JP3701369B2 - Electrolytic discharge hole machining method and apparatus - Google Patents

Electrolytic discharge hole machining method and apparatus Download PDF

Info

Publication number
JP3701369B2
JP3701369B2 JP03765696A JP3765696A JP3701369B2 JP 3701369 B2 JP3701369 B2 JP 3701369B2 JP 03765696 A JP03765696 A JP 03765696A JP 3765696 A JP3765696 A JP 3765696A JP 3701369 B2 JP3701369 B2 JP 3701369B2
Authority
JP
Japan
Prior art keywords
electrolytic
rod
back surface
electrolytic solution
shaped electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03765696A
Other languages
Japanese (ja)
Other versions
JPH09225744A (en
Inventor
史敏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP03765696A priority Critical patent/JP3701369B2/en
Publication of JPH09225744A publication Critical patent/JPH09225744A/en
Application granted granted Critical
Publication of JP3701369B2 publication Critical patent/JP3701369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス、セラミックスのような板に微細な貫通孔をあける方法、特に電気基板用の薄いガラス基板に電気信号取り出し用の微細孔を電解放電加工する方法および装置に関する。
【0002】
【従来の技術】
従来、セラミックスの薄板や、電気用の薄いガラス基板をレーザ加工方法や電解放電加工方法により微細孔加工が施されている。レーザ加工方法は装置コストが高価であるため生産現場に導入することは難しいので、電解放電加工方法が用いられることがある。通常の電解放電加工方法では、たとえば「ルビーの放電小孔加工」(1970年6月、電気加工学会誌第3巻、第6号、第33〜40頁)および、「電解放電法によるセラミックスの加工技術の検討」(昭和61年12月、日立造船技報第47巻第3号・4号、第16〜22頁)に記載されているように、例えば図3に示すように、電気絶縁性被加工物であるセラミックス板11を電解液槽15内に保持した電解液16中に浸した状態で、セラミックス板表面に押し当てた棒状電極12と、被加工物から離れた電解液中に浸した補助電極13との間に電圧(AC,DC)を印加することにより、棒状電極先端で起こる放電エネルギーにより電極先端近傍の電解液は高温状態になり、この高温の電解液とセラミックスとの高熱化学反応によってセラミックスが除去されて微細孔加工がおこなわれる。
【0003】
【発明が解決しようとする課題】
電解放電加工法でガラス基板等のセラミックス板に微細孔加工をおこなった場合、図4に示すように、セラミックス板11の棒状電極の入り口側17が広いテーパー状の孔18が加工できる。しかしその棒状電極の先端が被加工物であるガラス基板を貫通したときに、もともと被加工物の裏側に存在していた電解液と棒状電極が接触して棒状電極とガラス基板裏面の電解液との導通が始まるために電極に流れる電流が急に大きくなり、孔径の小さいガラス基板裏面側が選択的に加工され、逆テーパー状のいわゆるアンダーカット19の円形腐食欠点が発生し、最終的に加工された孔の形状は鼓状になる。
【0004】
このガラス基板を電気基板として使用する場合、基板の表裏を貫通孔を通して電気的導通をとるためにテーパー状の微細孔表面にガラス基板の表側の表面から金属を蒸着するが、アンダーカットが存在するとその部分が影になって金属が充分に付着せず、微細孔の一端と他端との間には導電性が得られず、にガラス基板をシリコン基板と陽極接合する際などに電気的導通が取れなくなる等の問題が発生する。
【0005】
また上記アンダーカット発生と同時にガラス基板裏面側からみて基板裏面に孔半径方向に伸びる鳥の足のような形状の腐食欠点がしばしば発生する。
【0006】
更に、共通の電源を用いて複数の棒状電極を使用して同時に1枚の基板に複数の微細孔をあける電解放電孔加工をおこなう場合は、最初に貫通した棒状電極に電力が集中するために、他の孔の加工を妨げることがあるために複数孔間の均一な加工を妨げる場合がしばしばある。
【0007】
本発明は上記のようなガラス基板裏面のアンダーカットその他の欠点を防ぎ、複数の微細孔の均一加工が可能な電解放電孔加工および装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、電解液中で電気絶縁性の被加工板表面に棒状電極を押し当てて棒状電極と電解液との間に電圧を印加して前記被加工板に貫通孔をあける電解放電孔加工方法において、被加工板の貫通孔があけられるべき部分の裏面側に電気絶縁性気体の空間を設けることを特徴とする電解放電孔加工方法である。
【0009】
本発明において使用する電解液としては、NaOH、KOH、Na2S,K2SO4、NaSO4、NaNO3、KNO3、NaNO2、K2CrO7、NaAlO2、Na247等をあげることができ、それらの中でNaOHおよびNaAlO2が加工速度が大きいので好ましい。これらは水で希釈してもよいが、できるだけ高い濃度を保つ方が加工速度が大きいので好ましく、その反面、あまり高濃度では電極が腐食しやすくなるので、5〜20重量%の濃度で用いることが好ましい。
【0010】
また棒状電極としては、耐熱性、耐アルカリ性、圧縮力に強い材料が好ましく、具体的には鋼、白金イリジウム合金、炭素を挙げることができ、それらの中で鋼、特にステンレス鋼が特に好適に用いられる。棒状電極の寸法はあけるべき孔の寸法に依存するが、0.02〜1.0mmの直径の孔をあける場合は、それよりも若干小さな直径の、例えば0.01〜0.8mmの直径を有する電極が用いられる。電極の先端は、例えば先端角度が20〜40度になるように尖らせてもよい。
【0011】
棒状電極と対にして電解液に浸漬して用いる対向電極は耐アルカリ性を有する導電性材料であれば何でもよいが、棒状電極と同じ材料例えば、ステンレス鋼の棒状、またはブロック状のものを用いることができる。
【0012】
棒状電極は放電時の衝撃力で動くことがあるので、それを避けるために1〜10gの荷重をかけることが好ましい。
【0013】
両電極に印加する電圧としては直流、脈流、または交流を用いることができるが、棒状電極の消耗を小さくするためには直流、または脈流が好ましく、20〜60Vの電圧を、棒状電極側が負になるようにして用いることが好ましい。
【0014】
本発明において、被加工物の裏面に空気、窒素、酸素、その他の不燃性で電気絶縁性の気体で形成した空間を形成させる。電解放電加工が進むに従って棒状電極が被加工板の厚み方向に進み、棒状電極の先端が被加工板裏面から突き出た時に、被加工物の裏側には電解液が存在しないので、電極に流れる電流が急に大きくなることはなく、被加工物の裏面側での急激な電解放電が生じることがないので、アンダーカットその他の腐食欠点発生が防止される。被加工物の裏面側の空間は外気に通じる開口を有していてもよい。しかし棒状電極の先端と加工された孔表面との間の間隙を通って進行して電解液が被加工板裏面に回り込もうとするので、この回り込みをより効果的に防止するためには、この空間は電気絶縁性の気体で密閉されていることが好ましい。この電気絶縁性の気体が加圧されていることがより好ましい。というのは、電気絶縁性気体の圧力により加圧気体が電解液の進行方向とは逆の方向に上記間隙を進もうとするので、この電解液の回り込みが完全に防止され、被加工物の裏面側での急激な電解放電、従って、アンダーカットその他の腐食欠点発生が完全に防止される。
【0015】
この被加工物の裏面側の空間の電気絶縁性気体を密閉する場合、またはこの気体を加圧する場合には、前記被加工板の裏面をシールして空間を設け、そして更に該空間に加圧した電気絶縁性気体、例えば大気圧+0.1〜+1.0kgf/cm2の空気を外部から供給することが好ましい。
【0016】
被加工板の裏面をシールして空間を設けるために、電解液を収容する電解液槽の底面に好ましくは電気絶縁性気体供給管を設け、そして電解液槽に収容した電解液中に浸漬する被加工板の裏面の貫通孔があけられるべき部分および前記電気絶縁性気体供給管出口を取り囲むように、電解液槽底面と被加工板裏面との間にシール部材、例えばゴム製のOリングを介在させて空間を形成させ、その空間に上記電気絶縁性気体供給管を通して外部から加圧された電気絶縁性気体を前記空間に送り込むことが好ましい。
【0017】
本発明において、電気絶縁性の被加工材料、例えばガラス板の厚みは0.10〜1.5mmのものが用いられる。
【0018】
上記の被加工板の貫通孔があけられるべき部分の裏面に撥水剤を予め塗布することが好ましい。すなわち、電解放電加工が進むに従って棒状電極が被加工板の厚み方向に進み、棒状電極の先端が被加工板裏面から突き出た時に、棒状電極の先端と加工された孔表面との間の間隙を通って電解液が被加工板裏面に回り込もうとするが、被加工物の裏面に撥水剤を塗布してあるので電解液が被加工板裏面に付着することが防止され、被加工物の裏面側での急激な電解放電を防止することができる。
【0019】
この撥水剤としては、例えば自動車のフロントガラスに塗布するための市販のポリジメチルシロキサン系撥水剤スーパーRain−X(Unelco社製)その他の市販品を使用することができる。
【0020】
【発明の実施の形態】
以下に本発明の電解放電微細孔加工方法を実施例を図1に従い説明する。
図1に示す本発明の電解放電孔加工装置は、電解液槽5の底面に空気供給管7を設けて、図示されない空気タンクより約0.2Kgf/cm2 に加圧制御した空気を該空気供給管7を通して電解液槽5中の被加工ガラス基板1の裏面、Oリング4、および電解液槽底面で形成された空気室8に送り込むことにより空気室8内を加圧空気で満たし、ガラス基板1の裏面に加圧空気の圧力を付与する。
【0021】
被加工ガラス基板1として厚みが0.7mmで20cm×20cmの無アルカリガラス基板(NHテクノ(株)製、NA35)を、電解液槽5の底部に置いたゴム製で太さが2.0mmでリング直径が20mmのOリング4を介してセットした後、該空気供給管7を通して空気室8に加圧空気を送り込みながら、10%NaOH水溶液からなる電解液6約160ccをその液面がガラス基板1の上面よりも2mm高くなるように供給して、棒状電極2をその先端が孔明け加工すべき基板表面に約3gの力で押し当て、電解液槽5内に電解液に浸漬するように設けたステンレス製の5mm×5mm×5mmの補助電極3と棒状電極2との間に電圧を印加してガラス基板1に電解放電加工による孔加工をおこなう。
【0022】
電解液は加工が進むにつれてその中に反応生成物である珪酸ナトリウム等が溶出してきて加工能率が低下するので、新しい電解液を50cc/minの割合で電解液槽の一端から供給し、電解液6はガラス基板1の表面より一定の深さを維持した状態になるように、同量の電解液を電解液槽の他端から排出させた。
棒状電極2としては、直径が80μmで長さが約20mmのステンレス(SUS304)の線を用い、電源としては約40Vの直流電源を棒状電極2側は−極、補助電極3側は+極として約30秒間通電して、孔あけ加工をおこなった。
【0023】
その結果、図2に示すようにガラス基板1にはアンダーカットの無いテーパー状の孔9が加工できた。また、微細孔の最細部の孔直径も従来の加工方法では140μmであったものが、本発明の加工方法では100μmに加工できた。
【0024】
空気室8内の空気は加圧されているので、棒状電極2の先端がガラス基板1を貫通した際に、空気室8内の加圧空気がその貫通した孔を通って泡となって上昇するので、電解液がガラス基板1裏面に流れ込むことを防ぐことができる。最小部孔直径が200μm以上の孔を加工する場合でも電解液のガラス基板1裏面への流れ込みを防ぐことができる。
【0025】
また、上記ガラス基板の4カ所に孔をあけるために4本の電極を用いて共通の直流電源から同時に通電して孔あけ加工をおこなったところ、従来の加工方法では最初に貫通した電極に電力が集中することにより、その孔の加工がさらに進み、その反面、他の孔の加工が滞ることがあったが、本加工方法の場合では電解液がガラス基板1の裏面に回り込むことを防ぐことができるので、このような不都合は無くなり4カ所とも同じ直径の孔があき均一加工をおこなうことができた。
【0026】
電解液槽の底部にガラス基板をセットした後に電解液を供給する上記実施例に代えて、電解液槽内に予め供給した電解液の浴の中にガラス基板をセットした後に空気室に圧力制御された空気を該空気供給管を通して送ることにより、該空気室内の電解液をOリングと電解液槽底面との間の隙間から空気室外に追い出すようにしてもよい。
【0027】
また、上記実施例で空気室に加圧空気を送る代わりに、単に空気室(密閉されていなくてもよい)のみを設けておき、ガラス基板の裏面に撥水剤、例えば自動車のフロントガラスに塗布するための市販のポリジメチルシロキサン系撥水剤スーパーRain−X(Unelco社製)を塗ることにより、ガラス基板裏面への電解液の付着を防ぐことができ、アンダーカット欠点の無い加工が可能になることも確認できた。空気室に加圧空気を送って圧力をかけ、かつガラス基板の裏面に撥水剤を塗布すれば更に好ましいのは勿論である。
【0028】
【発明の効果】
従って、本発明の加工方法によれば、電解放電加工方法でアンダーカットその他の欠点の無い単純なテーパー形状の微細孔を得ることができる。また、電解放電加工方法による多孔同時加工をスムーズにおこなうことができる。
【図面の簡単な説明】
【図1】本発明の電解加工装置の断面図
【図2】本発明によって孔加工された状態を示す断面図
【図3】従来の電解加工装置の断面図
【図4】従来の方法によって孔加工された状態を示す断面図
【符号の説明】
1.ガラス基板
2.棒状電極
3.補助電極
4.Oリング
5.電解液槽
6.電解液
7.空気供給管
8.空気室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of making a fine through hole in a plate such as glass or ceramics, and more particularly to a method and apparatus for electrolytic discharge machining of a fine hole for extracting an electric signal in a thin glass substrate for an electric substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, fine hole processing is applied to a ceramic thin plate or a thin glass substrate for electricity by a laser processing method or an electrolytic discharge processing method. Since the laser machining method is expensive and difficult to introduce into the production site, an electrolytic discharge machining method may be used. In the ordinary electrolytic discharge machining method, for example, “Discharge small hole machining of ruby” (June 1970, Journal of Electrical Machining, Vol. 3, No. 6, pp. 33-40) and “Ceramics by the electrolytic discharge method” For example, as shown in FIG. 3, as shown in “Examination of processing technology” (December 1986, Hitachi Zosen Technical Report Vol. 47, No. 3, No. 4, pp. 16-22) In a state where the ceramic plate 11 which is a workable workpiece is immersed in the electrolytic solution 16 held in the electrolytic solution tank 15, the rod-shaped electrode 12 pressed against the surface of the ceramic plate and the electrolytic solution separated from the workpiece. By applying a voltage (AC, DC) between the immersed auxiliary electrode 13, the electrolyte near the electrode tip becomes a high temperature due to the discharge energy generated at the tip of the rod-shaped electrode. By high temperature chemical reaction Micropores machining is performed La mix is removed.
[0003]
[Problems to be solved by the invention]
When a fine hole is made in a ceramic plate such as a glass substrate by the electrolytic discharge machining method, as shown in FIG. 4, a tapered hole 18 having a wide entrance side 17 of the rod-like electrode of the ceramic plate 11 can be processed. However, when the tip of the rod-shaped electrode penetrates the glass substrate which is the workpiece, the electrolyte solution originally present on the back side of the workpiece and the rod-shaped electrode come into contact with each other, As a result, the current flowing through the electrode suddenly increases, the back surface side of the glass substrate having a small hole diameter is selectively processed, and the circular corrosion defect of the so-called undercut 19 having a reverse taper shape is generated and finally processed. The shape of the hole becomes a drum shape.
[0004]
When this glass substrate is used as an electric substrate, metal is evaporated from the front surface of the glass substrate to the surface of the tapered fine hole in order to take electrical continuity through the through hole on the front and back of the substrate. The part is shaded and the metal does not adhere sufficiently, and electrical conductivity is not obtained between one end and the other end of the microhole, and electrical conduction is made when the glass substrate is anodic bonded to the silicon substrate. Problems such as being unable to remove.
[0005]
Simultaneously with the occurrence of the undercut, a corrosion defect such as a bird's leg extending in the hole radial direction on the back surface of the substrate as viewed from the back surface side of the glass substrate often occurs.
[0006]
In addition, when electrolytic discharge hole machining is performed using a plurality of rod-shaped electrodes at the same time using a common power source to form a plurality of fine holes in one substrate, the power concentrates on the rod-shaped electrode that penetrates first. In many cases, uniform processing between a plurality of holes is prevented because the other holes may be prevented from being processed.
[0007]
An object of the present invention is to provide an electrolytic discharge hole machining and apparatus capable of preventing undercuts and other disadvantages on the back surface of the glass substrate as described above and capable of uniformly machining a plurality of fine holes.
[0008]
[Means for Solving the Problems]
The present invention provides an electrolytic discharge hole machining in which a rod-shaped electrode is pressed against the surface of an electrically insulating work plate in an electrolytic solution to apply a voltage between the rod-shaped electrode and the electrolytic solution to open a through hole in the work plate. In the method, an electrolytic discharge hole machining method is provided, wherein a space of an electrically insulating gas is provided on a back surface side of a portion where a through hole of a work plate is to be opened.
[0009]
Examples of the electrolytic solution used in the present invention include NaOH, KOH, Na 2 S, K 2 SO 4 , NaSO 4 , NaNO 3 , KNO 3 , NaNO 2 , K 2 CrO 7 , NaAlO 2 , and Na 2 B 4 O 7. Among them, NaOH and NaAlO 2 are preferable because of their high processing speed. These may be diluted with water, but it is preferable to keep the concentration as high as possible because the processing speed is large. On the other hand, the electrode tends to corrode at too high a concentration, so use it at a concentration of 5 to 20% by weight. Is preferred.
[0010]
The rod-like electrode is preferably a material having high heat resistance, alkali resistance, and compressive force. Specifically, steel, platinum iridium alloy, and carbon can be mentioned. Among them, steel, particularly stainless steel is particularly preferable. Used. The size of the rod-shaped electrode depends on the size of the hole to be drilled, but when a hole having a diameter of 0.02 to 1.0 mm is drilled, a diameter slightly smaller than that, for example, 0.01 to 0.8 mm is used. The electrode which has is used. For example, the tip of the electrode may be sharpened so that the tip angle is 20 to 40 degrees.
[0011]
The counter electrode used by being immersed in the electrolyte solution in a pair with the rod-shaped electrode may be any conductive material having alkali resistance. However, the same material as the rod-shaped electrode, for example, a stainless steel rod or block shape should be used. Can do.
[0012]
Since the rod-shaped electrode may move due to an impact force during discharge, it is preferable to apply a load of 1 to 10 g in order to avoid this.
[0013]
A direct current, a pulsating flow, or an alternating current can be used as the voltage applied to both electrodes, but a direct current or a pulsating flow is preferable to reduce the consumption of the rod-shaped electrode, and a voltage of 20 to 60 V is applied to the rod-shaped electrode side. It is preferable to use it in a negative manner.
[0014]
In the present invention, a space formed of air, nitrogen, oxygen, or other nonflammable and electrically insulating gas is formed on the back surface of the workpiece. As the electrolytic discharge machining progresses, the rod-shaped electrode advances in the thickness direction of the processed plate, and when the tip of the rod-shaped electrode protrudes from the back surface of the processed plate, there is no electrolyte on the back side of the workpiece. Does not increase suddenly, and a rapid electrolytic discharge does not occur on the back side of the workpiece, thereby preventing undercutting and other corrosion defects. The space on the back side of the workpiece may have an opening that communicates with the outside air. However, since the electrolyte tends to wrap around the back surface of the processed plate by proceeding through the gap between the tip of the rod-shaped electrode and the processed hole surface, in order to prevent this wraparound more effectively, This space is preferably sealed with an electrically insulating gas. More preferably, this electrically insulating gas is pressurized. This is because, due to the pressure of the electrically insulating gas, the pressurized gas tries to advance in the gap in the direction opposite to the traveling direction of the electrolytic solution. Abrupt electrolytic discharge on the back side, and hence undercuts and other corrosion defects are completely prevented.
[0015]
When the electrically insulating gas in the space on the back side of the workpiece is sealed or when this gas is pressurized, the back surface of the workpiece plate is sealed to provide a space, and the space is further pressurized. It is preferable to supply an electrically insulating gas such as atmospheric pressure +0.1 to +1.0 kgf / cm 2 from the outside.
[0016]
In order to provide a space by sealing the back surface of the workpiece plate, an electrically insulating gas supply pipe is preferably provided on the bottom surface of the electrolytic solution tank containing the electrolytic solution, and immersed in the electrolytic solution stored in the electrolytic solution tank. A sealing member such as a rubber O-ring is provided between the bottom surface of the electrolytic solution tank and the back surface of the work plate so as to surround the portion where the through hole on the back surface of the work plate is to be opened and the outlet of the electrically insulating gas supply pipe. It is preferable that a space is formed by interposing, and the electrically insulating gas pressurized from the outside is fed into the space through the electrically insulating gas supply pipe.
[0017]
In the present invention, an electrically insulating material to be processed, for example, a glass plate having a thickness of 0.10 to 1.5 mm is used.
[0018]
It is preferable to apply a water repellent in advance to the back surface of the portion where the through hole of the plate to be processed is to be opened. That is, as the electrolytic discharge machining proceeds, the rod-shaped electrode advances in the thickness direction of the processed plate, and when the tip of the rod-shaped electrode protrudes from the back surface of the processed plate, the gap between the tip of the rod-shaped electrode and the processed hole surface is increased. The electrolytic solution tries to wrap around the back side of the work plate, but since the water repellent is applied to the back surface of the work piece, the electrolytic solution is prevented from adhering to the back surface of the work piece. Abrupt electrolytic discharge on the back side of can be prevented.
[0019]
As this water repellent, for example, a commercially available polydimethylsiloxane water repellent Super Rain-X (manufactured by Unelco) for application to a windshield of an automobile or other commercially available products can be used.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the electrolytic discharge micropore machining method of the present invention will be described below with reference to FIG.
The electrolytic discharge hole machining apparatus of the present invention shown in FIG. 1 is provided with an air supply pipe 7 on the bottom surface of an electrolytic solution tank 5, and air that has been pressurized and controlled to about 0.2 Kgf / cm 2 from an air tank (not shown). The air chamber 8 is filled with pressurized air by feeding through the supply pipe 7 into the air chamber 8 formed on the back surface of the glass substrate 1 to be processed, the O-ring 4 and the bottom surface of the electrolyte bath in the electrolyte bath 5. A pressure of pressurized air is applied to the back surface of the substrate 1.
[0021]
A glass substrate 1 having a thickness of 0.7 mm and a 20 cm × 20 cm non-alkali glass substrate (NH Techno Co., NA35) made of rubber placed on the bottom of the electrolyte bath 5 and having a thickness of 2.0 mm Then, after setting through the O-ring 4 having a ring diameter of 20 mm, about 160 cc of electrolyte solution 6 made of 10% NaOH aqueous solution is applied to the glass while the pressurized air is fed into the air chamber 8 through the air supply pipe 7. It is supplied so as to be 2 mm higher than the upper surface of the substrate 1, and the tip of the rod-like electrode 2 is pressed against the substrate surface to be drilled with a force of about 3 g so as to be immersed in the electrolytic solution in the electrolytic solution tank 5. A hole is formed in the glass substrate 1 by electrolytic discharge machining by applying a voltage between the auxiliary electrode 3 and the rod-shaped electrode 2 made of stainless steel 5 mm × 5 mm × 5 mm.
[0022]
As the electrolytic solution is processed, sodium silicate, which is a reaction product, elutes therein and the processing efficiency decreases. Therefore, a new electrolytic solution is supplied from one end of the electrolytic bath at a rate of 50 cc / min. 6 was discharged from the other end of the electrolyte bath so that a constant depth was maintained from the surface of the glass substrate 1.
As the rod-shaped electrode 2, a stainless steel (SUS304) wire having a diameter of 80 μm and a length of about 20 mm is used. As a power source, a DC power source of about 40 V is used as a negative electrode on the rod-shaped electrode 2 side and a positive electrode on the auxiliary electrode 3 side. Drilling was performed by energizing for about 30 seconds.
[0023]
As a result, as shown in FIG. 2, a tapered hole 9 having no undercut was formed in the glass substrate 1. The finest hole diameter of the fine holes was 140 μm in the conventional processing method, but could be processed to 100 μm in the processing method of the present invention.
[0024]
Since the air in the air chamber 8 is pressurized, when the tip of the rod-like electrode 2 penetrates the glass substrate 1, the pressurized air in the air chamber 8 rises as a bubble through the through-hole. Therefore, it can prevent that electrolyte solution flows into the glass substrate 1 back surface. Even when a hole having a minimum hole diameter of 200 μm or more is processed, the electrolyte can be prevented from flowing into the back surface of the glass substrate 1.
[0025]
In addition, when drilling was performed by simultaneously energizing from a common DC power source using four electrodes in order to drill holes in the four places of the glass substrate, the conventional processing method uses power to the first through electrode. However, in the case of this processing method, it is possible to prevent the electrolytic solution from flowing around the back surface of the glass substrate 1. Therefore, such inconvenience was eliminated, and holes with the same diameter were drilled at all four locations, and uniform processing could be performed.
[0026]
In place of the above-mentioned embodiment in which the electrolytic solution is supplied after setting the glass substrate at the bottom of the electrolytic solution tank, the pressure control is performed on the air chamber after the glass substrate is set in the electrolytic solution bath supplied in advance in the electrolytic solution tank. The electrolytic solution in the air chamber may be expelled out of the air chamber from the gap between the O-ring and the bottom surface of the electrolytic solution tank by sending the generated air through the air supply pipe.
[0027]
In addition, instead of sending pressurized air to the air chamber in the above embodiment, only an air chamber (not necessarily sealed) is provided, and a water repellent, such as a car windshield, is provided on the back surface of the glass substrate. By applying a commercially available polydimethylsiloxane water repellent Super Rain-X (manufactured by Unelco) for application, it is possible to prevent the electrolyte from adhering to the back of the glass substrate, and processing without undercut defects is possible. It was also confirmed that. Of course, it is more preferable if pressurized air is sent to the air chamber to apply pressure and a water repellent is applied to the back surface of the glass substrate.
[0028]
【The invention's effect】
Therefore, according to the processing method of the present invention, a simple tapered fine hole free from undercut and other defects can be obtained by the electrolytic discharge processing method. Moreover, the simultaneous porous machining by the electrolytic discharge machining method can be performed smoothly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrolytic processing apparatus according to the present invention. FIG. 2 is a cross-sectional view showing a state where holes are drilled according to the present invention. Sectional view showing the machined state 【Explanation of symbols】
1. 1. Glass substrate 2. Rod-shaped electrode Auxiliary electrode4. 4. O-ring Electrolyte tank 6. Electrolyte 7 Air supply pipe8. Air chamber

Claims (4)

電解液中で電気絶縁性の被加工板表面に棒状電極を押し当てて棒状電極と電解液との間に電圧を印加して前記被加工板に貫通孔をあける電解放電孔加工方法において、被加工板の貫通孔があけられるべき部分の裏面側に電気絶縁性気体の空間を設けることを特徴とする電解放電孔加工方法。In an electrolytic discharge hole machining method in which a rod-shaped electrode is pressed against the surface of a work-insulating plate in an electrolyte and a voltage is applied between the rod-shaped electrode and the electrolyte to open a through-hole in the workpiece. An electrolytic discharge hole machining method comprising providing a space of an electrically insulating gas on a back surface side of a portion where a through hole of a processed plate is to be drilled. 前記空間には加圧された電気絶縁性気体が満たされている請求項1記載の電解放電孔加工方法。The electrolytic discharge hole machining method according to claim 1, wherein the space is filled with a pressurized electrically insulating gas. 前記被加工板の貫通孔があけられるべき部分の裏面に撥水剤を予め塗布してある請求項1または2記載の電解放電孔加工方法。The electrolytic discharge hole machining method according to claim 1 or 2, wherein a water repellent is applied in advance to a back surface of a portion where the through hole of the plate to be processed is to be opened. 棒状電極と、補助電極と、電解液槽と、その底面に設けた電気絶縁性気体供給管と、被加工板の裏面と電解液槽底面の間をシールして空間を形成するために電解液槽底面に設けるシール部材とを有する電解放電孔加工装置。Electrolytic solution for forming a space by sealing between the rod-shaped electrode, the auxiliary electrode, the electrolytic solution tank, the electrically insulating gas supply pipe provided on the bottom surface thereof, and the back surface of the processed plate and the bottom surface of the electrolytic solution tank An electrolytic discharge hole machining apparatus having a seal member provided on the bottom of the tank.
JP03765696A 1996-02-26 1996-02-26 Electrolytic discharge hole machining method and apparatus Expired - Fee Related JP3701369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03765696A JP3701369B2 (en) 1996-02-26 1996-02-26 Electrolytic discharge hole machining method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03765696A JP3701369B2 (en) 1996-02-26 1996-02-26 Electrolytic discharge hole machining method and apparatus

Publications (2)

Publication Number Publication Date
JPH09225744A JPH09225744A (en) 1997-09-02
JP3701369B2 true JP3701369B2 (en) 2005-09-28

Family

ID=12503695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03765696A Expired - Fee Related JP3701369B2 (en) 1996-02-26 1996-02-26 Electrolytic discharge hole machining method and apparatus

Country Status (1)

Country Link
JP (1) JP3701369B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008807B (en) * 2012-11-27 2015-06-17 上海交通大学 Electrochemical discharge machining device and method based on force feedback control feeding system
CN103231133B (en) * 2013-05-08 2015-05-20 清华大学 Electrolytic electric discharge combined machining method and electrolytic electric discharge combined machining device of non-conducting materials

Also Published As

Publication number Publication date
JPH09225744A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP4774177B2 (en) Improved method and apparatus for cleaning and / or coating metal surfaces using electroplasma technology
KR100871332B1 (en) Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
Kuo et al. Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow
JP2547886B2 (en) Electrochemical machining method by pulse current and its equipment
Datta et al. Jet and laser‐jet electrochemical micromachining of nickel and steel
FR2383247A1 (en) PROCESS AND APPARATUS FOR THE MANUFACTURE OF OXYGEN AND GAS HYDROGEN ELECTROLYTICALLY
JPH1058236A (en) Machining method using hydroxyl group in ultrapure water
US11331737B2 (en) Device for insulating cathode surface in electrochemical machining
KR102616663B1 (en) Reduced water production device and reduced water production method
SG52581A1 (en) Method and apparatus for electrolytically metallising or etching material
JP3701369B2 (en) Electrolytic discharge hole machining method and apparatus
KR101874519B1 (en) Apparatus for electrochemical discharge machining and method therefor
JPS62255013A (en) Electro-chemical machining device
Madigan et al. Effects of sonication on electrode surfaces and metal particles
US3331760A (en) Electrolytic milling
Gelchinski et al. Electrochemical and Metallurgical Aspects of Laser‐Enhanced Jet Plating of Gold
KR890015811A (en) Electrolytic finishing process
Lantelme et al. Chronopotentiometric Investigation of the Anodic Reaction in Cryolite Melts: Influence of Dissolved Metal Traces
Lin et al. Plasma electrolytic polishing process mechanism and application possibilities research for metal workpiece surface finishing
US6398942B1 (en) Electrochemical machining process for fabrication of cylindrical microprobe
RU2324769C2 (en) Method of item surgace cleaning and polishing (variants)
US5304288A (en) Method of and device for the spark erosion of hardmeal objects
JPH09323220A (en) Metallic bralike electrode for machining electrolytic discharge hole and manufacture thereof
JPH0548317B2 (en)
Zhang et al. Reduction of stray corrosion by utilizing directional induction of hydrogen bubbles in bipolar pulsed ECM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

LAPS Cancellation because of no payment of annual fees