JP3700321B2 - Solid-state pressure welded pipe manufacturing equipment - Google Patents

Solid-state pressure welded pipe manufacturing equipment Download PDF

Info

Publication number
JP3700321B2
JP3700321B2 JP09046197A JP9046197A JP3700321B2 JP 3700321 B2 JP3700321 B2 JP 3700321B2 JP 09046197 A JP09046197 A JP 09046197A JP 9046197 A JP9046197 A JP 9046197A JP 3700321 B2 JP3700321 B2 JP 3700321B2
Authority
JP
Japan
Prior art keywords
roll
solid
steel pipe
pipe
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09046197A
Other languages
Japanese (ja)
Other versions
JPH10109109A (en
Inventor
高明 豊岡
寿雄 大西
元晶 板谷
章 依藤
裕二 橋本
伸樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09046197A priority Critical patent/JP3700321B2/en
Publication of JPH10109109A publication Critical patent/JPH10109109A/en
Application granted granted Critical
Publication of JP3700321B2 publication Critical patent/JP3700321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管の製造装置に関し、とくに、オープン管の両エッジ部を固相圧接適正温度域で衝合接合して管に成形するのに好適な、固相圧接鋼管の製造装置に関する。
【0002】
【従来の技術】
溶接鋼管は、鋼板または鋼帯(帯鋼)を管状に成形しその継目を溶接したもので、小径から大径まで各種の製造法によりつくられているが、主な製造法として、電気抵抗溶接(電縫)、鍛接、電弧溶接によるものが挙げられる。
小径〜中径鋼管用としては、高周波誘導加熱を利用した電気抵抗溶接法(電気抵抗溶接鋼管、電縫管)が主として利用されている。この方法は、連続的に帯鋼を供給し、成形ロールで管状に成形してオープン管とし、続いて高周波誘導加熱によりオープン管の両エッジ部端面を鋼の融点以上に加熱した後、スクイズロールで両エッジ部端面を衝合溶接して鋼管を製造する方法である(例えば、第3版鉄鋼便覧第III 巻(2)1056〜1092頁)。
【0003】
上記した高周波誘導加熱を利用した電縫管の製造方法では、オープン管の両エッジ部端面を鋼の融点以上に加熱するため、電磁力の影響により溶鋼が流動し、生成された酸化物が衝合溶接部に噛み込まれペネトレータ等の溶接欠陥あるいは、溶鋼飛散(フラッシュ)が発生しやすいという問題があった。
この問題に対し、例えば、特開平2-299782号公報には、2つの加熱装置を有する電縫鋼管の製造法が提案されている。すなわち、第1の加熱装置でオープン管の両エッジ部の温度をキュリー点以上に加熱し、第2の加熱装置で更に融点以上に加熱し、すぐ下流に設けたスクイズロールで両エッジ部を衝合溶接して鋼管を製造する。また、特開平2-299783号公報には、第1の加熱装置で周波数45〜250kHzの電流を流し、両側エッジ部を予熱し、第2の加熱装置で更に融点以上に加熱し、スクイズロールで両エッジ部を衝合溶接して鋼管を製造する電縫管製造装置が提案されている。
【0004】
しかしながら、これらの電縫管製造技術では、エッジ部を均一に加熱することは示唆しているものの、両エッジ部を鋼の融点以上に加熱するため、衝合溶接時に、溶融した鋼が管の内外面に排出されビード(余盛)が形成される。そのため、衝合溶接後に管内外面の溶接ビードの除去が必要であり、ほとんどがビード切削用バイトにより切削されて除去されている。
【0005】
このようなことから、この方法では、
▲1▼ビード切削用バイトの切削量の調整で、材料と時間のロスが発生する。
▲2▼ビード切削用バイトは消耗品であるため、造管速度によって異なるが、3000〜4000mのビード切削長毎にバイトを交換する必要があり、そのため、1時間程度ごとに3〜5分間のバイト交換のためのラインの停止を余儀なくされる。
【0006】
▲3▼特に造管速度が100m/min を超える高速造管では、ビード切削用バイトの寿命が短く、交換頻度が高い。
など、ビード切削がネックとなり、高速造管ができないため生産性が低いという問題があった。
一方、比較的小径鋼管用として極めて高い生産性を有する鍛接鋼管製造方法がある。この方法は、連続的に供給した帯鋼を加熱炉で1300℃程度に加熱した後、成形ロールで管状に成形してオープン管とし、続いてオープン管の両エッジ部に高圧空気を吹き付けて端面のスケールオフを行った後、ウェルディングホーンにより端面に酸素を吹き付け、その酸化熱で端面を1400℃程度に昇温させてから、鍛接ロールで両エッジ部端面を衝合させ固相接合して鋼管を製造する方法である(例えば、第3版鉄鋼便覧第III 巻(2)1056〜1092頁)。
【0007】
しかし、この鍛接鋼管製造方法では、
▲1▼端面のスケールオフが完全ではないので、鍛接衝合部へのスケール噛込みが発生し、シーム部の強度が母材部に比べてかなり劣る。このため、偏平試験で、電縫鋼管なら偏平高さ比h/D=2t/D(t:板厚)を達成できるのに対し、鍛接鋼管では偏平高さ比h/Dが0.5 程度に劣るものとなる。
【0008】
▲2▼帯鋼を高温に加熱するため、管表面にスケールが生成し表面肌が悪い。
など、造管速度が300m/min 以上と速く生産性は高いが、シーム品質及び表面肌が悪く、JISのSTK等の強度信頼性や表面品質を要求されるものは製造できないという問題があった。
【0009】
【発明が解決しようとする課題】
上記問題を有利に解決するには、本発明者らの創案になる固相圧接造管法によるのが好適である。これは、オープン管のエッジ部を、キュリー点(770 ℃程度)以上融点未満の温度域(予熱温度域という)に誘導加熱(エッジ予熱という)し、次いで空冷により予熱温度域内でエッジ部の温度均一化を行った後、固相圧接適正温度域(1300℃〜1500℃)に誘導加熱(本加熱という)して衝合・圧接するという従来にない造管法である。この固相圧接造管法で製造される鋼管は、従来の溶接管のようにビード切削の必要がないので高速造管が可能で生産性が高く、しかも従来の鍛接管の欠点である酸化起因のシーム品質および表面肌の劣化もない。
【0010】
本発明の目的は、ビード切削の必要がなく高い生産性が確保できしかもシーム品質および表面肌に優れた鋼管を製造できる上述の固相圧接造管法の実施に適した、固相圧接鋼管の製造装置を提供することにある。
【0011】
本発明は、帯鋼から成形されたオープン管の両エッジ部を二段階に誘導加熱する第1、第2のワークコイルおよびその下流で両エッジ部を衝合・圧接してシーム部を形成するスクイズロールを備えた鋼管の製造装置において、スクイズロールがシーム部に当接するよう配置され、さらに、スクイズロールと対向してシーム部を管内から押圧して平滑化する平滑化ロール、および第1、第2のワークコイルの少なくともいずれかのエッジ部加熱効率を高めるインピーダ、を装着した内挿バーを管内に備え、また、必要に応じて前記平滑化ロールをスクイズロールと対向させる代わりにスクイズロールの下流でシーム部温度が900℃以下に冷えない位置に配置し、これと対向して平滑化による管径の変動を拘束する拘束ロールを管外に備えたことを特徴とする固相圧接鋼管の製造装置である。
【0012】
前記装置はさらに、誘導加熱されつつあるエッジ部周辺の雰囲気を低酸素状態または還元性状態に保つ雰囲気保定機構を備えることが好ましい。
前記雰囲気保定機構は、管外に前記エッジ部を囲むボックスを設けて該ボックスに低酸素ガスまたは還元性ガスを供給する、あるいは、前記内挿バーにガス供給路を設けて前記エッジ部周辺の管内に低酸素ガスまたは還元性ガスを供給するよう構成するのが好ましく、また、これらを複合して構成すればさらに好ましい。
【0013】
なお、シーム部に当接する、スクイズロール、平滑化ロールおよび拘束ロールは、曲げ強度15kg/mm2以上、耐熱衝撃温度差 150℃以上の特性を有することが好ましく、それらの素材としては、窒化ケイ素系、炭化ケイ素系、ジルコニア系、またはアルミナ系のセラミックスが最適である。
【0014】
【発明の実施の形態】
図1は、本発明の固相圧接鋼管の製造装置(本発明装置)の例を示す模式図であり、(a)は別設の拘束ロールなし、(b)は別設の拘束ロールありの場合を夫々示す。図1において、1は第1のワークコイル、2は第2のワークコイル、3はスクイズロール、4は平滑化ロール、5は内挿バー、6は第1のインピーダ、7は第2のインピーダ、10はシーム部、20はオープン管、21はエッジ部、30は圧接点、40はシーム管、51は圧延反力受けロール、52は支持枠体、60、61は拘束ロール、100 は予熱区間、200 は本加熱区間である。
【0015】
なお、インピーダを設けない参考装置の例を図4に示す。
図1に示されるように、本発明装置は、前記固相圧接造管法を実施するために、帯鋼から成形されたオープン管20の両エッジ部21、21を二段階に誘導加熱する第1、第2のワークコイル1、2およびその下流で両エッジ部を衝合・圧接してシーム部10を形成するスクイズロール3を備えている。第1のワークコイル1でエッジ予熱区間100 、第2のワークコイル2で本加熱区間200 が設定される。ここで、オープン管20のエッジ部21が衝合・圧接される点(シーム部10の始点)を圧接点30、圧接点30の下流の管体をシーム管40と呼ぶことにする。
【0016】
ところが、固相圧接されたシーム部10には、エッジ部21の到達温度あるいはスクイズロール3による絞り込みの程度により図3(a)、(b)に示すように、シーム管40においてシーム部10の管内外側または管内側に管体肉厚の5%以上の増肉を生じることがある。
そこで、本発明装置では、スクイズロール3をシーム部10に当接させるよう配置し、さらに、シーム部10を管内から押圧して平滑化する平滑化ロール4を装着した内挿バー5を管内に備えた。内挿バー5には剛性の高い鉄材等を用いるのがよい。平滑化ロール4は、図1に示すように、シーム管40の内面上を転動自在な圧延反力受けロール51付きの支持枠体52を内挿バー5に固定して該支持枠体52に支持させればよい。
【0017】
これにより、シーム部10に図3に示したような増肉が生じても速やかに平滑化できる。
また、第1、第2のワークコイル1、2のみによる誘導加熱では、管体肉厚が厚い場合には加熱効率が低くて高速造管が困難であるとか、エッジ部21端面内を一様に固相圧接可能温度域に昇温するのが困難となる場合がある。
【0018】
そこで、この例に示すように本発明では、内挿バー5に、第1、第2のインピーダ6、7の少なくともいずれかを装着して、エッジ予熱区間100 、本加熱区間200 の少なくともいずれかにおけるオープン管20内面のインピーダンスを高め、誘導電流のエッジ部への集中度を高めている。インピーダにはフェライト等の強磁性体を用いるのがよい。第1、第2のインピーダ6、7はいずれか一方装着してもよいが、両方装着するほうが加熱効率はより向上する。また、第1、第2のインピーダ6、7は一体化してもよい。
【0019】
増肉平滑化はシーム部10が高温のうちに行うほうが荷重が低くて済むので、図1(a)に示すとおり、圧接点30に最も近いスクイズロール3と平滑化ロール4とでシーム部10を挟圧して圧延するように平滑化ロール4の位置を定める。もっとも、装置の寸法上や配置上の制約等でスクイズロール3の近傍に平滑化ロール4を配置できない場合には、図1(b)に示すように、その下流でシーム部10が900 ℃以下に冷えない位置の管外に拘束ロール60、61を別設し、これら拘束ロール60、61で平滑化ロール4と圧延反力受けロール51からの押圧力を受け止めることにより、押圧力による管径の変動を防いでもよい。
【0020】
また、鍛接管にみられるような酸化起因のシーム品質劣化を好適に防止するために、前記本発明装置はさらに、誘導加熱されつつあるエッジ部周辺の雰囲気を低酸素状態に保つ雰囲気保定機構を備えることが好ましい。
図2は、そのような雰囲気保定機構の説明図であり、(a)はボックス型、(b)は管内パージ型、(c)は複合型を夫々示す。図2において、70はボックス、80は内挿バー内に設けたガス供給路、81はガス供給路80に連通するガス噴出口で、図1と同一または相当部分にはこれと同じ符号を付し、説明を省略する。
【0021】
この図に示すように、雰囲気保定機構は、管外に前記エッジ部(すなわち予熱区間100 および本加熱区間200 におけるエッジ部21)を囲むボックス70を設けて該ボックス70に低酸素ガスを供給する(a)、あるいは、前記内挿バー5に、管内に開口するガス噴出口81を有するガス供給路80を設けて前記エッジ部21周辺の管内に低酸素ガスを供給する(b)よう構成するのが好ましく、また、これらを複合して構成すればさらに好ましい。低酸素ガスとしては、N2 ガスあるいはArガス等不活性ガスが好適である。また、さらには、H2 ガス,COガス,プロパンガス等の還元性ガスを使用すれば、侵入空気に対する許容度が増大する。
【0022】
また、シーム部に当接する、スクイズロール、平滑化ロールおよび必要に応じて設ける拘束ロールは、増肉平滑化の際に、管体からの反力によって15kg/mm2以上の曲げ応力が生じ、かつ当該ロールの管体への当接面の圧接点近傍とそれ以外の領域との温度差は150 ℃以上にまで達していることが多い。
そのため、これらのロールの寿命延長のために、当該ロールの素材は、曲げ強度15kg/mm2以上、耐熱衝撃温度差150 ℃以上の特性を有するもののうちから選択することが好ましい。なお、ここで評価に用いた耐熱衝撃温度差とは、材料試験片として3mm×4mm×40mmの角棒(JIS 4点曲げ試験用の仕様)を使用して、試験片を所定温度まで加熱した後に、水中に投下した際に試験片にクラックが発生しない温度差(加熱温度と水温との差)のことである。現状の技術水準に照らせば、かかる素材としては、窒化ケイ素(Si3N4 )系または炭化ケイ素(SiC )系またはジルコニア(ZrO2)系またはアルミナ(Al2O3 )系のセラミックスが最適である。
【0023】
【実施例】
図2(b)に示した本発明の固相圧接鋼管の製造装置を、鋼管製造ラインに設置し、固相圧接造管法によって、成形後管径φ21.7〜114.3 mm×肉厚1.9 〜4.5 mmの配管用、一般構造用炭素鋼鋼管(JIS G3452のSGP、G3444のSTK相当品)を製造した。なお、内挿バー5は管内に開口するガス噴出口81を設けた鉄製円筒で、第1、第2のインピーダ6、7は中空のフェライトを内挿バー5の外周に挿入固定して構成し、内挿バー5の一端から円筒中空部にN2 ガスを 800Nl/min供給し、シーム部10に当接するスクイズロール3、平滑化ロール4の素材を曲げ強度85kg/mm2、耐熱衝撃温度差 800℃を有する窒化ケイ素系のセラミックスとした。
【0024】
その結果、スクイズロール3をシーム部10に当接させず、内挿バー5を備えず、シーム部平滑化をビード切削で行う従来装置で上記と同規格同寸法の鋼管を固相圧接造管法によって試作製造していた時期と比較して、最大成形速度が100m/minから350m/minに向上し、また、シーム品質が、偏平試験での偏平高さ比h/Dの平均値でみて0.5 から0.2 へと向上した。
【0025】
【発明の効果】
以上述べたように、本発明によれば、ビード切削の必要がなく高い生産性が確保できしかもシーム品質および表面肌に優れた鋼管を製造できる固相圧接造管法の実施に適した、固相圧接鋼管の製造装置が得られるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明装置の例を示す模式図であり、(a)は別設の拘束ロールなし、(b)は別設の拘束ロールありの場合を夫々示す。
【図2】雰囲気保定機構の説明図であり、(a)はボックス型、(b)は管内パージ型、(c)は複合型を夫々示す。
【図3】シーム部に生じる増肉の説明図である。
【図4】 インピーダを設けない参考装置の例を示す模式図であり、(a)は別設の拘束ロールなし、(b)は別設の拘束ロールありの場合を夫々示す。
【符号の説明】
1 第1のワークコイル
2 第2のワークコイル
3 スクイズロール
4 平滑化ロール
5 内挿バー
6 第1のインピーダ
7 第2のインピーダ
10 シーム部
20 オープン管
21 エッジ部
30 圧接点
40 シーム管
51 圧延反力受けロール
52 支持枠体
60、61 拘束ロール
70 ボックス
80 ガス供給路
81 ガス噴出口
100 予熱区間
200 本加熱区間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a steel pipe, and more particularly to an apparatus for manufacturing a solid-phase pressure welded steel pipe , which is suitable for forming both ends of an open pipe by abutting and joining in an appropriate temperature range for solid-phase pressure welding .
[0002]
[Prior art]
Welded steel pipes are formed by forming steel plates or steel strips (strips) into a tubular shape and welding their joints, and are made by various manufacturing methods from small to large diameters. The main manufacturing method is electrical resistance welding. (Electronic stitching), forging welding, and electric arc welding.
For small to medium diameter steel pipes, an electric resistance welding method (electric resistance welded steel pipe, electric resistance welded pipe) using high frequency induction heating is mainly used. In this method, a steel strip is continuously supplied, formed into a tubular shape with a forming roll to form an open tube, and then both edge portions of the open tube are heated to a temperature higher than the melting point of the steel by high frequency induction heating, and then a squeeze roll. In this method, the end surfaces of both edge portions are abutted and welded to produce a steel pipe (for example, third edition Steel Handbook, Volume III (2) pages 1056-1092).
[0003]
In the above-described method for manufacturing an ERW pipe using high-frequency induction heating, the end surfaces of both edges of the open pipe are heated to the melting point or higher of the steel, so that the molten steel flows under the influence of electromagnetic force, and the generated oxide is impinged. There has been a problem that welding defects such as a penetrator or molten steel scattering (flash) are likely to occur due to being caught in the joint weld.
In order to solve this problem, for example, Japanese Patent Laid-Open No. 2-299782 proposes a method for producing an electric resistance welded steel pipe having two heating devices. That is, the temperature of both edges of the open tube is heated to the Curie point or higher with the first heating device, further heated to the melting point or higher with the second heating device, and both edges are impacted by the squeeze roll provided immediately downstream. Steel pipes are manufactured by joint welding. In Japanese Patent Laid-Open No. 2-99783, a current of a frequency of 45 to 250 kHz is supplied by a first heating device, both edge portions are preheated, further heated to a melting point or higher by a second heating device, and squeezed by a squeeze roll. There has been proposed an electric welded tube manufacturing apparatus for manufacturing a steel pipe by abutting welding of both edge portions.
[0004]
However, although these ERW pipe manufacturing techniques suggest that the edges are heated uniformly, both edges are heated above the melting point of the steel. A bead is formed on the inner and outer surfaces. Therefore, it is necessary to remove the weld beads on the inner and outer surfaces of the pipe after the abutting welding, and most of them are cut and removed by a cutting tool for bead cutting.
[0005]
For this reason, in this method,
(1) Loss of material and time occurs by adjusting the cutting amount of the bead cutting tool.
(2) Since the cutting tool for bead is a consumable item, it varies depending on the pipe making speed, but it is necessary to change the cutting tool every bead cutting length of 3000 to 4000 m. Therefore, it takes 3 to 5 minutes every hour. Forced to stop line for byte exchange.
[0006]
(3) Particularly in the case of a high speed pipe making with a pipe making speed exceeding 100 m / min, the life of the bead cutting tool is short and the replacement frequency is high.
For example, bead cutting has become a bottleneck, and there is a problem that productivity is low because high-speed pipe making is impossible.
On the other hand, there is a forged steel pipe manufacturing method having extremely high productivity for a relatively small diameter steel pipe. In this method, the continuously supplied steel strip is heated to about 1300 ° C in a heating furnace, then formed into a tubular shape with a forming roll to form an open pipe, and then high pressure air is blown to both edge portions of the open pipe to end face After performing the scale-off, oxygen is blown to the end face with a welding horn, the end face is heated to about 1400 ° C with the heat of oxidation, and the end faces of both edges are brought into contact with a forging roll and solid phase bonded. This is a method for producing a steel pipe (for example, 3rd Edition Steel Handbook, Volume III (2) 1056-1092).
[0007]
However, in this forged steel pipe manufacturing method,
(1) Since the scale-off of the end face is not complete, scale biting occurs in the forging contact portion, and the strength of the seam portion is considerably inferior to that of the base material portion. For this reason, in the flatness test, a flat height ratio h / D = 2t / D (t: plate thickness) can be achieved with an electric-welded steel pipe, whereas a flat height ratio h / D is inferior to about 0.5 with a forged steel pipe. It will be a thing.
[0008]
(2) Since the steel strip is heated to a high temperature, scale is generated on the tube surface, and the surface skin is poor.
The pipe making speed is as fast as 300m / min or more, and the productivity is high, but the seam quality and the surface skin are poor, and there is a problem that it is impossible to manufacture those requiring strength reliability and surface quality such as JIS STK. .
[0009]
[Problems to be solved by the invention]
In order to advantageously solve the above problem, it is preferable to use the solid-phase pressure welding pipe method, which is the idea of the present inventors. This is because the edge of the open tube is induction-heated (called edge preheating) to a temperature range (referred to as preheating temperature range) above the Curie point (about 770 ° C) and below the melting point, and then the temperature of the edge portion within the preheating temperature range by air cooling. This is an unprecedented tube-forming method in which after homogenization, induction heating (referred to as main heating) is performed in the proper temperature range (1300 ° C to 1500 ° C) for solid-phase pressure welding, and abutting and pressure welding are performed. Steel pipes manufactured by this solid-state pressure welded pipe method do not require bead cutting unlike conventional welded pipes, enabling high-speed pipe forming and high productivity, and also due to oxidation, which is a drawback of conventional forged pipes No seam quality and surface skin degradation.
[0010]
An object of the present invention is to provide a solid-phase pressure welded steel pipe suitable for carrying out the above-described solid-phase pressure welded pipe method capable of producing a steel pipe having high seam quality and surface texture without requiring bead cutting. It is to provide a manufacturing apparatus.
[0011]
In the present invention, first and second work coils that inductively heat both edge portions of an open pipe formed from a steel strip in two stages, and both edge portions are abutted and pressed downstream to form a seam portion. in the manufacturing apparatus of a steel pipe having a squeeze roll, is arranged to squeeze roll abuts the seam portion, further squeeze rolls opposed to smoothing roll for smoothing by pressing the seams from the tube, and the 1. An insertion bar equipped with an impeder that enhances the heating efficiency of at least one of the edge portions of the second work coil is provided in the pipe, and if necessary, the smoothing roll is squeezed instead of facing the squeeze roll. seam temperature is disposed at a position not cooled to 900 ° C. or less downstream of the roll, this that the restraining roll comprising a tube outer which was opposite thereto for restraining the variation in pipe diameter due to the smoothing An apparatus for manufacturing a solid-phase pressure-steel pipe characterized by.
[0012]
It is preferable that the apparatus further includes an atmosphere holding mechanism that maintains the atmosphere around the edge portion being induction-heated in a low oxygen state or a reducing state.
The atmosphere holding mechanism is provided with a box surrounding the edge portion outside the pipe and supplying low oxygen gas or reducing gas to the box, or by providing a gas supply path in the insertion bar and surrounding the edge portion. It is preferable that low oxygen gas or reducing gas is supplied into the pipe, and it is more preferable that these are combined.
[0013]
The squeeze roll, the smoothing roll and the restraining roll that are in contact with the seam portion preferably have a bending strength of 15 kg / mm 2 or more and a thermal shock temperature difference of 150 ° C. or more. , Silicon carbide, zirconia, or alumina ceramics are most suitable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing an example of a solid-phase pressure welded steel pipe manufacturing apparatus (the present invention apparatus) according to the present invention, where (a) is without a separate restraining roll and (b) is with a separate restraining roll. Each case is shown. In FIG. 1, 1 is a first work coil, 2 is a second work coil, 3 is a squeeze roll, 4 is a smoothing roll, 5 is an interpolation bar, 6 is a first impeder, and 7 is a second impeder. , 10 is a seam part, 20 is an open pipe, 21 is an edge part, 30 is a pressure contact, 40 is a seam pipe, 51 is a rolling reaction force receiving roll, 52 is a support frame, 60 and 61 are restraining rolls, and 100 is preheated Section 200 is the main heating section.
[0015]
An example of a reference device not provided with an impeder is shown in FIG.
As shown in FIG. 1, the apparatus of the present invention performs induction heating of both edge portions 21, 21 of an open tube 20 formed from a steel strip in two stages in order to carry out the solid phase pressure welding tube method. 1, a second work coil 1, 2 and a squeeze roll 3 that forms a seam portion 10 by abutting and pressure-contacting both edge portions downstream thereof. The edge preheating section 100 is set by the first work coil 1, and the main heating section 200 is set by the second work coil 2. Here, a point where the edge portion 21 of the open pipe 20 is abutted and pressed (the start point of the seam portion 10) is referred to as a pressure contact 30, and a pipe body downstream of the pressure contact 30 is referred to as a seam pipe 40.
[0016]
However, as shown in FIGS. 3A and 3B, the seam portion 10 in the seam tube 40 is in contact with the seam portion 10 that has been solid-phase-welded, depending on the temperature reached by the edge portion 21 or the degree of narrowing by the squeeze roll 3. An increase in thickness of 5% or more of the tube thickness may occur inside or outside the tube.
Therefore, in the apparatus of the present invention, the squeeze roll 3 is disposed so as to abut the seam portion 10, and the insertion bar 5 fitted with the smoothing roll 4 for smoothing the seam portion 10 by pressing from the inside of the tube is inserted into the tube. Prepared. The insertion bar 5 is preferably made of a highly rigid iron material or the like. As shown in FIG. 1, the smoothing roll 4 has a support frame 52 with a rolling reaction force receiving roll 51 that can roll on the inner surface of the seam tube 40 fixed to the insertion bar 5. To support.
[0017]
Thereby, even if the thickness increase as shown in FIG.
In addition, in the induction heating using only the first and second work coils 1 and 2, when the tube thickness is large, the heating efficiency is low and high-speed pipe forming is difficult, or the end surface of the edge portion 21 is uniform. In some cases, it may be difficult to raise the temperature to a temperature range where solid-phase pressure welding is possible.
[0018]
Therefore, as shown in this example , in the present invention , at least one of the first and second impeders 6 and 7 is attached to the interpolation bar 5, and at least one of the edge preheating section 100 and the main heating section 200 is installed. Improves the impedance of the inner surface of the open tube 20 and increases the concentration of the induced current at the edge. It is preferable to use a ferromagnetic material such as ferrite for the impeder. Either one of the first and second impeders 6 and 7 may be mounted, but the heating efficiency is further improved by mounting both. The first and second impeders 6 and 7 may be integrated.
[0019]
Since the thickening and smoothing can be performed with the seam portion 10 being hot while the load is low, as shown in FIG. 1 (a), the seam portion 10 between the squeeze roll 3 and the smoothing roll 4 closest to the pressure contact 30 is provided. The position of the smoothing roll 4 is determined so as to be rolled while pressing . However, if it can not place a smoothing roll 4 in the vicinity of the squeeze roll 3 with restrictions such as on the dimensions on and arrangement of the apparatus, as shown in FIG. 1 (b), the seam portion 10 at its downstream 900 ° C. or less The constraining rolls 60 and 61 are separately provided outside the pipe at a position where they do not cool down. By receiving the pressing force from the smoothing roll 4 and the rolling reaction force receiving roll 51 with the constraining rolls 60 and 61, the pipe due to the pressing force is provided. The variation in diameter may be prevented.
[0020]
Further, in order to suitably prevent the deterioration of the seam quality caused by oxidation as seen in forged pipes, the apparatus of the present invention further includes an atmosphere holding mechanism for maintaining the atmosphere around the edge portion being induction heated in a low oxygen state. It is preferable to provide.
FIG. 2 is an explanatory view of such an atmosphere holding mechanism, wherein (a) shows a box type, (b) shows an in-pipe purge type, and (c) shows a composite type. In FIG. 2, 70 is a box, 80 is a gas supply passage provided in the insertion bar, 81 is a gas jet port communicating with the gas supply passage 80, and the same or corresponding parts as in FIG. The description is omitted.
[0021]
As shown in this figure, the atmosphere holding mechanism is provided with a box 70 surrounding the edge portion (that is, the edge portion 21 in the preheating section 100 and the main heating section 200) outside the pipe, and supplies low oxygen gas to the box 70. (A) Alternatively, a gas supply path 80 having a gas outlet 81 opened in the pipe is provided in the insertion bar 5 to supply low oxygen gas into the pipe around the edge portion 21 (b). In addition, it is more preferable if these are combined. As the low oxygen gas, an inert gas such as N 2 gas or Ar gas is suitable. Furthermore, if a reducing gas such as H 2 gas, CO gas, or propane gas is used, the tolerance for intruding air is increased.
[0022]
In addition, the squeeze roll, the smoothing roll, and the constraining roll provided as necessary, which come into contact with the seam portion, are subjected to a bending stress of 15 kg / mm 2 or more due to the reaction force from the tube during the thickening smoothing, In addition, the temperature difference between the vicinity of the pressure contact point on the contact surface of the roll with respect to the tubular body and the other region often reaches 150 ° C. or more.
Therefore, in order to extend the life of these rolls, the material of the rolls is preferably selected from those having characteristics of a bending strength of 15 kg / mm 2 or more and a thermal shock temperature difference of 150 ° C. or more. Note that the thermal shock temperature difference used in the evaluation here means that a 3 mm x 4 mm x 40 mm square bar (spec for JIS 4-point bending test) was used as a material test piece, and the test piece was heated to a predetermined temperature. Later, the temperature difference (difference between heating temperature and water temperature) at which cracks do not occur in the test piece when dropped in water. In view of the current technical level, silicon nitride (Si 3 N 4 ), silicon carbide (SiC), zirconia (ZrO 2 ), or alumina (Al 2 O 3 ) ceramics are optimal as such materials. is there.
[0023]
【Example】
The solid-phase pressure welded steel pipe manufacturing apparatus of the present invention shown in FIG. 2 (b) is installed in a steel pipe manufacturing line, and after forming the pipe diameter φ21.7 to 114.3 mm × wall thickness 1.9 to Carbon steel pipes for 4.5 mm piping and general structure (JIS G3452 SGP, G3444 STK equivalent) were manufactured. The insertion bar 5 is an iron cylinder provided with a gas jet 81 that opens into the pipe. The first and second impeders 6 and 7 are configured by inserting and fixing hollow ferrite on the outer periphery of the insertion bar 5. , N 2 gas was 800 NL / min supplied to cylindrical hollow portion from one end of the interpolation bar 5, squeeze roll 3 in contact with the seams 10, bending the material of the smoothing roll 4 strength 85 kg / mm 2, thermal shock temperature difference A silicon nitride ceramic having 800 ° C. was obtained.
[0024]
As a result, the steel pipe of the same size and the same size as the above is solid phase pressure welded pipe in a conventional apparatus that does not contact the seam portion 10 with the squeeze roll 3 and does not have the insertion bar 5 and smoothes the seam portion by bead cutting. Compared to the time when the prototype was manufactured by the method, the maximum molding speed was improved from 100 m / min to 350 m / min, and the seam quality was the average of the flat height ratio h / D in the flat test. Improved from 0.5 to 0.2.
[0025]
【The invention's effect】
As described above, according to the present invention, high productivity without the need for the bead cutting suitable can moreover practice of solid phase pressure forming tube method which can produce steel pipe excellent seam quality and surface texture ensuring a solid There is an excellent effect that a production apparatus for a phase-welded steel pipe is obtained.
[Brief description of the drawings]
1A and 1B are schematic views showing an example of the apparatus of the present invention, in which FIG. 1A shows a case without a separate restraining roll, and FIG. 1B shows a case with a separate restraining roll.
FIGS. 2A and 2B are explanatory views of an atmosphere holding mechanism, wherein FIG. 2A shows a box type, FIG. 2B shows an in-pipe purge type, and FIG. 2C shows a composite type.
FIG. 3 is an explanatory view of a thickening occurring in a seam portion.
FIGS. 4A and 4B are schematic views showing an example of a reference device without an impeder, where FIG. 4A shows a case without a separate restraining roll, and FIG. 4B shows a case with a separate restraining roll.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st work coil 2 2nd work coil 3 Squeeze roll 4 Smoothing roll 5 Interpolation bar 6 1st impeder 7 2nd impeder
10 Seam part
20 open tube
21 Edge
30 pressure contacts
40 seam tube
51 Rolling reaction force receiving roll
52 Support frame
60, 61 Restraint roll
70 boxes
80 Gas supply path
81 Gas outlet
100 Preheating section
200 heating section

Claims (6)

帯鋼から成形されたオープン管の両エッジ部を二段階に誘導加熱する第1、第2のワークコイルおよびその下流で両エッジ部を衝合・圧接してシーム部を形成するスクイズロールを備えた鋼管の製造装置において、スクイズロールがシーム部に当接するよう配置され、さらに、スクイズロールと対向してシーム部を管内から押圧して平滑化する平滑化ロールを装着した内挿バーを管内に備え、該内挿バーに、第1、第2のワークコイルの少なくともいずれかのエッジ部加熱効率を高めるインピーダが装着されたことを特徴とする固相圧接鋼管の製造装置。Equipped with first and second work coils that inductively heat both edges of an open tube formed from steel strip in two stages and a squeeze roll that forms a seam by abutting and pressing the edges downstream In the steel pipe manufacturing apparatus, the squeeze roll is disposed so as to abut the seam portion, and further, an insertion bar equipped with a smoothing roll that is smoothed by pressing the seam portion from the inside of the pipe so as to face the squeeze roll is provided in the pipe. And a solid-state pressure welded steel pipe manufacturing apparatus , wherein the interpolating bar is equipped with an impeder for increasing the heating efficiency of at least one of the edge portions of the first and second work coils . 前記平滑化ロールをスクイズロールと対向させる代わりに、スクイズロールの下流でシーム部温度が900℃超にある位置に配置し、該平滑化ロールと対向して該平滑化ロールの押圧力による管径の変動を拘束する拘束ロールを管外にさらに備えた請求項1記載の固相圧接鋼管の製造装置。 Instead of making the smoothing roll face the squeeze roll, it is arranged downstream of the squeeze roll at a position where the seam temperature is over 900 ° C., and the diameter of the tube due to the pressing force of the smoothing roll faces the smoothing roll. apparatus for manufacturing a solid-phase pressure-steel pipe further claim 1 Symbol placement with a restraint roll restraining outside the tube variations in. 誘導加熱されつつあるエッジ部周辺の雰囲気を低酸素状態または還元性状態に保つ雰囲気保定機構をさらに備えた請求項1または2に記載の固相圧接鋼管の製造装置。The apparatus for producing a solid-phase pressure welded steel pipe according to claim 1 or 2 , further comprising an atmosphere holding mechanism for maintaining an atmosphere around the edge portion being induction heated in a low oxygen state or a reducing state. 雰囲気保定機構が、管外に前記エッジ部を囲むボックスを設けて該ボックスに低酸素ガスまたは還元性ガスを供給する、および/または前記内挿バーにガス供給路を設けて前記エッジ部周辺の管内に低酸素ガスまたは還元性ガスを供給するよう構成されてなる請求項記載の固相圧接鋼管の製造装置。The atmosphere holding mechanism provides a box surrounding the edge portion outside the tube to supply low oxygen gas or reducing gas to the box, and / or provides a gas supply path to the insertion bar to surround the edge portion. The solid-state pressure welded steel pipe manufacturing apparatus according to claim 3, wherein the apparatus is configured to supply a low oxygen gas or a reducing gas into the pipe. シーム部に当接する、スクイズロール、平滑化ロールおよび拘束ロールが、曲げ強度15kg/mm2以上、耐熱衝撃温度差 150℃以上の特性を有する素材からなる請求項1〜のいずれかに記載の固相圧接鋼管の製造装置。Abuts the seam, squeeze roll, smoothing roll and constraining rolls, bending strength 15 kg / mm 2 or more, according to any one of claims 1 to 4 comprising a material having a thermal shock temperature difference 0.99 ° C. or more properties Production equipment for solid phase pressure welded steel pipe. 前記素材が窒化ケイ素系、炭化ケイ素系、ジルコニア系、またはアルミナ系のセラミックスである請求項に記載の固相圧接鋼管の製造装置。The apparatus for producing a solid-phase pressure welded steel pipe according to claim 5 , wherein the material is a silicon nitride-based, silicon carbide-based, zirconia-based, or alumina-based ceramic.
JP09046197A 1996-08-15 1997-04-09 Solid-state pressure welded pipe manufacturing equipment Expired - Fee Related JP3700321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09046197A JP3700321B2 (en) 1996-08-15 1997-04-09 Solid-state pressure welded pipe manufacturing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-215744 1996-08-15
JP21574496 1996-08-15
JP09046197A JP3700321B2 (en) 1996-08-15 1997-04-09 Solid-state pressure welded pipe manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH10109109A JPH10109109A (en) 1998-04-28
JP3700321B2 true JP3700321B2 (en) 2005-09-28

Family

ID=26431943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09046197A Expired - Fee Related JP3700321B2 (en) 1996-08-15 1997-04-09 Solid-state pressure welded pipe manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3700321B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000320B2 (en) 2005-12-16 2015-04-07 Jfe Steel Corporation Method of manufacturing electric resistance welding pipe having excellent characterization of welded seam

Also Published As

Publication number Publication date
JPH10109109A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
KR101668628B1 (en) Method for producing rolling roll, rolling roll, and device for producing rolling roll
JP3627603B2 (en) Method for manufacturing a steel pipe having a flat height ratio of 0.1 or less
JP3700321B2 (en) Solid-state pressure welded pipe manufacturing equipment
JP3951391B2 (en) Manufacturing method of solid-phase bonded tube
TW202320946A (en) Stainless steel and copper joint, manufacturing method therefor, and stainless steel and copper joining method
JP3375486B2 (en) Squeeze roll stand
KR101675005B1 (en) High frequency heating equipment and method using the same
JPH10296493A (en) Smoothing device for steel tube seam part
JPH10277639A (en) Manufacture of steel tube
JP2012110920A (en) Method of manufacturing axle case
JP3557813B2 (en) Steel pipe manufacturing method
JP4013266B2 (en) Steel pipe manufacturing method
EP0761378B1 (en) Method and apparatus for bonding crossing rails
JP3288600B2 (en) Steel pipe manufacturing method
JPH10296492A (en) Smoothing device of steel tube seam part
JP3684683B2 (en) Steel pipe manufacturing method
JP4361985B2 (en) Manufacturing method of high-frequency ERW steel pipe with excellent workability
JP3348822B2 (en) Manufacturing method of bonded steel pipe
JPH1080718A (en) Manufacture of steel tube
JP3622679B2 (en) Combined manufacturing equipment for different types of steel pipes
KR100293577B1 (en) Method of and apparatus for producing steel pipes
JP2522465B2 (en) Manufacturing method of ERW steel pipe
JP2001198630A (en) Manufacturing method for steel tube, seam part inner face binding apparatus for steel tube and seam inner face smoothing apparatus for steel tube
JPH11129026A (en) Equipment and method for smoothing steel pipe seam portion
JP2924675B2 (en) Manufacturing method of welded section steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees