JP3701947B2 - Method for measuring the amount of liquid remaining in the container - Google Patents

Method for measuring the amount of liquid remaining in the container Download PDF

Info

Publication number
JP3701947B2
JP3701947B2 JP2003084124A JP2003084124A JP3701947B2 JP 3701947 B2 JP3701947 B2 JP 3701947B2 JP 2003084124 A JP2003084124 A JP 2003084124A JP 2003084124 A JP2003084124 A JP 2003084124A JP 3701947 B2 JP3701947 B2 JP 3701947B2
Authority
JP
Japan
Prior art keywords
container
vibration
amount
frequency
residual liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003084124A
Other languages
Japanese (ja)
Other versions
JP2004294140A (en
Inventor
敏夫 鈴木
謙一 小山
Original Assignee
株式会社カイジョーソニック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カイジョーソニック filed Critical 株式会社カイジョーソニック
Priority to JP2003084124A priority Critical patent/JP3701947B2/en
Publication of JP2004294140A publication Critical patent/JP2004294140A/en
Application granted granted Critical
Publication of JP3701947B2 publication Critical patent/JP3701947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に貯蔵される液体の残量を外部から測定する方法に関するものであり、特に簡易・安価で精度の高い測定方法に関するものである。
【0002】
【従来の技術】
外科手術時の麻酔剤などとして使用される笑気ガスは、低温・高圧の液体として密閉状態の容器内に保持される。この容器として、魔法瓶と同様、中間に保温のための真空層を形成した構造の二重容器が使用される。外科手術の途中でこの容器が空にならないように、手術の前に液体の残量(以下「残液量」と称する)を確認しておくことが必要になる。この種の密閉容器は金属など不透明の素材で構成されるため、残液量の確認を目視で行うことはできない。
【0003】
従来、不透明な素材で構成されて液面が目視できない密閉容器内の残液量を外部から測定する装置として、超音波レベル計が知られている。この超音波レベル計では、容器の外側の底面に超音波振動子が取付けられる。この超音波振動子から器壁を通して液中に放射された超音波は液中を真上の方向に伝播したのち液面で反射され、底面まで戻ってきて反射波として受信される。この超音波の往復の伝播所要時間が測定され、液面の高さが測定される(特許文献)。
【0004】
【特許文献】
特開2001−272266号公報(図1)
【0005】
【発明が解決しようとする課題】
しかしながら、上述した笑気ガスを貯蔵する容器については、保温のために真空層を形成する二重構造の容器が使用されるので、上述した超音波レベル計を利用することができない。外側の容器の底面の外部に取り付けた超音波振動子で超音波を発生させても、これが内側の容器との間に形成されている真空層内を伝播できないので、液中に超音波を伝播させることができないからである。
【0006】
このため、従来、残液を含む容器の重量を測定し、この値から空の容器の既知の重量を差し引くことにより、残液の重量を測定するという方法が採用されてきた。しかしながら、この方法は、残液量を測定するたびに容器を秤に乗せ直さなければならず手間がかかるという問題があった。従って、本発明の目的は、簡易な残液量の測定方法を提供することにある。
【0007】
【課題を解決するための手段】
上記従来技術の課題を解決する本発明に係わる容器内の残液量の測定方法は、液体を密閉状態で貯蔵する容器に振動を発生させることと、この発生した振動の周波数スペクトルを作成することと、この周波数スペクトルの中に、残液量に応じて周波数が変化する振動成分が一つだけ出現し、かつこの容器の振動特性で定まる振動成分が出現しない領域を探索し、この領域を測定対象領域として選択することと、残液量を測定しようとする容器に振動を発生させ前記選択済みの測定対象領域内に出現する振動成分の周波数から残液量を測定することにより、簡易な手法によって残液量を測定可能にするように構成されている。
【0008】
【発明の実施の形態】
本発明の一つの好適な実施の形態によれば、容器に振動を発生させることは、この容器の器壁またはこの容器に対して機械的に結合される構造物を打撃することによって行われる。
【0009】
本発明の他の好適な実施の形態によれば、容器内の残液量に応じて変化する振動成分の周波数がこの残液量に応じてほぼ直線的に変化するように、上記測定対象領域が選択されている。
【0010】
本発明の更に他の好適な実施の形態によれば、容器内の残液量に応じて変化する振動成分の周波数が可聴周波数帯域に存在するように、上記測定対象領域が選択されている。
【0011】
本発明のさらに他の好適な実施の形態によれば、発生した振動の周波数スペクトルの作成は、高速フーリエ変換(FFT)によって行われる。
【0012】
本発明のさらに他の好適な実施の形態によれば、容器は中間に真空層を形成する二重容器であり、打撃対象の構造物はこの二重容器の内部に挿入される残液抽出管である。
【0013】
【実施例】
図1は、本発明の一実施例に係わる容器内の残液量の測定方法を実施するためのシステムの概念図である。1は内部の残液量を測定しようとする密閉状態のボンベ(容器)、2はこのボンベを打撃するためのハンマー、3はハンマーによる打撃によってボンベに発生する振動を受信するマイクロホン、4はマイクロホンが受信した信号を増幅する増幅器、6は増幅された受信信号の周波数スペクトルを作成し表示する高速フーリエ変換器(FFT)である。
【0014】
まず、簡単のため、ボンベ1として、器壁が二重ではなく一重の通常のボンベを想定する。このボンベ1に適宜な量の水を入れたのち密閉した状態で、このボンベの外側の器壁をハンマー2で1回だけ打撃する。このハンマー2は、木、ゴム、あるいは金属など適宜な硬度の素材で構成される。このハンマー2の打撃によってボンベ1に振動が発生する。この振動をボンベ2の器壁の近くに配置した広帯域のマイクロホン3で受信し、広帯域の増幅器4で増幅したのち、FFT5で周波数スペクトルを作成する。
【0015】
図2は、打撃によって密閉ボンベに発生した振動の周波数スペクトルの一例である。ボンベの長さは760 mm、直径は136 mmであり、このボンベが空の状態である。1000 Hz 付近の中心部には残液量に応じて周波数が変化する振動成分が出現し、その上下に残液量が変化しても周波数が変化しない4個の振動成分が出現する。これら4個の振動成分は、ボンベの寸法・形状(長さ、直径など)や構造に応じて定まるボンベ固有の一定値を保つ。以下、このボンベ固有の一定値を保つ振動成分を「容器の固有振動成分」と称する。
【0016】
以上述べたハンマーによる打撃と周波数スペクトルの作成を、ボンベ1内の水面の高さ(水位)を変えながら反復する。そして、水位に応じて周波数が変化する振動成分について、水位と周波数との関係をプロットしたのが図2に示す実験データである。ボンベ1内に蓄積された水の水位が800mm の状態からゼロmm(空)の状態にまで低下すると、周波数が750 Hzから1040 Hz までほぼ直線的に増加する。
【0017】
そして、図2の周波数スペクトルを再び参照すると、ボンベ内の水位に応じて変動する750 Hzから1040 Hz までの周波数の範囲には、周波数が水位に応じて変化する周波数成分は一つだけ存在し、かつこの周波数の範囲には容器の固有周波数成分はまったく存在しない。このような周波数の範囲を、測定対象領域として選択する。
【0018】
従来、上端を開放したガラスのシリンダーに水を注入し、水面を次第に上昇させながら器壁を打撃してゆくと、シリンダーが発生する音の周波数が次第に高まっていくという現象が知られている。これは、水面を振動の節とし、開放端面を腹とする音波の定在波が形成されるためであると説明されている。上述した図3の実験データは、上記公知の現象における水位と周波数との関係が逆になっている。これは、図1の場合、1000 Hz 近傍に出現する音が、基本波ではなく、高調波どうしが干渉し合って発生するビート(唸り) などであるためと推定される。また、本願発明では容器の上端が開放端でなく密閉されていることなども関係していると推定される。
【0019】
任意の形状・寸法・構造のボンベについて、上述したと同様の方法で、振動成分の周波数の測定対象領域を定める。あとは、未知の残液量のボンベ1の器壁をハンマー2で打撃し、その時発生する振動をマイクロホン3で受信し、増幅器4で増幅しFFT5で周波数スペクトルを作成する。そして、予め設定しておいた測定対象領域中に出現する振動成分の周波数を測定することにより、液面、すなわち残液量を測定する。
【0020】
図4は、本発明の他の実施例に係わる容器内の残液量の測定方法を実施するためのシステムの概念図である。この実施例では、残液量を測定しようとするボンベ1は、中間に真空層が形成された二重構造の器壁を有している。このボンベ1の内部に残液抽出管1aが挿入されている。そして、この実施例では、ハンマー2で直接ボンベ1を打撃するのでなく、残液抽出管1aを打撃する。
【0021】
あとの処理は、図1を参照して既に説明した処理とまったく同一である。すなわち、ハンマー2の打撃によってボンベ1に発生した振動を広帯域のマイクロホン3で受信し、広帯域の増幅器4で増幅したのち、FFT5で周波数スペクトルを作成する。そして、測定対象領域が設定し、ここに出現する振動成分の残液量に応じて変化する周波数に基づき残液量を測定する。
【0022】
以上、周波数スペクトルを作成する手段としてFFTを使用する場合を例示した。しかしながら、他の適宜なスペクトル・アナライザーを使用することもできる。
【0023】
また、ハンマーを人手で操作する構成を例示した。しかしながら、このハンマーを電磁弁などを利用して自動的に操作する構成とすることもできる。さらに、ハンマーで打撃する変わりに容器や残液抽出管などの適宜な箇所に取り付けた超音波振動子などで器壁を打撃する構成とすることもできる。
【0024】
また、測定対象領域を設定したあとは、FFTなどのスペクトル・アナライザーを使用する代わりに、前段の増幅器にビートの発生を促す非線形特性を付与すると共に、この増幅器の後段に測定対象領域の振動成分のみを通過させる帯域濾波器を設置し、振動成分の周波数を聴覚で大雑把に判定するという簡易な構成とできる可能性がある。
【0025】
【発明の効果】
以上詳細に説明したように、本発明に係わる容器内の残液量の測定方法は、残液量を測定しようとする容器に振動を発生させ予め設定した測定対象領域内に出現する振動成分の周波数から残液量を測定する構成であるから、簡単な操作で残液量を測定できるという効果が奏される。
【図面の簡単な説明】
【図1】本発明の一実施例に係わる容器内の残液量の測定方法を実施するためのシステムの概念図である。
【図2】図1のシステムにおいてボンベの打撃によって発生した振動の周波数スペクトルの一例を示す実験データである。
【図3】図1のシステムにおいてボンベの打撃によって発生した振動の周波数成分の周波数と水位との関係を示す実験データである。
【図4】本発明の他の実施例に係わる容器内の残液量の測定方法を実施するためのシステムの概念図である。
【符号の説明】
1 ボンベ(容器)
1a 残液量抽出管
2 ハンマー
3 マイクロホン
4 増幅器
5 FFT
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the remaining amount of liquid stored in a sealed container from the outside, and more particularly to a simple, inexpensive and highly accurate measurement method.
[0002]
[Prior art]
Laughing gas used as an anesthetic during surgery is held in a sealed container as a low-temperature, high-pressure liquid. As this container, a double container having a structure in which a vacuum layer for heat insulation is formed in the middle is used like a thermos. In order to prevent the container from being emptied during the surgical operation, it is necessary to confirm the remaining amount of liquid (hereinafter referred to as “residual liquid amount”) before the operation. Since this type of sealed container is made of an opaque material such as metal, the amount of the remaining liquid cannot be confirmed visually.
[0003]
2. Description of the Related Art Conventionally, an ultrasonic level meter is known as an apparatus for measuring the amount of remaining liquid in an airtight container that is made of an opaque material and whose liquid level cannot be visually observed from the outside. In this ultrasonic level meter, an ultrasonic transducer is attached to the bottom surface outside the container. The ultrasonic wave radiated into the liquid from the ultrasonic transducer through the wall of the ultrasonic wave is reflected in the liquid surface after propagating in the liquid, and returns to the bottom surface to be received as a reflected wave. The time required for propagation of the ultrasonic wave in the reciprocating direction is measured, and the height of the liquid level is measured (Patent Document).
[0004]
[Patent Literature]
Japanese Patent Laying-Open No. 2001-272266 (FIG. 1)
[0005]
[Problems to be solved by the invention]
However, since the container for storing the laughing gas described above uses a double-structured container that forms a vacuum layer for heat insulation, the above-described ultrasonic level meter cannot be used. Even if ultrasonic waves are generated by an ultrasonic transducer attached to the outside of the bottom surface of the outer container, it cannot propagate in the vacuum layer formed between the inner container and the ultrasonic waves propagate in the liquid. It is because it cannot be made to.
[0006]
For this reason, conventionally, a method has been employed in which the weight of the residual liquid is measured by measuring the weight of the container containing the residual liquid and subtracting the known weight of the empty container from this value. However, this method has a problem that it takes time and effort to put the container on the balance every time the amount of the remaining liquid is measured. Accordingly, an object of the present invention is to provide a simple method for measuring the amount of residual liquid.
[0007]
[Means for Solving the Problems]
The method for measuring the amount of residual liquid in a container according to the present invention that solves the problems of the prior art described above is to generate vibration in a container that stores liquid in a sealed state and to create a frequency spectrum of the generated vibration. In this frequency spectrum, search for a region where only one vibration component whose frequency changes according to the amount of residual liquid appears, and no vibration component determined by the vibration characteristics of this container, and measure this region. Simple method by selecting the target area and measuring the residual liquid volume from the frequency of the vibration component appearing in the selected measurement target area by generating vibration in the container whose residual liquid volume is to be measured Thus, the remaining liquid amount can be measured.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to one preferred embodiment of the invention, generating vibration in the container is performed by striking the container wall of the container or a structure mechanically coupled to the container.
[0009]
According to another preferred embodiment of the present invention, the measurement target region is set so that the frequency of the vibration component that changes in accordance with the residual liquid amount in the container changes substantially linearly in accordance with the residual liquid amount. Is selected.
[0010]
According to still another preferred embodiment of the present invention, the measurement target region is selected so that the frequency of the vibration component that changes in accordance with the amount of remaining liquid in the container is present in the audible frequency band.
[0011]
According to still another preferred embodiment of the present invention, the generation of the frequency spectrum of the generated vibration is performed by a fast Fourier transform (FFT).
[0012]
According to still another preferred embodiment of the present invention, the container is a double container that forms a vacuum layer in the middle, and the structure to be hit is a residual liquid extraction tube that is inserted into the double container. It is.
[0013]
【Example】
FIG. 1 is a conceptual diagram of a system for carrying out a method for measuring the amount of residual liquid in a container according to an embodiment of the present invention. 1 is a sealed cylinder (container) for measuring the amount of residual liquid inside, 2 is a hammer for striking this cylinder, 3 is a microphone for receiving vibrations generated in the cylinder due to hammering, 4 is a microphone An amplifier 6 amplifies the received signal, and a fast Fourier transformer (FFT) 6 generates and displays a frequency spectrum of the amplified received signal.
[0014]
First, for the sake of simplicity, it is assumed that the cylinder 1 is not a double but a single normal cylinder. An appropriate amount of water is put into the cylinder 1 and sealed, and then the outer wall of the cylinder is struck with the hammer 2 only once. The hammer 2 is made of a material having an appropriate hardness such as wood, rubber, or metal. The hammer 1 generates vibrations in the cylinder 1. This vibration is received by the broadband microphone 3 arranged near the wall of the cylinder 2 and amplified by the broadband amplifier 4, and then a frequency spectrum is created by the FFT 5.
[0015]
FIG. 2 is an example of a frequency spectrum of vibrations generated in a sealed cylinder by striking. The cylinder has a length of 760 mm and a diameter of 136 mm, and this cylinder is empty. A vibration component whose frequency changes according to the amount of the remaining liquid appears in the central part near 1000 Hz, and four vibration components whose frequency does not change appear above and below the vibration component. These four vibration components maintain a constant value specific to the cylinder, which is determined according to the size / shape (length, diameter, etc.) and structure of the cylinder. Hereinafter, the vibration component that maintains a constant value unique to the cylinder is referred to as “natural vibration component of the container”.
[0016]
The hammering and frequency spectrum creation described above are repeated while changing the height (water level) of the water surface in the cylinder 1. The experimental data shown in FIG. 2 is a plot of the relationship between the water level and the frequency for the vibration component whose frequency changes according to the water level. When the water level accumulated in the cylinder 1 drops from 800 mm to zero mm (empty), the frequency increases almost linearly from 750 Hz to 1040 Hz.
[0017]
Then, referring again to the frequency spectrum of FIG. 2, there is only one frequency component whose frequency changes according to the water level in the frequency range from 750 Hz to 1040 Hz, which varies according to the water level in the cylinder. In addition, there is no natural frequency component of the container in this frequency range. Such a frequency range is selected as the measurement target region.
[0018]
Conventionally, it has been known that when water is poured into a glass cylinder whose upper end is opened and the wall surface is gradually raised, the frequency of the sound generated by the cylinder gradually increases. It is explained that this is because a standing wave of a sound wave having a water surface as a vibration node and an open end surface as an antinode is formed. In the experimental data of FIG. 3 described above, the relationship between the water level and the frequency in the above-described known phenomenon is reversed. In the case of FIG. 1, this is presumed to be because the sound that appears in the vicinity of 1000 Hz is not a fundamental wave but a beat (harm) that is generated when harmonics interfere with each other. In the present invention, it is presumed that the upper end of the container is not an open end but is sealed.
[0019]
For a cylinder having an arbitrary shape, size, and structure, the measurement target region of the frequency of the vibration component is determined by the same method as described above. After that, the wall of the cylinder 1 having an unknown residual liquid amount is hit with the hammer 2, the vibration generated at that time is received by the microphone 3, amplified by the amplifier 4, and a frequency spectrum is created by the FFT 5. Then, the liquid surface, that is, the remaining liquid amount is measured by measuring the frequency of the vibration component appearing in the measurement target region set in advance.
[0020]
FIG. 4 is a conceptual diagram of a system for carrying out a method for measuring the amount of residual liquid in a container according to another embodiment of the present invention. In this embodiment, the cylinder 1 for measuring the amount of residual liquid has a double-structured wall with a vacuum layer formed in the middle. A residual liquid extraction tube 1 a is inserted into the cylinder 1. In this embodiment, the cylinder 1 is not directly hit with the hammer 2, but the residual liquid extraction pipe 1a is hit.
[0021]
The subsequent processing is exactly the same as the processing already described with reference to FIG. That is, the vibration generated in the cylinder 1 by the hammer 2 is received by the broadband microphone 3, amplified by the broadband amplifier 4, and then the frequency spectrum is created by the FFT 5. Then, the measurement target region is set, and the residual liquid amount is measured based on the frequency that changes in accordance with the residual liquid amount of the vibration component that appears here.
[0022]
The case where FFT is used as means for creating a frequency spectrum has been described above. However, other suitable spectrum analyzers can be used.
[0023]
Moreover, the structure which operates a hammer manually is illustrated. However, the hammer can be automatically operated using an electromagnetic valve or the like. Further, instead of hitting with a hammer, it is also possible to hit the instrument wall with an ultrasonic vibrator or the like attached to an appropriate location such as a container or a residual liquid extraction tube.
[0024]
In addition, after setting the measurement target area, instead of using a spectrum analyzer such as FFT, the amplifier in the previous stage is given a non-linear characteristic that promotes the generation of beats, and the vibration component of the measurement target area is provided in the subsequent stage of the amplifier. There is a possibility that a simple configuration can be achieved in which a band-pass filter that passes only the filter is installed and the frequency of the vibration component is roughly determined by hearing.
[0025]
【The invention's effect】
As described above in detail, the method for measuring the amount of residual liquid in a container according to the present invention generates vibrations in a container whose residual liquid amount is to be measured, and generates vibration components that appear in a predetermined measurement target region. Since it is the structure which measures the residual liquid amount from a frequency, the effect that a residual liquid amount can be measured by simple operation is show | played.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a system for carrying out a method for measuring the amount of residual liquid in a container according to an embodiment of the present invention.
FIG. 2 is experimental data showing an example of a frequency spectrum of vibration generated by the impact of a cylinder in the system of FIG.
FIG. 3 is experimental data showing the relationship between the frequency of the frequency component of vibration generated by the impact of a cylinder in the system of FIG. 1 and the water level.
FIG. 4 is a conceptual diagram of a system for carrying out a method for measuring the amount of residual liquid in a container according to another embodiment of the present invention.
[Explanation of symbols]
1 cylinder (container)
1a Extraction tube for residual liquid
2 Hammer
3 Microphone
4 Amplifier
5 FFT

Claims (6)

液体を密閉状態で貯蔵する容器に振動を発生させることと、
この発生した振動の周波数スペクトルを作成することと、
この周波数スペクトルの中に、この容器内の液体の残量(以下「残液量」と称する)に応じて周波数が変化する振動成分が一つだけ出現し、かつこの容器の振動特性で定まる振動成分が出現しない領域を探索し、この領域を測定対象領域として選択することと、
残液量を測定しようとする前記容器に振動を発生させ、前記選択済みの測定対象領域内に出現する振動成分の周波数から残液量を測定することと
を含むことを特徴とする容器内の残液量の測定方法。
Generating vibration in a container that stores liquid in a sealed state;
Creating a frequency spectrum of this generated vibration;
In this frequency spectrum, only one vibration component whose frequency changes according to the remaining amount of liquid in the container (hereinafter referred to as “residual liquid amount”) appears, and the vibration is determined by the vibration characteristics of the container. Search for a region where no component appears, select this region as the measurement target region,
Generating vibration in the container to be measured for residual liquid volume, and measuring the residual liquid volume from the frequency of the vibration component appearing in the selected measurement target region. Method for measuring the amount of residual liquid.
請求項1において、
前記容器に振動を発生させることは、この容器の器壁またはこの容器に対して機械的に結合される構造物を打撃することによって行われることを特徴とする容器内の残液量の測定方法。
In claim 1,
The vibration generation in the container is performed by striking a wall of the container or a structure mechanically coupled to the container. .
請求項1と2のそれぞれにおいて、
前記測定対象領域は、前記容器内の残液量に応じて変化する振動成分の周波数がこの残液量に応じてほぼ直線的に変化するように選択されたことを特徴とする容器内の残液量の測定方法。
In each of claims 1 and 2,
The measurement target region is selected such that the frequency of a vibration component that changes in accordance with the amount of remaining liquid in the container changes substantially linearly in accordance with the amount of remaining liquid. Method for measuring liquid volume.
請求項1乃至3のそれぞれにおいて、
前記測定対象領域は、前記容器内の残液量に応じて変化する振動成分の周波数が可聴周波数帯域に存在するように選択されたことを特徴とする容器内の残液量の測定方法。
In each of claims 1 to 3,
The method for measuring a residual liquid amount in a container, wherein the measurement target region is selected such that a frequency of a vibration component that changes in accordance with the residual liquid amount in the container exists in an audible frequency band.
請求項1乃至4のそれぞれにおいて、
前記発生した振動の周波数スペクトルの作成は、高速フーリエ変換(FFT)によって行われることを特徴とする容器内の残液量の測定方法。
In each of claims 1 to 4,
The frequency spectrum of the generated vibration is generated by fast Fourier transform (FFT).
請求項1乃至5のそれぞれにおいて、
前記容器は中間に真空層を形成する二重容器であり、前記打撃対象の構造物はこの二重容器の内部に挿入される残液抽出管であることを特徴とする容器内の残液量の測定方法。
In each of claims 1 to 5,
The container is a double container that forms a vacuum layer in the middle, and the structure to be hit is a residual liquid extraction tube that is inserted into the double container. Measuring method.
JP2003084124A 2003-03-26 2003-03-26 Method for measuring the amount of liquid remaining in the container Expired - Fee Related JP3701947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084124A JP3701947B2 (en) 2003-03-26 2003-03-26 Method for measuring the amount of liquid remaining in the container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084124A JP3701947B2 (en) 2003-03-26 2003-03-26 Method for measuring the amount of liquid remaining in the container

Publications (2)

Publication Number Publication Date
JP2004294140A JP2004294140A (en) 2004-10-21
JP3701947B2 true JP3701947B2 (en) 2005-10-05

Family

ID=33399353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084124A Expired - Fee Related JP3701947B2 (en) 2003-03-26 2003-03-26 Method for measuring the amount of liquid remaining in the container

Country Status (1)

Country Link
JP (1) JP3701947B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171135U (en) * 2008-12-18 2011-10-20 日本アプライドフロー株式会社 Liquid level detector
JP5614229B2 (en) * 2010-10-19 2014-10-29 Nttエレクトロニクス株式会社 Inventory notification system
JP6666791B2 (en) * 2016-05-19 2020-03-18 ヤマハ発動機株式会社 Coating agent remaining amount check device, coating device, coating agent remaining amount checking method
CN114358471B (en) * 2021-11-23 2024-04-30 广州大学 Method and device for processing water-containing plastic bottles based on frequency detection

Also Published As

Publication number Publication date
JP2004294140A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US8166801B2 (en) Non-invasive fluid density and viscosity measurement
RU2193164C1 (en) Liquid level measuring device (versions)
JP5359884B2 (en) Measuring method and measuring assembly for gas pressure and / or molar mass in housing
EP0063584A1 (en) Apparatus for measuring and indicating the fluid level in vessels.
JP4339515B2 (en) Method and apparatus for determining the filling level of a container
JP3701947B2 (en) Method for measuring the amount of liquid remaining in the container
PL178308B1 (en) Non-invasive method of determining pressure inside a container and apparatus therefor
ES2320542T3 (en) PROCEDURE AND DEVICE FOR DETECTING VARIATIONS OR DAMAGES IN PRESSURE CONTAINERS DURING A PRESSURE TEST.
US7319934B2 (en) Method and device for determining the acoustic parameters of fluids in a resonator device
US10787899B2 (en) Resonant acoustic structure for measuring well or borehole depth
AU2014218392B2 (en) Noninvasive fluid density and viscosity measurement
JP3256608B2 (en) Ultrasonic water level measurement method and device
Hutchins A study of the cavity resonances of a violin and their effects on its tone and playing qualities
Mak et al. Measurement of the speed of sound in a metal rod
RU2354932C2 (en) Resonance method of ultrasonic thickness measurement
JP2020153693A (en) Estimation device and estimation method
JP2007309850A (en) Method for measuring property value of soft thin film, and apparatus for the same
Listewnik A design of an acoustic coupler for calibration of hydrophones at low frequencies
US11193911B2 (en) Method for determining the moisture content within a cooking chamber of a cooking device, and cooking device
Beltle et al. Investigations of in-oil methods for PD detection and vibration measurement
JPH1183594A (en) Measuring device
Shirley Method for measuring in situ acoustic impedance of marine sediments
Chatziioannou et al. Modelling the wall vibrations of brass wind instruments
Alon Analysis and synthesis of the handpan sound
SU1458714A1 (en) Method of measuring the sound absorbption factor and impedance of sound-absorbing materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees