JP3701478B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP3701478B2
JP3701478B2 JP29367798A JP29367798A JP3701478B2 JP 3701478 B2 JP3701478 B2 JP 3701478B2 JP 29367798 A JP29367798 A JP 29367798A JP 29367798 A JP29367798 A JP 29367798A JP 3701478 B2 JP3701478 B2 JP 3701478B2
Authority
JP
Japan
Prior art keywords
temperature
heater
substrate processing
heating
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29367798A
Other languages
Japanese (ja)
Other versions
JP2000124178A (en
Inventor
浩二 倉崎
健一郎 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP29367798A priority Critical patent/JP3701478B2/en
Publication of JP2000124178A publication Critical patent/JP2000124178A/en
Application granted granted Critical
Publication of JP3701478B2 publication Critical patent/JP3701478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、半導体基板や液晶ガラス基板などの薄板状基板(以下、単に「基板」という。)を処理液に浸漬して基板処理を行う基板処理装置に関する。
【0002】
【従来の技術】
処理液を用いて基板に種々の基板処理を行う基板処理装置には、貯留された処理液中に基板を浸漬して処理を行う一方、処理液をフィルターを通して循環使用するものがある。
【0003】
図3はかかる基板処理装置の一例を示すものであり、貯留された処理液中に複数の基板Wを浸漬して基板処理を行う浸漬槽102と、前記浸漬槽102からオーバーフローした処理液を回収して一時的に貯留する回収槽103とが隣接して形成された基板処理槽101を備え、前記回収槽103に貯留された処理液は処理液排出口104から循環ポンプ105、処理液を所定の基板処理温度に加熱する熱交換器106、フィルター107を備えた循環流路108を流れて前記浸漬槽102の処理液供給口109から再びアップフロー供給される。前記フィルター107によって、処理液が循環流路108を流れる際に、処理液中のパーティクルなどの不純物が除去される。なお、前記基板Wは昇降自在に設けられたリフタ110に保持され、基板処理の際には浸漬槽102に浸漬され、処理後に引き上げられる。
【0004】
【発明が解決しようとする課題】
前記熱交換器106としては、従来、抵抗加熱ヒータが使用されていた。抵抗加熱ヒータは、通常、流入口と流出口との間をつなぐ内部配管の回りに電気抵抗素子が付設された構造をしており、この電気抵抗素子に電力を供給することで、電気抵抗素子にジュール熱を発生させ、この熱によって内部配管を介してその中を流れる処理液が加熱される。この抵抗加熱ヒータは、処理液を比較的高温まで加熱することができ、また加熱効率も比較的良好であるものの、温度制御精度が劣るという問題がある。
【0005】
このため、近年、温度制御性に優れたペルチェ素子を発熱素子として有するヒータ(以下、「電子ヒータ」と呼ぶ場合がある。)が使用されるようになってきた。この電子ヒータは、流入口と排出口との間をつなぐ内部配管の外側に半導体素子の一種であるペルチェ素子が付設された構造をしており、その中を流れる処理液を加熱するものである。
【0006】
前記電子ヒータは、温度制御精度に優れるものの、ペルチェ素子の特性により機器の加熱限界温度(処理液の昇温、温調可能な上限温度)が比較的低い。基板処理によっては、電子ヒータの加熱限界温度以上の高温で基板処理を行う必要がある場合がある。このような場合、一つの基板処理槽にて処理液を所定の基板処理温度に加熱することができない。また、電子ヒータは加熱効率も比較的低く、所定の基板処理温度に処理液を昇温するのに時間がかかるため、生産性の低下が余儀なくされる。
【0007】
本発明はかかる問題に鑑みなされたもので、基板処理温度が電子ヒータの加熱限界温度を越える場合においても処理液を所定の基板処理温度に加熱することができ、また電子ヒータにより循環流路を流れる処理液を基板処理温度になるように温度制御するに際し、処理液を速やかに基板処理温度に昇温することができる基板処理装置を提供するものである。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、処理液中に基板を浸漬して基板処理を行う浸漬槽と、前記浸漬槽からオーバーフローした処理液を回収する回収槽と、前記回収槽に回収された処理液を吸い込んで前記浸漬槽に供給する循環流路とを備えた基板処理装置であって、前記循環流路の一部に加熱流路を設け、この加熱流路にペルチェ素子を備えた第1ヒータとジュール熱発生素子を備えた第2ヒータとを設けたものである。
【0009】
この発明によると、加熱流路にペルチェ素子を備えた第1ヒータとジュール熱発生素子を備えた第2ヒータとが設けられているので、基板処理温度が第1ヒータの加熱限界温度を越える場合には、第2ヒータを使用することができ、一つの浸漬槽で広範囲の基板処理温度に基づく基板処理を行うことができる。また、第1ヒータにより処理液の温度制御を行う場合においても、処理液が基板処理温度に昇温されるまで、加熱効率の良好なジュール熱発生素子を備えた第2ヒータによる加熱を利用することができるため、基板処理温度までの昇温時間を短縮することができ、生産性の向上に寄与することができる。
【0010】
請求項1に係る発明は、さらに、処理液の温度を検出する液温検出器と、基板処理温度および第1ヒータの加熱限界温度以下に設定される使用上限温度を入力する入力手段と、前記入力手段により入力された使用上限温度を記憶する記憶手段と、前記入力手段により入力された基板処理温度が前記記憶手段に記憶された前記使用上限温度以下の場合に前記液温検出器によって検出された処理液温度が前記基板処理温度になるように前記第1ヒータを温度制御する第1温度制御部と、前記基板処理温度が前記使用上限温度を越える場合に前記処理液温度が前記基板処理温度になるように前記第2ヒータを温度制御する第2温度制御部とを備えたものである。
【0011】
さらに備えた上記構成によると、予め第1ヒータの使用上限温度を記憶手段に記憶させておくことにより、基板処理温度に応じて第1ヒータあるいは第2ヒータが選択使用され、処理液が所定の基板処理温度になるように温度制御されるので、広範囲の基板処理温度に基づく基板処理を行うことができる。しかも、オぺレータは基板処理温度、第1ヒータの使用上限温度を入力するだけでよく、基板処理温度に応じて第1ヒータおよび第2ヒータを操作する必要がないため、操作性、処理の安定性にも優れる。
【0012】
請求項2に係る発明は、請求項1に記載の基板処理装置において、前記第2温度制御部は前記基板処理温度が前記使用上限温度を越える場合又は前記基板処理温度が前記使用上限温度以下でかつ前記処理液温度が前記基板処理温度未満の場合に前記処理液温度が前記基板処理温度になるように前記第2ヒータを温度制御するものである。
【0013】
この発明によると、基板処理温度が第1ヒータの使用上限温度以下で、第1ヒータによる温度制御を行う場合でも、基板処理温度までの昇温を加熱効率の良好な第2ヒータを利用して昇温することができるため、所定の基板処理温度まで速やかに昇温することができ、生産性に優れる。
【0014】
請求項3に係る発明は、請求項1又は2に記載記載された基板処理装置において、前記加熱流路は前記第1ヒータが備えられた第1加熱流路と、この第1加熱流路と並列に設けられ、前記第2ヒータが備えられた第2加熱流路とを備え、前記第1加熱流路の前記第1ヒータの上流側に第1流路選択開閉弁が設けられ、前記第2加熱流路の前記第2ヒータの上流側に第2流路選択開閉弁が設けられ、前記基板処理温度が前記使用上限温度を越える場合に前記第1流路選択開閉弁を閉状態とし、前記第2流路選択開閉弁を開状態とする弁制御部が設けられたものである。
【0015】
前記第1ヒータには加熱限界温度があり、基板処理温度が前記加熱限界温度以下の場合には、基板処理温度に加熱された処理液が第1ヒータに流れても問題はない。しかし、基板処理温度が加熱限界温度よりも高い場合には、基板処理温度に加熱された処理液が第1ヒータに流れると、処理液が第1ヒータを加熱限界温度以上の温度に逆に加熱するようになり、構造的あるいは電気的に問題が生じるおそれがあり、ヒータの寿命が低下したり、著しい場合にはヒータが損傷するおそれがある。
【0016】
かかる問題に対して、この発明では、第2ヒータを用いて、処理液を第1ヒータの使用上限温度を越える高温に加熱する場合、弁制御手段により第1流路選択開閉弁を閉状態とし、第2流路開閉弁を開状態とするので、循環流路を流れる高温の処理液は第2加熱流路のみを流れ、第1加熱流路には流れないため、第1ヒータは高温の処理液の流通によって加熱されず、ヒータ寿命の低下やヒータの損傷を防止することができる。
【0017】
請求項4に係る発明は、請求項3に記載記載された基板処理装置において、前記第1加熱流路の第1ヒータの下流側に浸入防止開閉弁が設けられ、前記弁制御部は前記基板処理温度が前記使用上限温度を越える場合に前記第1流路選択開閉弁および浸入防止開閉弁を閉状態とし、前記第2流路選択開閉弁を開状態とするものである。
【0018】
この発明によると、第2ヒータにより処理液を第1ヒータの使用上限温度を越えるような高温の基板処理温度に加熱する場合、弁制御部により第1加熱流路の第1流路選択開閉弁および浸入防止開閉弁を閉状態とすることで、第1加熱流路内の第1流路選択開閉弁と流入開閉弁との間、すなわち第1ヒータの設置部は完全に遮断された状態となる。このため、前記合流部から第1ヒータの設置部までの流路長が短い場合であっても、第1加熱流路と第2加熱流路との合流部から第1加熱流路側に回り込んだ高温の処理液が第1ヒータの設置部まで浸入するおそれは皆無であり、高温の処理液による第1ヒータへの加熱を確実に防止することができる。このため、配管のコンパクト化を達成しつつ、ヒータ寿命の低下やヒータの損傷をより確実に防止することができる。
【0019】
【発明の実施の形態】
図1は、実施形態にかかる基板処理装置の要部構成を示しており、この基板処理装置は、複数の基板Wを処理液中に浸漬して基板処理を行う浸漬槽2と、この浸漬槽2からオーバーフローした処理液を回収して一時的に貯留する回収槽3とからなる基板処理槽1を有し、前記回収槽3に貯留された処理液を前記浸漬槽2にアップフロー供給する循環流路30を備えている。前記回収槽3は浸漬槽2の一側壁を構成する仕切壁5を介して浸漬槽2に隣接して配置されている。前記浸漬槽2は平面視方形状をなしており、前記仕切壁5を除く他の側壁にはオーバーフローした処理液を回収槽3に導入する回収溝6が付設されている。なお、前記基板処理槽1は耐薬品性に優れたフッ素樹脂や石英などによって形成される。
【0020】
前記浸漬槽2の底部には処理液供給口8が設けられ、処理液供給口8の近傍上部には処理液供給口8から供給された処理液が上方に噴出するのを防止する噴出防止板9が処理液供給口8を覆うように付設されている。また、浸漬槽2の下部と基板Wを浸漬する上部との間には、多数の細孔が開設された整流板10が付設されている。この整流板10は、前記噴出防止板9によって横方向に分流した処理液を上方に均一に流れるようにするものである。また、浸漬槽2には、貯留された処理液の温度を検出する液温検出器11が付設されている。なお、浸漬槽2には、循環流路30とは別に、新しい処理液を浸漬槽2の上部開口から供給する処理液供給管(図示省略)が設けられている。
【0021】
前記循環流路30は、前記回収槽3の底部に設けられた処理液排出口14から、循環ポンプ31、第1加熱流路32および第2加熱流路33、フィルター34を介して前記浸漬槽2の処理液供給口8に連通している。前記第1加熱流路32および第2加熱流路33は、循環ポンプ31の下流側の分岐部とフィルター34の上流側の合流部との間に並列配置されている。前記第1加熱流路32には、ぺルチェ素子を備えた電子ヒータである第1ヒータ36が備えられ、前記第2加熱流路33には抵抗加熱ヒータや誘導加熱ヒータ等のジュール熱発生素子を有する第2ヒータ37が備えられている。なお、前記抵抗加熱加熱ヒータは、流入口と流出口との間に設けられた内部配管に、ニクロム線やカンタル線等のような電気抵抗により発熱する線材あるいはそれらと同材質の面状発熱体を付設して、ジュール熱で内部配管内の液体を加熱するものである。また、前記誘導加熱ヒータは、流入口と流出口との間に設けられた内部配管あるいはその内部に設けられた金属発熱部材を、内部配管の外周部に付設された高周波コイルにより誘導加熱し、内部配管や金属発熱部材にジュール熱を発生させ、内部配管内の液体を加熱するものである。なお、前記金属発熱部材を誘導加熱する場合は、前記内部配管は合成樹脂等の非導電性材料により形成される。
【0022】
前記第1加熱流路32の第1ヒータ36の上流側には第1流路選択開閉弁38が設けられ、下流側には浸入防止開閉弁40が設けられている。一方、第2加熱流路33の第2ヒータ37の上流側には第2流路選択開閉弁39が設けられている。また、前記加熱流路32,33の合流部とフィルター34との間には循環開閉弁43が設けられ、この開閉弁43の下流側には廃液開閉弁44を介して廃液管45が接続されている。また、前記循環流路30の循環ポンプ31の吸い込み側とフィルター34の排出側にはバイパス開閉弁46を有するバイパス管47が接続されている。
【0023】
前記基板処理装置には、同装置が備える各機器の動作制御や、第1ヒータ36、第2ヒータ37等を用いて処理液温度を制御する制御部51が設けられている。処理液温度制御に関して入出力関係を述べれは、図2に示すように、制御部51には、入力機器として前記液温検出器11、基板処理温度TWや第1ヒータ36の使用上限温度TU等を入力するキーボード、スイッチ等の入力手段52が接続される。また出力機器として前記第1ヒータ36、第2ヒータ37、第1流路選択開閉弁38、第2流路選択開閉弁39、浸入防止開閉弁40および各機器の動作状態やデータ処理結果を表示するCRTや液晶表示装置等の表示手段(図示省略)が接続される。前記制御部51は、CPU、記憶装置、入出力インターフェイスを備え、記憶装置には処理液温度制御プログラムが格納されている。
【0024】
基板処理の際には、前記循環開閉弁43を開状態とし、前記バイパス開閉弁46および廃液開閉弁44を閉状態とし、循環ポンプ31を作動させて、回収槽3に貯留された処理液を処理液排出口14から循環流路30内に吸い込み、後述する処理液温度制御により所定の基板処理温度に加熱し、フィルター34を通して処理液中のパーティクル等を濾過しつつ、浸漬槽2の処理液供給口8から浸漬槽2内にアップフロー供給する。そして、浸漬槽2からオーバーフローして回収槽3に回収された処理液は再び循環流路30を通って濾過された後、浸漬槽2に供給される。このように処理液は一定時間循環使用に供され、その間に複数の基板Wを一括して浸漬槽2に浸漬し、処理後に搬出する基板処理が所定回数繰り返される。一定時間使用後の処理液は、基板処理槽1から廃棄され、必要に応じて純水洗浄された後、新しい処理液が供給される。処理液を廃棄する場合、循環ポンプ31を停止し、循環開閉弁43を閉動作し、バイパス開閉弁46および廃液開閉弁44を開動作して浸漬槽2、回収槽3および循環流路30内の処理液を前記廃液管45から排出する。
【0025】
ここで、前記制御部51による処理液温度制御を図2に示した制御機能ブロック図を参照して説明する。なお、この制御機能ブロック図には、処理液温度制御以外の制御機能については記載省略している。
【0026】
処理液温度制御に際し、オぺレータは入力手段52より、第1ヒータ36の使用上限温度TUおよび基板処理温度TWを制御部51に入力する。前記使用上限温度TUは、第1ヒータ36の加熱限界温度あるいはそれ以下の近傍温度に設定される。使用上限温度TUは、記憶手段54に記憶される。前記基板処理温度TWは比較手段55に入力されるとともに、温度差演算手段56に入力される。前記比較手段55は使用上限温度TUと基板処理温度TWとを比較し、TU<TWあるいはTU≧TWを判定し、一方前記温度差演算手段56は基板処理温度TWと液温検出器11によって入力された処理液温度TLとの温度差(TW−TL)を演算する。前記比較手段55によって判定された結果を表す判定信号(例えば、TU<TWの場合を「1」、TU≧TWの場合を「0」とする。)および前記温度差演算手段56によって演算された(TW−TL)値は第1温調部58、第2温調部59および弁選択操作部60に出力される。
【0027】
前記第2温調部59では、TU<TW(判定信号が「1」)の場合、並びにTU≧TW(判定信号が「0」)かつ(TW−TL)値が正値のとき、(TW−TL)値が0となるように第1ヒータ36を温度調節する。すなわち、基板処理温度TWが第1ヒータ36の使用上限温度TUを越える場合に、第2ヒータ37を用いて処理液を基板処理温度TWになるように加熱する。また、基板処理温度TWが使用上限温度TU以下の場合においても、処理液温度TLが基板処理温度TWに達するまでは第2ヒータ37を用いて処理液が基板処理温度TWになるように加熱する。なお、比較手段55、温度差演算手段56および第2温調部59は、本発明の第2温度制御部に相当するものである。
【0028】
一方、第1温調部58は、TU≧TW(判定信号が「0」)の場合、(TW−TL)値が0となるように第1ヒータ36を温度調節する。すなわち、基板処理温度TWが第1ヒータ36の使用上限温度TU以下の場合に、第1ヒータ36を用いて処理液を基板処理温度TWになるように加熱する。この場合、上記のように、第2ヒータ37による加熱が併用されるので、基板処理温度TWまでの昇温時間を第1ヒータ36を単独使用する場合に比して短縮することができる。なお、比較手段55、温度差演算手段56および第1温調部58は、本発明の第1温度制御部に相当するものである。
【0029】
本実施形態では、第1ヒータ36の使用上限温度TUを基準として基板処理温度TWがTU以下の場合に第1ヒータ36を用い、TU超の場合に第2ヒータ37を用いるので、前記使用上限温度TU以下およびTUを越える広範囲の基板処理温度TWに対して、処理液を所定のTWにするように温度制御することができる。さらに、TWがTU以下の場合でも、第1ヒータ36による加熱のみならず、処理液温度TLがTWになるまで第2ヒータ37を併用することができるので、処理液がTWに加熱されるまでの昇温時間を第1ヒータ36を単独使用する場合に比して短縮することができ、生産性に優れる。
【0030】
前記弁選択操作部60は、第1ヒータ36および第2ヒータ37の使用に応じて第1加熱流路32及び/又は第2加熱流路33に処理液を流すためのものである。すなわち、TU<TW(判定信号が「1」)の場合には、第2流路選択開閉弁39を開状態に、第1流路選択開閉弁38および浸入防止開閉弁40を閉状態に操作する。これにより、処理液が第2ヒータ37により加熱される一方、TUを越える高温の処理液が、第1加熱流路32内の第1ヒータ36の設置部に浸入することを完全に阻止することができ、第1ヒータ36が高温の処理液により加熱されることを確実に防止することができる。
【0031】
一方、TU≧TW(判定信号が「0」)の場合で、(TW−TL)値が正値のとき、すなわち処理液温度TLが基板処理温度TW未満のときには第2流路選択開閉弁38、第1流路選択開閉弁38および浸入防止開閉弁40の全てを開状態に操作する。これにより、処理液が基板処理温度TWに到達するまで、第1ヒータ36による加熱に加えて、第2ヒータ37による急速加熱を併用することができるようになる。そして、(TW−TL)値が0あるいは負値になったとき、すなわち処理液が基板処理温度TWに到達した後には第2流路選択開閉弁39を閉状態にする。これにより、循環流路30を流れる処理液を第1加熱流路32のみに流して、第1ヒータ36により効率的かつ高精度に温度制御することができる。なお、比較手段55、温度差演算手段56および弁選択操作部60は、本発明の弁制御部に相当するものである。
【0032】
上記実施形態によれば、第1加熱流路32に第1流路選択開閉弁38および浸入防止開閉弁40を、第2加熱流路33に第2流路選択開閉弁39を設けたが、第1加熱流路32において、両流路の合流部から第1ヒータ36の設置部までの流路長を長くとることができれば、必ずしも浸入防止開閉弁40を設けなくてもよい。第2ヒータ37によって加熱された高温の処理液が前記合流部より第1加熱流路32側に回り込んでも、処理液は第1加熱流路32内を流れることができないので、高温の処理液が前記合流部から第1ヒータ36の設置部まで浸入することができないからである。
【0033】
また、上記実施形態によれば、第1加熱流路32に第1流路選択開閉弁38を、第2加熱流路33に第2流路選択開閉弁39を別個に設けたが、第1加熱流路32および第2加熱流路33の分岐部に、処理液が流れる流路として第1加熱流路32のみ、第2加熱流路33のみ、あるいは第1加熱流路32および第2加熱流路33の両流路を選択できる複合弁を設けるようにしてもよい。この場合、前記複合弁は第1流路選択開閉弁38および第2流路選択開閉弁39に相当する。
【0034】
また、第1ヒータ36に加熱限界温度以上の処理液を流しても、構造的、電気的に問題がない場合、例えば第1ヒータ36に冷却能に優れた冷却手段が付設されている場合には、前記開閉弁38,39,40は必ずしも必要ではない。また、このような場合には、加熱流路32,33を並列に設ける必要はなく、直列に設けてもよい。もっとも、加熱流路を並列に設ける場合は、第1ヒータ36又は第2ヒータ37による加熱効率を高めるには、第1流路選択開閉弁38および第2流路選択開閉弁39を設け、使用するヒータに応じて加熱流路に処理液を流すようにするのがよい。
【0035】
また、上記実施形態では、基板処理温度TWが使用上限温度TU以下で、処理液温度TLが基板処理温度TW未満の場合に、第1ヒータ36のほかに第2ヒータ37を用いて処理液が基板処理温度TWになるように温度制御するものであるが、この場合、処理液は昇温過程で定常状態になっていないので、第2ヒータ37の加熱目標温度を必ずしも基板処理温度TWにする必要はなく、基板処理温度TWの近傍の温度としてもよい。また、第2ヒータ37および第1ヒータ36によって処理液を加熱する必要はなく、加熱効率の良好な第2ヒータ37のみによって処理液を加熱するようにし、処理液がTWあるいはその近傍温度になった後、処理液が基板処理温度TWになるように第1ヒータ36の温度制御を開始するようにしてもよい。
【0036】
【発明の効果】
本発明の基板処理装置によれば、基板処理温度が第1ヒータの加熱限界温度を越える場合おいても、第2ヒータを用いて処理液を所定の基板処理温度に加熱することができる。また、基板処理温度が前記加熱限界温度以下で、第1ヒータにより処理液が基板処理温度になるように温度調節する場合においても、基板処理温度に昇温する際に加熱効率の良好な第2ヒータを利用することができるので、昇温時間の短縮、ひいては生産性の向上を図ることができる。しかも、予め第1ヒータの使用上限温度を記憶手段に記憶させておくことにより、基板処理温度に応じて第1ヒータあるいは第2ヒータが選択使用され、処理液が所定の基板処理温度になるように第1、第2温度制御部により温度制御されるので、広範囲の基板処理温度に基づく基板処理を行うことができる。しかも、オぺレータは基板処理温度、第1ヒータの使用上限温度を入力するだけでよく、基板処理温度に応じて第1ヒータおよび第2ヒータを操作する必要がないため、操作性、処理の安定性にも優れる。
【図面の簡単な説明】
【図1】実施形態にかかる基板処理装置の要部構成図である。
【図2】基板処理装置に設けられた制御部の処理液温度制御を実現する制御機能ブロック図である。
【図3】従来の基板処理装置の要部構成図である。
【符号の説明】
1 基板処理槽
2 浸漬槽
3 回収槽
11 液温検出器
30 循環流路
32 第1加熱流路
33 第2加熱流路
36 第1ヒータ
37 第2ヒータ
38 第1流路選択開閉弁
39 第2流路選択開閉弁
40 浸入防止開閉弁
51 制御部
52 入力手段
54 記憶手段
55 比較手段
56 温度差演算手段
58 第1温調部(58、55、56とで第1温度制御部)
59 第2温調部(59、55、56とで第2温度制御部)
60 弁選択操作部(60、55、56とで弁制御部)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a substrate processing apparatus that performs substrate processing by immersing a thin plate substrate (hereinafter simply referred to as “substrate”) such as a semiconductor substrate or a liquid crystal glass substrate in a processing solution.
[0002]
[Prior art]
Some substrate processing apparatuses that perform various kinds of substrate processing on a substrate using a processing solution perform processing by immersing the substrate in a stored processing solution while circulating the processing solution through a filter.
[0003]
FIG. 3 shows an example of such a substrate processing apparatus, in which a plurality of substrates W are immersed in a stored processing solution to perform substrate processing, and a processing solution overflowing from the immersion bath 102 is recovered. The substrate processing tank 101 is formed adjacent to the recovery tank 103 that temporarily stores the processing tank. The processing liquid stored in the recovery tank 103 is supplied from the processing liquid discharge port 104 to the circulation pump 105 and the processing liquid. The heat exchanger 106 that heats the substrate to the substrate processing temperature and the circulation channel 108 provided with the filter 107 flow through the processing liquid supply port 109 of the immersion bath 102 to be supplied again up-flow. The filter 107 removes impurities such as particles in the processing liquid when the processing liquid flows through the circulation channel 108. The substrate W is held by a lifter 110 provided so as to be movable up and down, immersed in the immersion tank 102 during substrate processing, and pulled up after the processing.
[0004]
[Problems to be solved by the invention]
Conventionally, a resistance heater has been used as the heat exchanger 106. The resistance heater usually has a structure in which an electric resistance element is attached around an internal pipe connecting the inlet and the outlet. By supplying electric power to the electric resistance element, the electric resistance element Joule heat is generated, and the treatment liquid flowing through the internal pipe is heated by this heat. Although this resistance heater can heat the treatment liquid to a relatively high temperature and has a relatively good heating efficiency, there is a problem that the temperature control accuracy is inferior.
[0005]
For this reason, in recent years, a heater having a Peltier element excellent in temperature controllability as a heating element (hereinafter sometimes referred to as “electronic heater”) has been used. This electronic heater has a structure in which a Peltier element, which is a kind of semiconductor element, is attached to the outside of an internal pipe that connects between an inlet and an outlet, and heats the processing liquid flowing in the electronic heater. .
[0006]
Although the electronic heater is excellent in temperature control accuracy, the heating limit temperature of the device (temperature rise of the processing liquid, upper limit temperature capable of temperature adjustment) is relatively low due to the characteristics of the Peltier element. Depending on the substrate processing, it may be necessary to perform the substrate processing at a temperature higher than the heating limit temperature of the electronic heater. In such a case, the processing liquid cannot be heated to a predetermined substrate processing temperature in one substrate processing tank. In addition, the heating efficiency of the electronic heater is relatively low, and it takes time to raise the temperature of the processing liquid to a predetermined substrate processing temperature, so that productivity is inevitably reduced.
[0007]
The present invention has been made in view of such problems. Even when the substrate processing temperature exceeds the heating limit temperature of the electronic heater, the processing liquid can be heated to a predetermined substrate processing temperature. It is an object of the present invention to provide a substrate processing apparatus capable of quickly raising the temperature of the processing liquid to the substrate processing temperature when the temperature of the flowing processing liquid is controlled to the substrate processing temperature.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is an immersion tank for performing substrate processing by immersing a substrate in a processing liquid, a recovery tank for recovering a processing liquid overflowing from the immersion tank, and a processing liquid recovered in the recovery tank. A substrate processing apparatus comprising a circulation flow path for sucking and supplying to the immersion tank, wherein a heating flow path is provided in a part of the circulation flow path, and a first heater having a Peltier element in the heating flow path; And a second heater provided with a Joule heat generating element.
[0009]
According to the present invention, since the first heater having the Peltier element and the second heater having the Joule heat generating element are provided in the heating flow path, the substrate processing temperature exceeds the heating limit temperature of the first heater. The second heater can be used, and substrate processing based on a wide range of substrate processing temperatures can be performed in one immersion bath. Further, even when the temperature of the processing liquid is controlled by the first heater, the heating by the second heater provided with a Joule heat generating element with good heating efficiency is used until the processing liquid is heated to the substrate processing temperature. Therefore, the temperature raising time to the substrate processing temperature can be shortened, which can contribute to the improvement of productivity.
[0010]
The invention according to claim 1 further includes a liquid temperature detector for detecting the temperature of the processing liquid, an input means for inputting a substrate processing temperature and a use upper limit temperature set below a heating limit temperature of the first heater, Storage means for storing the upper limit temperature used by the input means, and when the substrate processing temperature input by the input means is equal to or lower than the upper limit temperature for use stored in the storage means, is detected by the liquid temperature detector. A first temperature control unit for controlling the temperature of the first heater so that the processing liquid temperature becomes the substrate processing temperature; and when the substrate processing temperature exceeds the upper limit temperature for use, the processing liquid temperature is the substrate processing temperature. And a second temperature control unit for controlling the temperature of the second heater.
[0011]
According to the above-described configuration , the upper limit use temperature of the first heater is stored in the storage means in advance, so that the first heater or the second heater is selectively used according to the substrate processing temperature, and the processing liquid is supplied to the predetermined temperature. Since the temperature is controlled so as to be the substrate processing temperature, substrate processing based on a wide range of substrate processing temperatures can be performed. In addition, the operator only has to input the substrate processing temperature and the upper limit use temperature of the first heater, and it is not necessary to operate the first heater and the second heater according to the substrate processing temperature. Excellent stability.
[0012]
The invention according to claim 2, in the substrate processing apparatus according to claim 1, wherein the second temperature control unit in the case or the substrate processing temperature the substrate processing temperature exceeds the upper limit use temperature the use upper limit temperature or less In addition, when the processing liquid temperature is lower than the substrate processing temperature, the temperature of the second heater is controlled so that the processing liquid temperature becomes the substrate processing temperature.
[0013]
According to the present invention, even when the substrate processing temperature is equal to or lower than the upper limit use temperature of the first heater and the temperature control by the first heater is performed, the temperature rise up to the substrate processing temperature is utilized using the second heater having good heating efficiency. Since the temperature can be raised, the temperature can be quickly raised to a predetermined substrate processing temperature, and the productivity is excellent.
[0014]
According to a third aspect of the present invention, in the substrate processing apparatus according to the first or second aspect , the heating channel includes a first heating channel provided with the first heater, and the first heating channel. A second heating channel provided in parallel with the second heater, and a first channel selection opening / closing valve is provided upstream of the first heater in the first heating channel, A second flow path selection opening / closing valve is provided upstream of the second heater in the 2 heating flow path, and the first flow path selection opening / closing valve is closed when the substrate processing temperature exceeds the use upper limit temperature; A valve control unit for opening the second flow path selection opening / closing valve is provided.
[0015]
The first heater has a heating limit temperature. When the substrate processing temperature is equal to or lower than the heating limit temperature, there is no problem even if the processing liquid heated to the substrate processing temperature flows to the first heater. However, when the substrate processing temperature is higher than the heating limit temperature, when the processing liquid heated to the substrate processing temperature flows to the first heater, the processing liquid reversely heats the first heater to a temperature equal to or higher than the heating limit temperature. As a result, structural or electrical problems may occur, and the life of the heater may be shortened or, if it is significant, the heater may be damaged.
[0016]
With respect to such a problem, in the present invention, when the processing liquid is heated to a high temperature exceeding the upper limit use temperature of the first heater using the second heater, the first flow path selection on-off valve is closed by the valve control means. Since the second flow path opening / closing valve is opened, the high temperature processing liquid flowing through the circulation flow path flows only through the second heating flow path and does not flow through the first heating flow path. It is not heated by the flow of the treatment liquid, and it is possible to prevent a decrease in heater life and damage to the heater.
[0017]
Invention, in the substrate processing apparatus described according to claim 3, wherein the intrusion prevention valve downstream of the first first heater heating channel is provided, the valve control unit is the substrate according to claim 4 When the processing temperature exceeds the use upper limit temperature, the first flow path selection on / off valve and the intrusion prevention on / off valve are closed, and the second flow path selection on / off valve is opened.
[0018]
According to the present invention, when the processing liquid is heated by the second heater to a high substrate processing temperature that exceeds the upper limit temperature of use of the first heater, the first control channel opening / closing valve of the first heating channel is controlled by the valve controller. In addition, by closing the intrusion prevention on / off valve, the first heater selection on / off valve in the first heating channel and the inflow on / off valve, that is, the installation portion of the first heater is completely shut off. Become. For this reason, even if the flow path length from the said junction to the installation part of the 1st heater is short, it wraps around from the junction of the 1st heating channel and the 2nd heating channel to the 1st heating channel side However, there is no possibility that the high-temperature processing liquid will enter the installation area of the first heater, and heating of the first heater with the high-temperature processing liquid can be reliably prevented. For this reason, it is possible to more reliably prevent the heater life from being reduced and the heater from being damaged while reducing the size of the piping.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a main configuration of a substrate processing apparatus according to an embodiment. The substrate processing apparatus includes a dipping tank 2 that performs substrate processing by dipping a plurality of substrates W in a processing solution, and the dipping tank. The substrate processing tank 1 is composed of a recovery tank 3 that recovers and temporarily stores the processing liquid overflowed from 2, and the processing liquid stored in the recovery tank 3 is supplied to the immersion tank 2 by upflow. A flow path 30 is provided. The collection tank 3 is disposed adjacent to the immersion tank 2 via a partition wall 5 constituting one side wall of the immersion tank 2. The immersion tank 2 has a rectangular shape in plan view, and a recovery groove 6 for introducing the overflowed processing liquid into the recovery tank 3 is attached to the other side wall except the partition wall 5. The substrate processing tank 1 is made of fluororesin or quartz having excellent chemical resistance.
[0020]
A treatment liquid supply port 8 is provided at the bottom of the immersion tank 2, and an ejection prevention plate for preventing the treatment liquid supplied from the treatment liquid supply port 8 from being ejected upward at the upper part in the vicinity of the treatment liquid supply port 8. 9 is attached so as to cover the processing liquid supply port 8. Further, between the lower part of the immersion tank 2 and the upper part in which the substrate W is immersed, a rectifying plate 10 having a large number of pores is attached. The current plate 10 allows the processing liquid branched in the lateral direction by the ejection prevention plate 9 to flow uniformly upward. The immersion tank 2 is provided with a liquid temperature detector 11 that detects the temperature of the stored processing liquid. The immersion tank 2 is provided with a treatment liquid supply pipe (not shown) for supplying a new treatment liquid from the upper opening of the immersion tank 2 separately from the circulation channel 30.
[0021]
The circulation channel 30 is connected to the immersion tank from a treatment liquid discharge port 14 provided at the bottom of the recovery tank 3 via a circulation pump 31, a first heating channel 32, a second heating channel 33, and a filter 34. 2 to the processing liquid supply port 8. The first heating flow path 32 and the second heating flow path 33 are arranged in parallel between the downstream branch portion of the circulation pump 31 and the upstream merge portion of the filter 34. The first heating flow path 32 includes a first heater 36 that is an electronic heater including a Peltier element, and the second heating flow path 33 includes a Joule heat generating element such as a resistance heater or an induction heater. The 2nd heater 37 which has is provided. The resistance heating heater is a wire rod that generates heat due to electric resistance such as nichrome wire or Kanthal wire, or a planar heating element made of the same material as the inner pipe provided between the inlet and the outlet. The liquid in the internal pipe is heated with Joule heat. Further, the induction heater is configured to induction heat an internal pipe provided between the inlet and the outlet or a metal heating member provided therein by a high-frequency coil attached to an outer periphery of the internal pipe, Joule heat is generated in the internal piping and metal heating member to heat the liquid in the internal piping. When induction heating the metal heat generating member, the internal pipe is formed of a nonconductive material such as synthetic resin.
[0022]
A first channel selection opening / closing valve 38 is provided on the upstream side of the first heater 36 in the first heating channel 32, and an intrusion prevention opening / closing valve 40 is provided on the downstream side. On the other hand, a second channel selection opening / closing valve 39 is provided upstream of the second heater 37 in the second heating channel 33. A circulation on / off valve 43 is provided between the junction of the heating channels 32 and 33 and the filter 34, and a waste liquid pipe 45 is connected to the downstream side of the on / off valve 43 via a waste liquid on / off valve 44. ing. A bypass pipe 47 having a bypass opening / closing valve 46 is connected to the suction side of the circulation pump 31 and the discharge side of the filter 34 in the circulation channel 30.
[0023]
The substrate processing apparatus is provided with a control unit 51 for controlling the operation of each device provided in the apparatus and controlling the processing liquid temperature using the first heater 36, the second heater 37, and the like. As shown in FIG. 2, the input / output relationship regarding the processing liquid temperature control is described. As shown in FIG. An input means 52 such as a keyboard or a switch for inputting is input. As the output devices, the first heater 36, the second heater 37, the first flow path selection on / off valve 38, the second flow path selection on / off valve 39, the intrusion prevention on / off valve 40, and the operation state and data processing result of each device are displayed. Display means (not shown) such as a CRT or a liquid crystal display device are connected. The control unit 51 includes a CPU, a storage device, and an input / output interface, and the storage device stores a processing liquid temperature control program.
[0024]
During substrate processing, the circulation on / off valve 43 is opened, the bypass on / off valve 46 and the waste liquid on / off valve 44 are closed, the circulation pump 31 is operated, and the processing liquid stored in the recovery tank 3 is removed. The processing liquid is sucked into the circulation channel 30 from the processing liquid discharge port 14, heated to a predetermined substrate processing temperature by processing liquid temperature control described later, and the processing liquid in the dipping tank 2 is filtered while filtering particles and the like in the processing liquid through the filter 34. Upflow is supplied into the immersion tank 2 from the supply port 8. Then, the processing liquid overflowing from the immersion tank 2 and recovered in the recovery tank 3 is filtered again through the circulation channel 30 and then supplied to the immersion tank 2. As described above, the processing liquid is circulated and used for a certain period of time, and the substrate processing in which the plurality of substrates W are immersed in the immersion bath 2 in the meantime and then carried out after the processing is repeated a predetermined number of times. The processing liquid after use for a certain period of time is discarded from the substrate processing tank 1, washed with pure water as necessary, and then supplied with a new processing liquid. When discarding the processing liquid, the circulation pump 31 is stopped, the circulation on-off valve 43 is closed, the bypass on-off valve 46 and the waste liquid on-off valve 44 are opened, and the inside of the immersion tank 2, the collection tank 3 and the circulation flow path 30 The treatment liquid is discharged from the waste liquid pipe 45.
[0025]
Here, the process liquid temperature control by the control unit 51 will be described with reference to the control function block diagram shown in FIG. In the control function block diagram, control functions other than the processing liquid temperature control are not shown.
[0026]
When the processing liquid temperature is controlled, the operator inputs the use upper limit temperature TU of the first heater 36 and the substrate processing temperature TW to the control unit 51 from the input means 52. The use upper limit temperature TU is set to a heating limit temperature of the first heater 36 or a temperature near it. The use upper limit temperature TU is stored in the storage unit 54. The substrate processing temperature TW is input to the comparison means 55 and also input to the temperature difference calculation means 56. The comparison means 55 compares the use upper limit temperature TU and the substrate processing temperature TW to determine TU <TW or TU ≧ TW, while the temperature difference calculation means 56 is input by the substrate processing temperature TW and the liquid temperature detector 11. A temperature difference (TW−TL) with the treated liquid temperature TL is calculated. A determination signal indicating a result determined by the comparison unit 55 (for example, “1” is set when TU <TW and “0” is set when TU ≧ TW), and is calculated by the temperature difference calculation unit 56. The (TW−TL) value is output to the first temperature adjustment unit 58, the second temperature adjustment unit 59, and the valve selection operation unit 60.
[0027]
In the second temperature control unit 59, when TU <TW (the determination signal is “1”), and when TU ≧ TW (the determination signal is “0”) and the (TW−TL) value is a positive value, (TW -TL) The temperature of the first heater 36 is adjusted so that the value becomes zero. That is, when the substrate processing temperature TW exceeds the use upper limit temperature TU of the first heater 36, the processing liquid is heated to the substrate processing temperature TW using the second heater 37. Even when the substrate processing temperature TW is equal to or lower than the use upper limit temperature TU, the processing liquid is heated to the substrate processing temperature TW using the second heater 37 until the processing liquid temperature TL reaches the substrate processing temperature TW. . The comparison means 55, the temperature difference calculation means 56, and the second temperature adjustment unit 59 correspond to the second temperature control unit of the present invention.
[0028]
On the other hand, when TU ≧ TW (the determination signal is “0”), the first temperature adjustment unit 58 adjusts the temperature of the first heater 36 so that the (TW−TL) value becomes zero. That is, when the substrate processing temperature TW is equal to or lower than the use upper limit temperature TU of the first heater 36, the processing liquid is heated to the substrate processing temperature TW using the first heater 36. In this case, as described above, since the heating by the second heater 37 is used together, the temperature raising time to the substrate processing temperature TW can be shortened as compared with the case where the first heater 36 is used alone. The comparison means 55, the temperature difference calculation means 56, and the first temperature adjustment unit 58 correspond to the first temperature control unit of the present invention.
[0029]
In the present embodiment, the first heater 36 is used when the substrate processing temperature TW is equal to or lower than TU with the use upper limit temperature TU of the first heater 36 as a reference, and the second heater 37 is used when the substrate processing temperature exceeds TU. With respect to a wide range of substrate processing temperatures TW below the temperature TU and exceeding the TU, the temperature can be controlled so that the processing liquid has a predetermined TW. Furthermore, even when the TW is TU or less, not only the heating by the first heater 36 but also the second heater 37 can be used together until the processing liquid temperature TL reaches TW, so that the processing liquid is heated to TW. Can be shortened as compared with the case where the first heater 36 is used alone, and the productivity is excellent.
[0030]
The valve selection operation unit 60 is for causing the processing liquid to flow through the first heating channel 32 and / or the second heating channel 33 in accordance with the use of the first heater 36 and the second heater 37. That is, when TU <TW (the determination signal is “1”), the second flow path selection opening / closing valve 39 is opened, and the first flow path selection opening / closing valve 38 and the intrusion prevention opening / closing valve 40 are closed. To do. Thereby, while the processing liquid is heated by the second heater 37, the high-temperature processing liquid exceeding the TU is completely prevented from entering the installation portion of the first heater 36 in the first heating flow path 32. It is possible to reliably prevent the first heater 36 from being heated by the high temperature processing liquid.
[0031]
On the other hand, when TU ≧ TW (the determination signal is “0”) and the (TW−TL) value is a positive value, that is, when the processing liquid temperature TL is lower than the substrate processing temperature TW, the second flow path selection opening / closing valve 38. Then, all of the first flow path selection opening / closing valve 38 and the intrusion prevention opening / closing valve 40 are operated to open. Thus, rapid heating by the second heater 37 can be used in addition to heating by the first heater 36 until the processing liquid reaches the substrate processing temperature TW. When the (TW−TL) value becomes 0 or a negative value, that is, after the processing liquid reaches the substrate processing temperature TW, the second flow path selection opening / closing valve 39 is closed. As a result, the processing liquid flowing through the circulation flow path 30 can be flowed only through the first heating flow path 32, and the temperature can be controlled efficiently and with high accuracy by the first heater 36. The comparison means 55, the temperature difference calculation means 56, and the valve selection operation unit 60 correspond to the valve control unit of the present invention.
[0032]
According to the above embodiment, the first heating channel 32 is provided with the first channel selection switching valve 38 and the intrusion prevention switching valve 40, and the second heating channel 33 is provided with the second channel selection switching valve 39. In the first heating channel 32, the intrusion prevention opening / closing valve 40 is not necessarily provided as long as the channel length from the junction of both channels to the installation portion of the first heater 36 can be increased. Even if the high temperature processing liquid heated by the second heater 37 wraps around the first heating channel 32 from the junction, the processing liquid cannot flow through the first heating channel 32. This is because it cannot enter from the joining portion to the installation portion of the first heater 36.
[0033]
Further, according to the above embodiment, the first heating channel 32 is provided with the first channel selection opening / closing valve 38 and the second heating channel 33 is provided with the second channel selection switching valve 39 separately. Only the first heating flow path 32, only the second heating flow path 33, or the first heating flow path 32 and the second heating flow are flow paths through which the processing liquid flows at the branch portions of the heating flow path 32 and the second heating flow path 33. You may make it provide the compound valve which can select both the flow paths of the flow path 33. FIG. In this case, the composite valve corresponds to the first flow path selection opening / closing valve 38 and the second flow path selection opening / closing valve 39.
[0034]
Further, if there is no structural or electrical problem even if a treatment liquid having a heating limit temperature or more is allowed to flow through the first heater 36, for example, when the first heater 36 is provided with a cooling means having excellent cooling ability. The on-off valves 38, 39 and 40 are not necessarily required. In such a case, the heating channels 32 and 33 do not need to be provided in parallel, and may be provided in series. However, when the heating channels are provided in parallel, the first channel selection opening / closing valve 38 and the second channel selection opening / closing valve 39 are provided and used in order to increase the heating efficiency of the first heater 36 or the second heater 37. The treatment liquid is preferably allowed to flow through the heating channel according to the heater to be used.
[0035]
In the above embodiment, when the substrate processing temperature TW is equal to or lower than the use upper limit temperature TU and the processing liquid temperature TL is lower than the substrate processing temperature TW, the processing liquid is supplied using the second heater 37 in addition to the first heater 36. The temperature is controlled so as to be the substrate processing temperature TW. In this case, since the processing liquid is not in a steady state in the temperature rising process, the heating target temperature of the second heater 37 is not necessarily set to the substrate processing temperature TW. It is not necessary and may be a temperature in the vicinity of the substrate processing temperature TW. Further, it is not necessary to heat the processing liquid by the second heater 37 and the first heater 36, and the processing liquid is heated only by the second heater 37 having good heating efficiency, so that the processing liquid becomes TW or a temperature in the vicinity thereof. After that, the temperature control of the first heater 36 may be started so that the processing liquid becomes the substrate processing temperature TW.
[0036]
【The invention's effect】
According to the substrate processing apparatus of the present invention, even when the substrate processing temperature exceeds the heating limit temperature of the first heater, the processing liquid can be heated to a predetermined substrate processing temperature using the second heater. Further, even when the substrate processing temperature is equal to or lower than the heating limit temperature and the temperature is adjusted by the first heater so that the processing liquid becomes the substrate processing temperature, the second heating efficiency is good when the temperature is raised to the substrate processing temperature. Since a heater can be used, it is possible to shorten the temperature raising time and to improve productivity. In addition, by storing the use upper limit temperature of the first heater in the storage means in advance, the first heater or the second heater is selectively used according to the substrate processing temperature so that the processing liquid reaches a predetermined substrate processing temperature. In addition, since the temperature is controlled by the first and second temperature controllers, substrate processing based on a wide range of substrate processing temperatures can be performed. In addition, the operator only has to input the substrate processing temperature and the upper limit use temperature of the first heater, and it is not necessary to operate the first heater and the second heater according to the substrate processing temperature. Excellent stability.
[Brief description of the drawings]
FIG. 1 is a main part configuration diagram of a substrate processing apparatus according to an embodiment.
FIG. 2 is a control function block diagram for realizing processing liquid temperature control of a control unit provided in the substrate processing apparatus.
FIG. 3 is a main part configuration diagram of a conventional substrate processing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate processing tank 2 Immersion tank 3 Recovery tank 11 Liquid temperature detector 30 Circulation flow path 32 First heating flow path 33 Second heating flow path 36 First heater 37 Second heater 38 First flow path selection on-off valve 39 Second Flow path selection on-off valve 40 Intrusion prevention on-off valve 51 Control unit 52 Input unit 54 Storage unit 55 Comparison unit 56 Temperature difference calculation unit 58 First temperature control unit (58, 55, 56 and the first temperature control unit)
59 Second temperature control section (second temperature control section with 59, 55, 56)
60 Valve selection operation unit (60, 55, 56 and valve control unit)

Claims (4)

処理液中に基板を浸漬して基板処理を行う浸漬槽と、前記浸漬槽からオーバーフローした処理液を回収する回収槽と、前記回収槽に回収された処理液を吸い込んで前記浸漬槽に供給する循環流路とを備え、前記循環流路の一部に加熱流路を設け、この加熱流路にペルチェ素子を備えた第1ヒータとジュール熱発生素子を備えた第2ヒータとを設けた基板処理装置であって、
処理液の温度を検出する液温検出器と、
基板処理温度および第1ヒータの加熱限界温度以下に設定される使用上限温度を入力する入力手段と、
前記入力手段により入力された使用上限温度を記憶する記憶手段と、
前記入力手段により入力された基板処理温度が前記記憶手段に記憶された前記使用上限温度以下の場合に前記液温検出器によって検出された処理液温度が前記基板処理温度になるように前記第1ヒータを温度制御する第1温度制御部と、
前記基板処理温度が前記使用上限温度を越える場合に前記処理液温度が前記基板処理温度になるように前記第2ヒータを温度制御する第2温度制御部とを備えた基板処理装置。
An immersion tank that performs substrate processing by immersing the substrate in the processing liquid, a recovery tank that recovers the processing liquid that has overflowed from the immersion tank, and a process liquid that is recovered in the recovery tank is sucked and supplied to the immersion tank. A substrate provided with a circulation channel, a heating channel provided in a part of the circulation channel, and a first heater provided with a Peltier element and a second heater provided with a Joule heat generation element in the heating channel A processing device comprising:
A liquid temperature detector for detecting the temperature of the processing liquid;
An input means for inputting a substrate processing temperature and a use upper limit temperature set to be equal to or lower than a heating limit temperature of the first heater;
Storage means for storing the use upper limit temperature input by the input means;
When the substrate processing temperature input by the input means is equal to or lower than the use upper limit temperature stored in the storage means, the first processing is performed so that the processing liquid temperature detected by the liquid temperature detector becomes the substrate processing temperature. A first temperature controller for controlling the temperature of the heater;
A substrate processing apparatus comprising: a second temperature control unit configured to control the temperature of the second heater so that the processing liquid temperature becomes the substrate processing temperature when the substrate processing temperature exceeds the use upper limit temperature.
前記第2温度制御部は前記基板処理温度が前記使用上限温度を越える場合又は前記基板処理温度が前記使用上限温度以下でかつ前記処理液温度が前記基板処理温度未満の場合に前記処理液温度が前記基板処理温度になるように前記第2ヒータを温度制御する請求項1に記載した基板処理装置。The second temperature control unit sets the processing liquid temperature when the substrate processing temperature exceeds the use upper limit temperature or when the substrate processing temperature is equal to or lower than the use upper limit temperature and the processing liquid temperature is lower than the substrate processing temperature. The substrate processing apparatus according to claim 1 , wherein the temperature of the second heater is controlled to be the substrate processing temperature. 前記加熱流路は前記第1ヒータが備えられた第1加熱流路と、この第1加熱流路と並列に設けられ、前記第2ヒータが備えられた第2加熱流路とを備え、前記第1加熱流路の前記第1ヒータの上流側に第1流路選択開閉弁が設けられ、前記第2加熱流路の前記第2ヒータの上流側に第2流路選択開閉弁が設けられ、
前記基板処理温度が前記使用上限温度を越える場合に前記第1流路選択開閉弁を閉状態とし、前記第2流路選択開閉弁を開状態とする弁制御部が設けられた請求項1又は2に記載した基板処理装置。
The heating channel includes a first heating channel provided with the first heater, and a second heating channel provided in parallel with the first heating channel and provided with the second heater, A first flow path selection opening / closing valve is provided upstream of the first heater in the first heater flow path, and a second flow path selection opening / closing valve is provided upstream of the second heater in the second heating flow path. ,
The first flow path selection off valve is closed when the substrate processing temperature exceeds the upper limit use temperature, the second channel selection off valve open state with claim 1 the valve control unit is provided for or 2. The substrate processing apparatus described in 2 .
前記第1加熱流路の第1ヒータの下流側に浸入防止開閉弁が設けられ、前記弁制御部は前記基板処理温度が前記使用上限温度を越える場合に前記第1流路選択開閉弁および浸入防止開閉弁を閉状態とし、前記第2流路選択開閉弁を開状態とする請求項3に記載した基板処理装置。An intrusion preventive on-off valve is provided on the downstream side of the first heater in the first heating flow path, and the valve control unit and the first flow path selective on-off valve and the intrusion when the substrate processing temperature exceeds the upper limit use temperature. The substrate processing apparatus according to claim 3 , wherein the prevention opening / closing valve is closed and the second flow path selection opening / closing valve is opened.
JP29367798A 1998-10-15 1998-10-15 Substrate processing equipment Expired - Fee Related JP3701478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29367798A JP3701478B2 (en) 1998-10-15 1998-10-15 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29367798A JP3701478B2 (en) 1998-10-15 1998-10-15 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2000124178A JP2000124178A (en) 2000-04-28
JP3701478B2 true JP3701478B2 (en) 2005-09-28

Family

ID=17797808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29367798A Expired - Fee Related JP3701478B2 (en) 1998-10-15 1998-10-15 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3701478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977912B2 (en) * 2007-02-16 2012-07-18 株式会社Kelk Fluid temperature controller

Also Published As

Publication number Publication date
JP2000124178A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
TWI533764B (en) Methods and apparatus for rapidly responsive heat control in plasma processing devices
JP2007201329A (en) Substrate-treating device
KR101042805B1 (en) Substrate treating apparatus and substrate treating method
JP3701478B2 (en) Substrate processing equipment
US11798819B2 (en) Liquid processing apparatus and liquid processing method
KR100895861B1 (en) Method for treating process solution and Apparatus for treating a substrate
CN109891162B (en) Fluid heating device
TWI568485B (en) Filter cleaning method, liquid treatment device and memory media
JP4025146B2 (en) Processing liquid tank and processing apparatus
CN109682057A (en) A kind of heating means preheating water purifier
JP2018178797A (en) Engine cooling device
CN210804132U (en) Semiconductor cleaning liquid temperature control circulation system
KR20020068749A (en) Chiller of Semiconductor Manufacturing Equipment
JP4351981B2 (en) Semiconductor substrate cleaning method and apparatus
CN218179250U (en) Wafer cleaning solution heating device
KR20110082304A (en) Apparatus for cleaning a porous chuck
JP3860353B2 (en) Substrate processing equipment
JP2013219312A (en) Substrate processing method and substrate processing apparatus
TWI822339B (en) Liquid level controlling apparatus
JP4412540B2 (en) Substrate processing equipment
KR100239710B1 (en) Apparatus for removing oxide of semiconductor wafer
JPH04130784A (en) Laser system
JP2588402Y2 (en) Liquid supply / drain passage device for substrate processing equipment
JP2545020B2 (en) Cleaning water supply device
CN116397299A (en) Heat exchange device, control method thereof and electrophoresis tank

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees