の毛髪のフーリエ変換近赤外吸収スペクトルより光沢値を算出することができることがわかる。又、高い相関係数より、本発明の鑑別法は定量性にも優れることが判る。
【0014】
<実施例2>
実施例1と同様に、実施例1で使用した毛髪を用いて、摩擦感テスターで測定した摩擦感値との関係を調べた。検量線を図2に示す。この検量線上の摩擦感値をプロットすると、摩擦感値ごとにブロックを形成していることが判り、これを利用して、この検量線を用いることにより、試験試料の毛髪のフーリエ変換近赤外吸収スペクトルより摩擦感値を算出することができることがわかる。
【0015】
<実施例3>
実施例1と同様に、実施例1で使用した毛髪を用いて、専門パネラーの評価した評価値(なめらかさ)との関係を調べた。検量線を図3に示す。この検量線上の評価値のプロットの分布は評価値ごとにブロックを形成していることが判る。これを利用して、この検量線を用いることにより、試験試料の毛髪のフーリエ変換近赤外吸収スペクトルより官能評価値を算出することができることがわかる。この様な官能評価に於いては、通常ある程度の熟練が必要とされるが、本発明の鑑別法によれば、どの様な人でも簡便に再現性の高い評価が行えることは注目に値する。
【0016】
<実施例4>
実施例1の測定結果を、主成分分析にかけた。使用したソフトウェアは実施例1と同じアンスクランブラーIIを用いた。結果を図4に示す。これより、更に鮮明にグロス値ごとのクラス分けがされていることが判る。
【0017】
<実施例5>
実施例2の測定結果を、実施例4と同様に主成分分析にかけた。使用したソフトウェアは実施例1と同じアンスクランブラーIIを用いた。結果を図5に示す。これにより、更に鮮明に摩擦感値ごとのクラス分けがされていることが判る。
【0018】
<実施例6>
実施例3の測定結果を、実施例4と同様に主成分分析にかけた。使用したソフトウェアは実施例1と同じアンスクランブラーIIを用いた。結果を図6に示す。これにより、更に鮮明に評価値ごとのクラス分けがされていることが判る。
【0019】
<実施例7>
実施例1、4と同様の検討を波長5100〜5300cm -1 に変えて同様の検討を行った。結果を図7、8にしめす。これに於いても優れた回帰性とグロス値ごとの分布性がみられるが、4700〜5000cm -1 の場合程ではないことが判る。
【0020】
<実施例8>
実施例7と同様の検討を波長4000〜12000cm -1 に変えて同様の検討を行った。結果を図9、10にしめす。これに於いても優れた回帰性とグロス値ごとの分布性がみられるが、4700〜5000cm -1 の場合程ではないことが判る。
【0021】
【発明の効果】
毛髪用の化粧料の選択や評価、毛髪の状態の変化のモニタリングなどに有用な、毛髪の状態の鑑別において、非侵襲的に鑑別を行う方法、取り分け、非侵襲的な毛髪の鑑別法であって、定量性のある鑑別法を提供することができる。
【図面の簡単な説明】
【図1】 実施例1の結果を示す図である。
【図2】 実施例2の結果を示す図である。
【図3】 実施例3の結果を示す図である。
【図4】 実施例4の結果を示す図である。
【図5】 実施例5の結果を示す図である。
【図6】 実施例6の結果を示す図である。
【図7】 実施例7の多変量解析(PLS分析)結果を示す図である
【図8】 実施例7の主成分分析の結果を示す図である。
【図9】 実施例8の多変量解析(PLS分析)の結果を示す図である。
【図10】 実施例8の主成分分析の結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for differentiating hair, which is useful for evaluation of cosmetics for hair.
[0002]
[Prior art]
Differentiating the state of hair is an essential matter for the evaluation of hair cosmetics and the like. Conventionally, such a state of hair is discriminated by a sensory test by a specialized panel as a non-invasive method. Other than that, the hair is collected invasively, and the resistance value, which is a smoothness indication value, is measured by a method of measuring the gloss value as a gloss indication value with a gloss meter or a friction tester. There are methods to measure. That is, in the discrimination of the state of hair, development of a non- invasive discrimination method, particularly, development of a quantitative discrimination method has been desired. In addition, there is a moisture content in the hair as a surrogate value of the hair state, and this is a near-infrared absorption spectrum that does not use the usual Fourier transform, and is analyzed from a distributed near-infrared absorption spectrum using a diffraction grating. However, although it is known to be used as a substitute for the hair property value, the causal relationship between the water properties obtained from the analysis of the near-infrared absorption spectrum and the hair state has not been studied. In addition, techniques for clarifying the correlation by performing multivariate analysis such as multiple regression analysis such as PLS analysis and principal component analysis between spectroscopic analysis and specific indication values are known. No attempt has been made to perform multivariate analysis on the infrared absorption spectrum and to distinguish the state of the hair from the near infrared absorption spectrum. In addition, the state of hair such as glossiness and smoothness has not been distinguished from the multivariate analysis of the near-infrared absorption spectrum, and there has been no idea to do so. The causal relationship between the glossiness and smoothness of hair and the state and amount of water present has never been known.
[0003]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and is useful for selection and evaluation of cosmetics for hair, monitoring for changes in the state of hair, etc., and for non-invasive differentiation in the differentiation of hair state. It is an object of the present invention to provide a quantitative differentiation method that is a method for performing hair removal, particularly a non-invasive hair differentiation method.
[0004]
[Means for Solving the Problems]
In view of such a situation, the present inventors are methods for differentiating the state of hair, and previously measured near-infrared absorption spectra of two or more types of hairs in different states, and the near-infrared absorption spectrum and gloss Multivariate analysis of one or more display values selected from meter measurement values, friction tester measurement values, smoothness sensory test results and smoothness sensory test results, and test hair The test hair sample is differentiated by calculating the characteristic value of the test hair sample from the near-infrared absorption spectrum of the sample and the result of the multivariate analysis. It has been found that the state of the hair of the hair sample can be distinguished non-invasively and quantitatively, and the present invention has been completed. That is, this invention relates to the technique shown below.
(1) A method for distinguishing the state of hair, wherein the near-infrared absorption spectra of two or more kinds of hairs in different states are measured in advance, and the near-infrared absorption spectrum, the measured value by a gloss meter, and the measurement by a friction tester Multivariate analysis of one or more display values selected from the values of the sensory test result of the value, glossiness and smoothness, and the near-infrared absorption spectrum of the test hair sample and the result of the multivariate analysis The test hair sample is discriminated by calculating the characteristic value of the test hair sample from the above .
(2) The hair state identification method according to (1), wherein the near-infrared absorption spectrum is a Fourier transform near-infrared absorption spectrum and / or a diode array detector.
(3) The hair state discrimination method according to (1) or (2), wherein the multivariate analysis is a multiple regression analysis or a principal component analysis.
(4) The hair state discrimination method according to any one of (1) to (3), wherein the hair state discrimination item is smoothness and / or glossiness.
(5) The region of the measurement wavelength of the near-infrared absorption spectrum is 4700 to 5000 cm −1 , (1) to (4) The hair state identification method according to any one of (1) to (4) .
(6) the state of the in the hair before and after treatment with cosmetics for hair hair, evaluate the cosmetic by differentiation by (1) to (5) differentiation method of the state of hair according to any one A method for evaluating a cosmetic for hair, characterized by comprising:
(7) ( 1) to (5) A hair condition monitoring method, wherein the hair condition is monitored by discrimination using the hair condition discrimination method according to any one of ( 1) to (5) .
Hereinafter, the present invention will be described in more detail.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The hair state discrimination method of the present invention is a hair state discrimination method, in which near-infrared absorption spectra of two or more kinds of hairs having different states are measured in advance, and the near-infrared absorption spectrum and the gloss meter are used. The test hair is analyzed by multivariate analysis with one or more display values selected from the measured value, the measured value by the friction tester, the smoothness sensory test result, and the smoothness sensory test result. The characteristic value of the test hair sample is calculated from the near infrared absorption spectrum of the sample and the result of the multivariate analysis . Near infrared absorption spectrum spectrum by those distributed using an ordinary diffraction grating, the spectrum by the device using a diode array, further any of the spectra of these Fourier transform is enabled for use in Kan by that written is there. More preferable examples include a spectrum obtained by further Fourier transforming a spectrum obtained by a distributed device, a spectrum obtained by a diode array detector, and a spectrum obtained by further Fourier transforming a spectrum obtained by a diode array detector. Here, multivariate analysis is a technique for associating and analyzing the relationship between chemical characteristics such as spectroscopic data and characteristic values such as physical properties by quantitative processing. Regression analysis or principal component analysis is known. Of these, PLS analysis can be suitably exemplified as the multiple regression analysis. This PLS analysis is based on the spectral spectrum pattern in which a variable such as absorbance appears and a certain characteristic value of the sample with respect to a continuous change in a factor such as a wavelength in a specific sample. This is an established technique for analyzing the change of each characteristic value and the variable for each factor. In the principal component analysis, the first principal component contributing to the fluctuation is analyzed in the same analysis, and then the second principal component axis orthogonal to the first principal component axis is analyzed. In this method, physical properties are compared and estimated by pattern changes in the coordinates created by the component axes. Multivariate analysis such as PLS analysis or principal component analysis can be performed using commercially available software. As such software for multivariate analysis, for example, sold by GL Science, Pirouett, sold by Cybernet Systems, sold by Matlab Yokogawa Electric Co., Ltd. Examples of such software include Unscranbler II and SIMCA sold by Sepanova. In addition to these, an algorithm called SIMCA can be added. Such an algorithm is often incorporated in the software and is useful for displaying principal component analysis. When these softwares are used to analyze near-infrared absorption spectra and the results are used in the discrimination method of the present invention, the general processing steps are as follows. At this time, the Fourier transform near-infrared absorption spectrum to be used may be an original spectrum obtained by measurement, or may be obtained by processing the original spectrum. As a data processing method, for example, multi-order differential values such as secondary differential values and tertiary differential values can be preferably exemplified. Of these, the original spectrum or its second derivative is preferred. Thus, when analyzed, there is a good correlation between the condition of the hair and the Fourier transform near infrared absorption spectrum of the hair.
[0006]
In the case of PLS analysis (1) The near-infrared absorption spectrum of the hair dispersion type or diode array type or the Fourier transform spectrum thereof is processed as desired by second-order differential data processing, and the wavelength and near-infrared absorption spectrum or its Create a matrix with the machining data.
(2) A matrix of the matrix and the characteristic value is created, a near-infrared absorption spectrum or its processed data having a large movement is extracted with respect to the movement of the characteristic value, and the wavelength is specified.
(3) A calibration curve is created from the extracted near-infrared absorption spectrum or the processed data and the characteristic value. At the same time, a plot on the calibration curve is created for each characteristic value.
(4) The Fourier transform near-infrared absorption spectrum of the test sample is measured, and data such as second derivative is processed as desired.
(5) Extract the data of the wavelength specified in (2) from the data of (4).
(6) Create a map of the data extracted in (5) onto the calibration curve. Alternatively, the data is plotted on a calibration curve.
(7) The plot for each characteristic value in (3) is compared with the mapping or plot in (5) to estimate the characteristic value of the sample.
(2) The following operations can be performed using computer software.
In the case of principal component analysis: (1) The near-infrared absorption spectrum of the hair dispersion type or diode array type or the Fourier transform spectrum thereof is subjected to data processing such as second derivative as desired, and the wavelength and near-infrared absorption spectrum or Create a matrix with the processed data.
(2) A principal component analysis is performed on the matrix to create a first principal component axis.
(3) Create a second principal component axis orthogonal to the first principal component.
(4) The points formed by the first principal component and the second principal component of the spectrum of (1) are plotted on the plane formed by the first principal component axis and the second principal component axis.
(5) Grouping is performed using an algorithm such as shimuka as desired.
(6) The near-infrared spectrum of the test sample is measured in the same manner as (1), and the same plot as in (4) is performed.
(7) The test sample is identified using the plot in (4) or the grouping in (5) as an index.
[0007]
The Fourier transform near-infrared absorption spectrum used in the hair identification method of the present invention is preferably a wavelength region of at least 100 cm -1 of 4000 to 12000 cm -1 , and 4700 to 5000 in a particularly preferable wavelength region. cm −1 . This is because the spectrum in this wavelength region well reflects the characteristic value of the hair state. The near-infrared absorption spectrum in this range is considered to be due to the fact that the presence state and behavior of proteins in hair are accurately captured.
[0008]
The expression items of the hair state targeted by the hair state discrimination method of the present invention include smoothness and glossiness. These items are expression items that are mutually related and include different contents. In the hair state discrimination method of the present invention, either of these items can be targeted, or both can be targeted. You can also. In addition, as an indication value of these expression items, one or more selected from a measured value by a gloss meter, a measured value by a friction tester, a glossy sensory test result, and a smoothness sensory test result may be used. Can be mentioned. Here, what is usually used in the field of cosmetics can be used for sensory evaluation, and specifically, a method of scoring good to bad in five or three stages can be preferably exemplified. In other words, in the case of a five-level evaluation method, an evaluation axis such as score 5: good, score 4: slightly good, score 3: normal, score 2: slightly bad, and score 1: bad can be exemplified. Then, the evaluation axis of score 3: good, score 2: normal, score 1: bad can be illustrated. There are commercially available devices for the gloss meter or the friction tester, which can be used.
[0009]
In order to perform a PLS analysis and create a calibration curve of two variables of a second derivative value and an indication value of a Fourier transform near-infrared absorption spectrum, it is necessary to prepare at least two types of hair having different indication values. However, for such hairs having different display values, it is possible to measure the display values of naturally occurring hairs and to select and use ones having different display values. It is also possible to artificially treat the hair to obtain a hair having a different value, and use it.
[0010]
Thus, plotting the spread of the secondary differential value of the Fourier transform near-infrared absorption spectrum of the hair used to create the calibration curve on the prepared calibration curve, or plotting the characteristic value on the secondary differential value axis Can know the relationship between the second derivative of the Fourier transform near-infrared absorption spectrum of hair and the display value of the hair state, and PLS analysis of the Fourier transform near-infrared absorption spectrum of the test sample hair By comparing the plots of the second derivative values of the wavelengths that are identified to be related to the visibility values with these, the visibility values of the hair that is the test sample can be calculated. At this time, simply plot the group representative values such as the median or average value of the secondary differential value of the hair plot used to create the calibration curve on the calibration curve or on the secondary differential value axis. It is also possible to plot the group representative values of the second derivative values of the hairs and compare the group representative values with each other to calculate the display value. Here, it should be noted that, by measuring one Fourier transform near-infrared absorption spectrum, a large number of hair states such as a feeling of friction, a degree of gloss (gloss), and a sensory value according to the discrimination method of the present invention are shown. That is, it is possible to calculate the sex value, in other words, it is possible to evaluate the condition of the hair from one measurement result.
[0011]
The calculated value of the state of the hair thus obtained is used as an indicator of the treatment effect of the cosmetic for hair, or for monitoring the state of the hair, such as confirming the recovery of the damaged hair, and the hair. It can be used for selecting cosmetics for hair according to the state of hair. Among these, when used as an index of the treatment effect of cosmetics for hair, the near-infrared absorption spectrum of hair is measured before and after the treatment of cosmetics, and from the processing of these spectral data, It is only necessary to calculate an indication of the state of the hair and use the change as an index of the effect. As an indicator of the treatment effect of such cosmetics for hair, or for monitoring the state of hair, such as confirming the recovery of damaged hair, and for hair according to the state of the hair In the selection, the second derivative value of the wavelength specified by the PLS analysis of the Fourier transform near-infrared absorption spectrum of the hair can be used instead of the characteristic value of the hair state calculated by the method of the present invention. This is because there is a good correlation between the hair state indication value and the second derivative value of the wavelength specified by the PLS analysis of the Fourier transform near infrared absorption spectrum of the hair. The use of such a second derivative of the Fourier transform near-infrared absorption spectrum of hair belongs to the technical scope of the present invention.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but it goes without saying that the present invention is not limited only to these examples.
[0013]
<Example 1>
The gloss value of three kinds of hairs prepared in advance was measured with a gloss meter. At the same time, a Fourier transform near infrared absorption spectrum (wavelength: 4700 to 5000 cm −1 ) of this hair was measured, and second derivative was performed. A PLS analysis was performed on the gloss value and the second derivative using an unscrambler II, and a calibration curve was prepared by the PLS analysis. The calibration curve is shown in FIG. From this, it can be seen that there is a good correlation with the gloss value measured by the gloss meter. When the gloss value is plotted on the calibration curve, a block for each gloss value is formed. By using this calibration curve, the gloss value can be calculated from the Fourier transform near infrared absorption spectrum of the hair of the test sample. I understand. Moreover, it can be seen from the high correlation coefficient that the discrimination method of the present invention is excellent in quantitativeness.
[0014]
<Example 2>
In the same manner as in Example 1, the hair used in Example 1 was used to examine the relationship with the friction value measured with the friction tester. A calibration curve is shown in FIG. When plotting the friction value on the calibration curve, it can be seen that a block is formed for each friction value, and using this calibration curve, the Fourier transform near infrared of the hair of the test sample is obtained. It can be seen that the friction value can be calculated from the absorption spectrum.
[0015]
<Example 3>
Similarly to Example 1, using the hair used in Example 1, the relationship with the evaluation value (smoothness) evaluated by the expert panel was examined. A calibration curve is shown in FIG. It can be seen that the distribution of evaluation value plots on the calibration curve forms a block for each evaluation value. By using this calibration curve by utilizing this, it is understood that the sensory evaluation value can be calculated from the Fourier transform near infrared absorption spectrum of the hair of the test sample. In such sensory evaluation, a certain level of skill is usually required. However, according to the discrimination method of the present invention, it is worth noting that any person can easily perform highly reproducible evaluation.
[0016]
<Example 4>
The measurement result of Example 1 was subjected to principal component analysis. The software used was the same Unscrambler II as in Example 1. The results are shown in FIG. From this, it can be seen that the classification is made more clearly for each gloss value.
[0017]
<Example 5>
The measurement result of Example 2 was subjected to principal component analysis in the same manner as in Example 4 . The software used was the same Unscrambler II as in Example 1. The results are shown in FIG. As a result, it can be seen that the classification is further clearly made for each friction value.
[0018]
<Example 6>
The measurement result of Example 3 was subjected to principal component analysis in the same manner as in Example 4 . The software used was the same Unscrambler II as in Example 1. The results are shown in FIG. As a result, it can be seen that the classification is made more clearly for each evaluation value.
[0019]
<Example 7>
The same investigation as in Examples 1 and 4 was performed by changing the wavelength to 5100 to 5300 cm −1 . The results are shown in FIGS. Even in this case, excellent regression and distribution for each gloss value are observed, but it is understood that it is not as high as 4700 to 5000 cm −1 .
[0020]
<Example 8>
The same investigation as in Example 7 was performed by changing the wavelength to 4000 to 12000 cm −1 . The results are shown in FIGS. Even in this case, excellent regression and distribution for each gloss value are observed, but it is understood that it is not as high as 4700 to 5000 cm −1 .
[0021]
【The invention's effect】
It is a method for non- invasive discrimination of hair condition, especially for non-invasive hair discrimination, useful for selection and evaluation of hair cosmetics and monitoring of changes in hair condition. Thus, a quantitative discrimination method can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of Example 1. FIG.
2 is a graph showing the results of Example 2. FIG.
3 is a graph showing the results of Example 3. FIG.
4 is a graph showing the results of Example 4. FIG.
5 is a graph showing the results of Example 5. FIG.
6 is a graph showing the results of Example 6. FIG.
7 is a diagram showing the results of multivariate analysis (PLS analysis) in Example 7. FIG. 8 is a diagram showing the results of principal component analysis in Example 7. FIG.
9 is a graph showing the results of multivariate analysis (PLS analysis) in Example 8. FIG.
10 is a diagram showing the results of principal component analysis of Example 8. FIG.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002074219A JP3703438B2 (en) | 2002-03-18 | 2002-03-18 | Differentiation of hair condition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002074219A JP3703438B2 (en) | 2002-03-18 | 2002-03-18 | Differentiation of hair condition |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003270138A JP2003270138A (en) | 2003-09-25 |
JP2003270138A5 JP2003270138A5 (en) | 2004-10-28 |
JP3703438B2 true JP3703438B2 (en) | 2005-10-05 |
Family
ID=29203670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002074219A Expired - Fee Related JP3703438B2 (en) | 2002-03-18 | 2002-03-18 | Differentiation of hair condition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3703438B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100749692B1 (en) * | 2004-03-31 | 2007-08-17 | 포라가세이고오교오가부시끼가이샤 | Method of evaluating degree of hair damage |
JP2005287853A (en) * | 2004-04-01 | 2005-10-20 | Pola Chem Ind Inc | Evaluation method for hair |
WO2007026884A1 (en) * | 2005-09-02 | 2007-03-08 | Pola Chemical Industries Inc. | Method of evaluating skin conditions and method of estimating skin thickness |
JP5457755B2 (en) * | 2009-08-10 | 2014-04-02 | 花王株式会社 | Hair evaluation system and hair evaluation method |
KR102406640B1 (en) * | 2015-09-30 | 2022-06-08 | (주)아모레퍼시픽 | Age evaluating method of scalp and hair |
DE102016222193A1 (en) * | 2016-11-11 | 2018-05-17 | Henkel Ag & Co. Kgaa | Method for determining a user-specific hair treatment I |
DE102016212202A1 (en) * | 2016-07-05 | 2018-01-11 | Henkel Ag & Co. Kgaa | Method and device for determining a degree of damage of hair and method for determining a user-specific hair treatment agent |
US11534106B2 (en) | 2016-07-05 | 2022-12-27 | Henkel Ag & Co. Kgaa | Method for determining a user-specific hair treatment |
EP3481280B1 (en) * | 2016-07-05 | 2020-09-02 | Henkel AG & Co. KGaA | Method for establishing a user-specific hair care treatment |
DE102016223916A1 (en) * | 2016-12-01 | 2018-06-07 | Henkel Ag & Co. Kgaa | Method for determining a user-specific hair treatment III |
JP7560826B2 (en) | 2020-08-31 | 2024-10-03 | ヱスビー食品株式会社 | Aroma component analysis method and aroma component analysis device |
-
2002
- 2002-03-18 JP JP2002074219A patent/JP3703438B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003270138A (en) | 2003-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wilde et al. | The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper | |
Doty et al. | Predicting the time of the crime: Bloodstain aging estimation for up to two years | |
Kiani et al. | Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection | |
Fu et al. | Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear | |
Kleynen et al. | Selection of the most efficient wavelength bands for ‘Jonagold’apple sorting | |
Huang et al. | Apple mealiness detection using hyperspectral scattering technique | |
Vitale et al. | A rapid and non-invasive method for authenticating the origin of pistachio samples by NIR spectroscopy and chemometrics | |
Shao et al. | Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’(Lycopersicum esculentum) quality characteristics | |
Sun et al. | Simultaneous measurement of brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy | |
Jiang et al. | Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef | |
JP3703438B2 (en) | Differentiation of hair condition | |
Li et al. | Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging | |
CN103645155B (en) | The fast non-destructive detection method of fresh mutton tenderness | |
Xing et al. | Use of visible spectroscopy for quality classification of intact pork meat | |
US10578550B2 (en) | Identifying presence of substrates | |
Pérez-Marín et al. | A system using in situ NIRS sensors for the detection of product failing to meet quality standards and the prediction of optimal postharvest shelf-life in the case of oranges kept in cold storage | |
CN104965973A (en) | Apple molding core multi-factor nondestructive testing judgment model and establishing method thereof | |
JP2003270138A5 (en) | ||
Setiawan et al. | Classification of palm oil fresh fruit bunch using multiband optical sensors | |
Taous et al. | Geographical classification of authentic Moroccan Argan oils and the rapid detection of soya and sunflower oil adulteration with ATR-FTIR spectroscopy and chemometrics | |
Bock et al. | Innovative uses of near‐infrared spectroscopy in food processing | |
Beghi et al. | Influence of packaging in the analysis of fresh-cut Valerianella locusta L. and Golden Delicious apple slices by visible-near infrared and near infrared spectroscopy | |
Wang et al. | Discrimination of internal crack for rice seeds using near infrared spectroscopy | |
Shafri et al. | Hyperspectral signal analysis for detecting disease infection in oil palms | |
Dowell | Effect of NaOH on visible wavelength spectra of single wheat kernels and color classification efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050719 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |