JP3700099B2 - Thermographic apparatus and thermographic display method - Google Patents

Thermographic apparatus and thermographic display method Download PDF

Info

Publication number
JP3700099B2
JP3700099B2 JP14642097A JP14642097A JP3700099B2 JP 3700099 B2 JP3700099 B2 JP 3700099B2 JP 14642097 A JP14642097 A JP 14642097A JP 14642097 A JP14642097 A JP 14642097A JP 3700099 B2 JP3700099 B2 JP 3700099B2
Authority
JP
Japan
Prior art keywords
emissivity
temperature
point
circuit
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14642097A
Other languages
Japanese (ja)
Other versions
JPH10332489A (en
Inventor
研作 佐藤
哲雄 田村
Original Assignee
Nec三栄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec三栄株式会社 filed Critical Nec三栄株式会社
Priority to JP14642097A priority Critical patent/JP3700099B2/en
Publication of JPH10332489A publication Critical patent/JPH10332489A/en
Application granted granted Critical
Publication of JP3700099B2 publication Critical patent/JP3700099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被写体からの赤外線を検出して表示装置画面上に温度分布をカラー表示する様に成したサーモグラフィ装置及びサーモグラフィの表示方法に係わり、特に温度分布像中の特定の領域の放射率を補正可能なサーモグラフィ装置及びサーモグラフィの表示方法の改良に関する。
【0002】
【従来の技術】
一般にサーモグラフィ装置に於いては、温度に依存して物体から放射されて来る赤外エネルギーを検出して、得られた温度信号をCRT(陰極線管)等の表示装置に輝度信号として送出し、被写体の温度分布像を得ている。斯る、サーモグラフィ装置では、被写体の放射率εは物質により異なるため、温度誤差が発生することは避けられず通常は放射率補正回路が設けられている。
【0003】
従来の上述の放射率補正回路は被写体からの赤外線カメラを通して捕捉して、表示装置の画面に表示する温度分布像の1画面全体について同一の例えば放射率ε で補正を行なう様に成されていた。
【0004】
然し、この様に1画面全体について同一の放射率εで補正してしまうと、被写体中に放射率ε と異なる放射率εa を持った領域があると、その領域について得られる温度値に誤差が生じてしまうため、温度分布像中の任意の領域の放射率の補正を行う様にしたサーモグラフィ装置が特開平3−2250号公報に開示されている。
【0005】
上述の公報では図5に示すようにCRT等の表示装置11の画面24には中心温度25や温度幅26が文字表示され、温度分布像27及び枠28が領域指定され、この枠28によって規定された領域に含まれる画素についてのみ放射率補正を行なって色温度表示する様に成されている。
【0006】
【発明が解決しようとする課題】
上述の公報に開示された従来のサーモグラフィ装置は赤外線検出器で検出した温度データを画像メモリに取り込み、放射率補正回路で放射率補正を行なった補正データ補正データ書き込み回路を用いて再び画像メモリの枠指定した領域内に書き込み、読み出す処理が行なわれる為に領域を指定する枠設定回路、枠書き込み回路、枠表示用メモリ等を必要とし、回路が複雑化し、多くの回路部品を必要とし、放射率補正が施された枠内の放射率εo がどの様な値であるか直視出来ない等の問題がある。
【0007】
本発明は叙上の問題点を解消したサーモグラフィ装置及びサーモグラフィの表示方法を提供しようとするものであり、発明が解決しようとする課題は枠設定等を施さず、通常サーモグラフィ装置の表示装置に多用されている画像中の指定点表示(例えばクロスカーソル)の近傍に、指定された点に設定された放射率及びその放射率で補正された温度値をデジタル表示することで、色温度分布像の補正を施した部分に設定した放射率と、放射率補正された温度値が直ちに解る様にしたものである。
【0008】
【課題を解決するための手段】
本発明のサーモグラフィ装置及びサーモグラフィの表示方法はその例が図1に示されている様に被写体からの赤外エネルギーを検出した温度データに基づき、画面全体の放射率を補正して被写体の温度分布像を表示して成るサーモグラフィ装置に於いて、温度分布の画像内で温度値を知りたい点を指定し、その点の位置を示す指定点表示(例えばクロスカーソル)の近傍に、指定された点に設定された放射率値及びその放射率で補正された温度値をデジタル表示する様に成したものである。
【0009】
本発明のびサーモグラフィの表示方法によればリアルタイム或はフリーズ状態での放射率補正が行なえて、補正放射率を設定した位置の放射率及び放射率で補正された温度値が画面上でどの部分かを対応させる必要がなく極めて解り易い表示方法のサーモグラフィ装置及びサーモグラフィ方法が得られる。
【0010】
【発明の実施の形態】
以下、本発明のサーモグラフィ装置及びサーモグラフィの表示方法の一実施例を図1乃至図4により詳記する。
【0011】
図1は本発明のサーモグラフィ装置の系統図を示すものであり、図2はカメラ部を除く本体部の外観図、図3は本発明の画面例、図4は動作フローチャートである。図1で被写体1から放射された赤外線はウインド2aを介してラスタ走査する光スキャナ2によって赤外線の検出器3に焦点結像されて赤外線検出が行なわれる。この検出器3内には光スキャナ2の水平走査毎に基準の赤外線を検出器3内に導くチョッパ及び標準黒体を有し、チョッパが断の時に標準黒体からの反射光を検出器3に導き、検出器3の出力信号は入射赤外線と標準黒体のエネルギー差に比例する交流信号となって出力される。
【0012】
この様な微弱な交流信号はオペアンプ(AMP)4で増幅され、チョッパと同期した信号で検波され低域通過濾波回路等を介して平均化されてアナログ出力信号はアナログ−デジタル変換回路(A/D)5に供給されてデジタルデータに変換された後に画面全体の放射率ε を補正する為の画面全体放射率補正回路6に供給される。この画面全体放射率補正回路6は絶対温度再生部やリニアライザ等を含む処理回路内に含有されていて、画像データは絶対温度に対応した温度信号に変換されている。又、画面全体放射率設定回路42は画面全体放射率設定キー43を操作することで画面全体放射率補正回路の全面補正を行なう様に成されている。
【0013】
物質或は物体の放射率は物質の環境温度及び物質或は物体差によって異なり0.01〜1の値を示す。例えば、アルミニウムのみかいた面では50℃〜100℃で0.04〜0.06、ガラスでは20℃〜100℃で0.94〜0.91等の値を示す。通常は画面全体放射率補正回路6では放射率εo =1に選択する場合が多い。
【0014】
画面全体放射率補正回路6の出力温度データはスイッチング手段8を介して画像メモリ9に送られて画像メモリ9内に記憶される。スイッチング手段8のオン時にはリアルタイムで又オフ時には後述する画像メモリ9内の格納データに基づいてフリーズ状態での放射率補正を行なうことが出来る。スイッチング手段8はマイクロコンピュータ(以下CPUと記す)等で構成したデータ取り込み制御回路7で制御される。
【0015】
画像メモリ9は少くとも1フレーム分の記憶容量を有し、1フレーム走査毎に書換えられる。
【0016】
画像メモリ9に格納され全画面で同一の放射率で補正された温度データはCPU7内に含まれる、読み出し回路や書き込み回路(図示せず)を介して、読み出され、モニタ用のCRT等の表示装置11の階調に納まる形で表示メモリ10に格納され、この表示メモリ10に格納した画素データは表示駆動回路等を介して表示装置11に送出され、表示装置11の画面24上に温度分布像27(図3参照)等を表示する。
【0017】
図1で画像メモリポイント設定回路12は図3に示す様に表示装置11の画面24に指標(以下クロスカーソルと記す)30を設定させるための操作部を含む設定回路であり、図2に示す様に光スキャナ2を有するカメラ部とは切り離されて、A/D変換回路5以下の符号で示す各回路はサーモグラフィ装置20の本体部31のケーシング32内に配設され、パネル33上に設けた指標移動キー34によってクロスカーソル30を表示装置11の画面24の適宜位置に移動可能と成されている。
【0018】
クロスカーソル30の位置指定が指標移動キー34で行なわれると、指定位置はアドレスデコーダ13を介して画像メモリ9の所定アドレスに変換されて、クロスカーソル30位置のアドレスが画像メモリ9に記憶される。
【0019】
較正回路14はパネル33上の較正キー36を含み、被写体1の環境温度による反射を補正する測定回路であり、較正回路14で測定された較正データ(CALデータ)15は画像全体放射率補正回路6及び減算器17並びに加算器19に供給される。
【0020】
このCALデータ15に基づいて画面全体放射率補正回路6の放射率ε で放射率の補正が行なわれる。
【0021】
更に、画像メモリポイント設定回路12で設定されたクロスカーソル30の位置画像データをバッファメモリ16に取り込んで減算器17に供給し、較正回路14で測定したCALデータ15と画面全体放射率補正回路6で補正した放射率ε のデータの減算が成される。
【0022】
減算器17で減算した減算データは次段の乗算器18に供給される。乗算器18からの減算出力データには補正放射率設定回路23で設定した補正放射率データ22が乗算される。
【0023】
補正放射率設定回路23の放射率設定キー37の押圧で表示装置11の画面24上には図2に示す様にテンキー39等が表示されているので指標移動キー34等を用いて、所定の放射率εb を指定すればよい。
【0024】
乗算器18の乗算データは加算器19に供給されて、CALデータ15と加算され、加算器19の加算データは温度値及び放射率値表示回路21に供給され、表示装置11のCRTに供給される。
【0025】
表示装置11のCRT等の画面24には図3に示す様に画像メモリポイント設定回路12の指標移動キー34で移動させたクロスカーソル30の位置に於いて、補正放射率設定回路23で設定した、その物体特有の放射率、例えば図3のビルディングの色温度分布像27中の日の照らされている窓ガラスと日かげの窓ガラスの真の放射率と放射率補正が行なわれた温度値がクロスカーソル30の近傍にデジタル表示値40で表示される。
【0026】
従って、温度分布像27の観測者は画像中の補正温度及び補正を施した放射率を直ちに目視で認識することが出来ることになる。
【0027】
尚、上述の図1の系統図では減算器16、乗算器18、加算器19等をハードウェア構成で示したが、データ取り込み制御回路7を構成するCPU7によりソフトウェアで処理することも可能である。
【0028】
CPU7で処理する場合には、例えば、被写体1の放射率εを図1の画面全体放射率補正回路6で補正する放射率をε とし、被写体1の真の温度をf(To)とし、被写体1から反射される環境温度をf(Ta )とすると、被写体の周囲の環境温度f(Ta )による反射は(1−ε)×f(Ta )で表される。従って、画像メモリ9に取り込まれる画像の温度データは(1)式で表される。
(ε/ε )×f(To )+(1−ε/ε )×f(Ta
=(ε/ε )×{f(To )−f(Ta )}+f(Ta )‥‥‥(1)
ここでf(Ta )を図1のCALデータ15とし、補正放射率設定回路23での補正放射率をεa とすれは(1)式は(2)式に変換されて、
(ε /εa )×(ε/ε )×{f(T )−f(Ta )}+f(Ta
=(ε/εa )×{(T )−f(Ta )}+f(Ta )‥‥‥(2)
で表される。
ここでε=εa とすると(2)式は{f(T )−f(Ta )}+f(Ta )となり被写体1の真の温度f(Ta )が得られる。
【0029】
従って、CPU7は図4に示す様に上式の演算を行なう様に成せばよい。
【0030】
即ち、図4で第1ステップST1 ではバッファメモリ16から被写体1の温度データ(ε/ε )×{f(T )−f(Ta )}+f(Ta )をCPU7のメモリに取り込む。
【0031】
第2ステップST2 では較正回路14からCALデータ15の被写体の真の温度f(Ta )をCPU7のメモリに取り込む。
【0032】
第3ステップST3 では補正放射率設定回路23及び画面全体放射率設定回路42から補正放射率εa 及びε をCPU7のメモリに取り込む。
【0033】
第4ステップST4 では〔(ε/ε )×{f(T )−f(Ta )}+f(Ta )〕−f(Ta )の減算を行ない、第5ステップST5 では(ε /εa )×〔(ε/ε )×{f(T )−f(Ta )}〕の乗算が行なわれ、第6ステップST6 では〔(ε/εa )×{f(T )−f(Ta )}〕+f(Ta )によってCALデータの加算を行なうことで放射率補正が可能と成り、CRTの画面24上のクロスカーソル30近傍に設定した放射率εa と補正放射率で補正した温度T がデジタル表示値として表示される。
【0034】
本発明の画面上へのクロスカーソル30での多点位置指定は従来ではクロスカーソル位置近傍にA,B,C‥‥‥の様に表示し、画面の右端に表示される温度色別基準目盛41位置にA,B,C‥‥‥の様に表示させていたので、対応する温度位置を画面24上で見付けるのに時間を要していたが、本例では多点位置指定した時でも、複数のクロスカーソル30の位置に夫々設定した補正放射率εaと補正放射率で補正を行なった温度値 がデジタル表示されるので温度色別基準目盛41でのA,B,C‥‥‥等の記号を補正個所と目視で合せる必要のないものが得られ、極めて見易いサーモグラフィ装置が得られる。
【0035】
【発明の効果】
本発明のサーモグラフィ装置によれば被写体1に放射率の異なった物体がある場合でも、その都度放射率を変更して測定を行なう必要がなく、クロスカーソルの様な指標ポイントの指定だけで放射率補正が行なえる為に物体の材料差、或は周囲温度差に基づく放射率差が補正出来、補正放射率ポイントの正しい温度分布をデジタル的に表示するので極めて解り易いサーモグラフィ装置が得られる。
【図面の簡単な説明】
【図1】本発明のサーモグラフィ装置の系統図である。
【図2】本発明のサーモグラフィ装置の本体部の外観図である。
【図3】本発明のサーモグラフィ装置の表示装置の画面表示説明図である。
【図4】本発明の補正放射率演算のフローチャートである。
【図5】従来のサーモグラフィ装置の画面説明図である。
【符号の説明】
1 被写体
3 検出部
6 画面全体放射率補正回路
9 画像メモリ
11 表示装置
17 減算器
18 乗算器
19 加算器
20 サーモグラフィ装置
23 補正放射率設定回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermography apparatus and a thermography display method that detect infrared rays from a subject and display a temperature distribution on a display screen in color, and in particular correct an emissivity of a specific region in a temperature distribution image. The present invention relates to an improvement of a possible thermography apparatus and a display method of thermography .
[0002]
[Prior art]
In general, in a thermography device, infrared energy radiated from an object is detected depending on temperature, and the obtained temperature signal is sent as a luminance signal to a display device such as a CRT (cathode ray tube), so that the subject The temperature distribution image is obtained. That either斯, thermography device, the ε emissivity of the object for different by substance, usually not it is inevitable that the temperature error is generated is provided with emissivity correction circuit.
[0003]
In the above-described conventional emissivity correction circuit , infrared rays from a subject are captured through a camera, and the same for all one screen of a temperature distribution image displayed on the screen of a display device, for example, emissivity ε o It was made to make corrections.
[0004]
However, if the entire screen is corrected with the same emissivity ε o , if there is a region in the subject having an emissivity ε a different from the emissivity ε o , the temperature value obtained for that region for error occurs, thermography device in the correction of the emissivity of any region in the temperature distribution image in the row cormorants like is disclosed in Japanese Patent Laid-Open No. 3-2250.
[0005]
In the above publication, as shown in FIG. 5, the center temperature 25 and the temperature width 26 are displayed on the screen 24 of the display device 11 such as a CRT, and the temperature distribution image 27 and the frame 28 are designated by the area. Only the pixels included in the designated area are subjected to emissivity correction to display the color temperature.
[0006]
[Problems to be solved by the invention]
The conventional thermography apparatus disclosed in the above-mentioned publication takes in the temperature data detected by the infrared detector into the image memory, and the correction data subjected to the emissivity correction by the emissivity correction circuit is again stored in the image memory using the correction data writing circuit. The frame setting circuit, frame writing circuit, frame display memory, etc. that specify the area are required for processing to write and read in the area specified by the frame, the circuit becomes complicated, and many circuit parts are required, There is a problem that the emissivity ε o in the frame subjected to the emissivity correction cannot be directly viewed as to what value.
[0007]
The present invention is intended to provide a thermography device and a thermography display method that solve the above-mentioned problems, and the problem to be solved by the invention is not used for frame setting and the like, and is often used for a display device of a normal thermography device. The digital temperature display of the color temperature distribution image is displayed by digitally displaying the emissivity set at the designated point and the temperature value corrected by the emissivity in the vicinity of the designated point display (for example, the cross cursor) in the image being made. The emissivity set in the corrected part and the temperature value corrected for emissivity are understood immediately.
[0008]
[Means for Solving the Problems]
As shown in FIG. 1, the thermography apparatus and thermography display method of the present invention is based on temperature data obtained by detecting infrared energy from a subject, and corrects the emissivity of the entire screen to correct the temperature distribution of the subject. In a thermographic device that displays an image, a point that you want to know the temperature value in the image of the temperature distribution is specified, and the specified point is displayed near the specified point display (for example, a cross cursor) that shows the position of that point. The emissivity value set in (2) and the temperature value corrected by the emissivity are digitally displayed.
[0009]
According to the thermography display method of the present invention, emissivity correction can be performed in real time or in a frozen state, and the emissivity at the position where the corrected emissivity is set and the temperature value corrected with the emissivity are displayed on the screen. or thermography and thermographic methods very understand easily display method it is not necessary to correspond to obtain a.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the thermography apparatus and thermography display method of the present invention will be described in detail with reference to FIGS.
[0011]
FIG. 1 is a system diagram of the thermographic apparatus of the present invention, FIG. 2 is an external view of the main body excluding the camera unit, FIG. 3 is a screen example of the present invention, and FIG. 4 is an operation flowchart. Infrared rays emitted from the subject 1 in FIG. 1 are focused on an infrared detector 3 by an optical scanner 2 that performs raster scanning via a window 2a, and infrared detection is performed. The detector 3 has a chopper and a standard black body for guiding a reference infrared ray into the detector 3 every horizontal scanning of the optical scanner 2, and the reflected light from the standard black body is detected by the detector 3 when the chopper is disconnected. The output signal of the detector 3 is output as an AC signal proportional to the energy difference between the incident infrared ray and the standard black body.
[0012]
Such a weak AC signal is amplified by an operational amplifier (AMP) 4, detected by a signal synchronized with a chopper, averaged through a low-pass filtering circuit, etc., and an analog output signal is converted into an analog-digital conversion circuit (A / A). D) After being supplied to 5 and converted into digital data, it is supplied to the entire screen emissivity correction circuit 6 for correcting the emissivity ε o of the entire screen. The entire screen emissivity correction circuit 6 is contained in a processing circuit including an absolute temperature regenerating unit and a linearizer, and image data is converted into a temperature signal corresponding to the absolute temperature. Further, the entire screen emissivity setting circuit 42 is configured to perform the overall correction of the entire screen emissivity correction circuit 6 by operating the entire screen emissivity setting key 43.
[0013]
The emissivity of a substance or an object varies depending on the environmental temperature of the substance and the difference between the substance or the object and has a value of 0.01 to 1. For example, in the surface where only aluminum was used, values of 0.04 to 0.06 at 50 ° C. to 100 ° C. and values of 0.94 to 0.91 at 20 ° C. to 100 ° C. are shown for glass. Usually, the entire screen emissivity correction circuit 6 often selects emissivity ε o = 1.
[0014]
The output temperature data of the entire screen emissivity correction circuit 6 is sent to the image memory 9 via the switching means 8 and stored in the image memory 9. The emissivity correction in the frozen state can be performed in real time when the switching means 8 is on, and based on data stored in the image memory 9 described later when the switching means 8 is off. The switching means 8 is controlled by a data capture control circuit 7 constituted by a microcomputer (hereinafter referred to as CPU).
[0015]
The image memory 9 has a memory capacity of less that Kutomo one frame is rewritten for each frame scan.
[0016]
The temperature data stored in the image memory 9 and corrected with the same emissivity on the entire screen is read out via a reading circuit and a writing circuit (not shown) included in the CPU 7, such as a CRT for monitoring. The pixel data stored in the display memory 10 is stored within the gradation of the display device 11, and the pixel data stored in the display memory 10 is sent to the display device 11 through a display drive circuit or the like, and the temperature is displayed on the screen 24 of the display device 11. A distribution image 27 (see FIG. 3) and the like are displayed.
[0017]
In FIG. 1, an image memory point setting circuit 12 is a setting circuit including an operation unit for setting an index (hereinafter referred to as a cross cursor) 30 on the screen 24 of the display device 11 as shown in FIG. In the same manner, each circuit indicated by the reference numerals below the A / D conversion circuit 5 is arranged in the casing 32 of the main body 31 of the thermography device 20 and provided on the panel 33. The cross cursor 30 can be moved to an appropriate position on the screen 24 of the display device 11 by the index movement key 34.
[0018]
When the position specification of the cross cursor 30 is performed by the index movement key 34, the designated position is converted through the address decoder 13 to a predetermined address of the image memory 9, address cross cursor 30 position is stored in the image memory 9 The
[0019]
The calibration circuit 14 includes a calibration key 36 on the panel 33 and is a measurement circuit that corrects reflection due to the ambient temperature of the subject 1. Calibration data (CAL data) 15 measured by the calibration circuit 14 is an entire image emissivity correction circuit. 6 and the subtracter 17 and the adder 19.
[0020]
Based on the CAL data 15, the emissivity is corrected by the emissivity ε o of the entire screen emissivity correction circuit 6.
[0021]
Furthermore, incorporating the position 置画 image data of the cross cursor 30 that is set in the image memory point setting circuit 12 to the buffer memory 16 is supplied to the subtracter 17, CAL data 15 and the entire screen emissivity correction measured in the calibration circuit 14 Subtraction of the data of the emissivity ε o corrected by the circuit 6 is performed.
[0022]
The subtraction data subtracted by the subtracter 17 is supplied to the multiplier 18 at the next stage. The subtracted output data from the multiplier 18 is multiplied by the corrected emissivity data 22 set by the corrected emissivity setting circuit 23.
[0023]
When the emissivity setting key 37 of the corrected emissivity setting circuit 23 is pressed, the numeric keypad 39 and the like are displayed on the screen 24 of the display device 11 as shown in FIG. The emissivity ε b may be specified.
[0024]
The multiplication data of the multiplier 18 is supplied to the adder 19 and added to the CAL data 15. The addition data of the adder 19 is supplied to the temperature value and emissivity value display circuit 21 and supplied to the CRT of the display device 11. The
[0025]
On the screen 24 of the CRT or the like of the display device 11, the correction emissivity setting circuit 23 is set at the position of the cross cursor 30 moved by the index movement key 34 of the image memory point setting circuit 12 as shown in FIG. The emissivity peculiar to the object, for example, the true emissivity and emissivity-corrected temperature value of the day-lit and shaded window glass in the color temperature distribution image 27 of the building of FIG. Is displayed as a digital display value 40 in the vicinity of the cross cursor 30.
[0026]
Therefore, the observer of the temperature distribution image 27 can immediately visually recognize the corrected temperature and the corrected emissivity in the image.
[0027]
In the above-described system diagram of FIG. 1, the subtracter 16, multiplier 18, adder 19, and the like are shown in hardware configuration, but can be processed by software by the CPU 7 constituting the data capture control circuit 7. .
[0028]
When processing is performed by the CPU 7, for example, the emissivity ε of the subject 1 is corrected by the entire screen emissivity correction circuit 6 in FIG. 1 is ε o, and the true temperature of the subject 1 is f (T o ). , when the environmental temperature is reflected from the object 1 and f (T a), reflected by the surrounding environmental temperature f (T a) of the object is represented by (1-ε) × f ( T a). Therefore, the temperature data of the image taken into the image memory 9 is expressed by the equation (1).
(Ε / ε o ) × f (T o ) + (1−ε / ε o ) × f (T a )
= (Ε / ε o ) × {f (T o ) −f (T a )} + f (T a ) (1)
Here, f (T a ) is the CAL data 15 in FIG. 1, and the corrected emissivity in the corrected emissivity setting circuit 23 is ε a, and (1) is converted to (2),
o / Ε a ) × (ε / ε o ) × {f (T o ) −f (T a )} + f (T a )
= (Ε / ε a ) × {(T o ) −f (T a )} + f (T a ) (2)
It is represented by
Here, if ε = ε a , Equation (2) becomes {f (T o ) −f (T a )} + f (T a ), and the true temperature f (T a ) of the subject 1 is obtained.
[0029]
Therefore, the CPU 7 may be configured to perform the above equation as shown in FIG.
[0030]
That is, in the first step ST 1 in FIG. 4, the temperature data (ε / ε o ) × {f (T o of subject 1) from the buffer memory 16. ) −f (T a )} + f (T a ) is taken into the memory of the CPU 7.
[0031]
In the second step ST 2 , the true temperature f (T a ) of the subject in the CAL data 15 is taken from the calibration circuit 14 into the memory of the CPU 7.
[0032]
In the third step ST 3 , the corrected emissivities ε a and ε o are taken into the memory of the CPU 7 from the corrected emissivity setting circuit 23 and the entire screen emissivity setting circuit 42.
[0033]
In the fourth step ST 4 , [(ε / ε o ) × {f (T o ) −f (T a )} + f (T a )] − f (T a ) is subtracted, and in the fifth step ST 5 o / Ε a ) × [(ε / ε o ) × {f (T o ) −f (T a )}] is performed, and [(ε / ε a ) × {f (T o ) −f (T a )}] in the sixth step ST 6. + f (T a) by enabling emissivity correction by performing the addition of CAL data, the temperature T o is corrected with emissivity epsilon a correction emissivity set in the cross cursor 30 near on the CRT screen 24 Displayed as a digital display value.
[0034]
The multi-point position designation with the cross cursor 30 on the screen of the present invention is conventionally displayed in the vicinity of the cross cursor position as A, B, C..., And the reference scale for each temperature color displayed on the right end of the screen. Since it was displayed as A, B, C, etc. at position 41, it took time to find the corresponding temperature position on the screen 24. In this example, even when a multi-point position is specified. , a temperature value T o of performing a respective set correction emissivity epsilon a correction in correction emissivity to the position of the plurality of cross cursor 30 is at a temperature color reference scale 41 since it is digitally displayed, B, C ‥ It is possible to obtain a thermography device that does not need to visually match the symbols such as.
[0035]
【The invention's effect】
According to the thermography apparatus of the present invention, even when there is an object with different emissivity on the subject 1, there is no need to change the emissivity each time, and the emissivity can be determined only by specifying an index point such as a cross cursor. Since the correction can be performed, the emissivity difference based on the material difference of the object or the ambient temperature difference can be corrected, and since the correct temperature distribution of the corrected emissivity point is digitally displayed, an extremely easy-to-understand thermography apparatus can be obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram of a thermography apparatus of the present invention.
FIG. 2 is an external view of a main body portion of the thermographic apparatus of the present invention.
FIG. 3 is a screen display explanatory diagram of the display device of the thermographic device of the present invention.
FIG. 4 is a flowchart of calculation of corrected emissivity according to the present invention.
FIG. 5 is an explanatory diagram of a screen of a conventional thermography apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Subject 3 Detection part 6 Whole screen emissivity correction circuit 9 Image memory 11 Display apparatus 17 Subtractor 18 Multiplier 19 Adder 20 Thermography apparatus 23 Correction emissivity setting circuit

Claims (4)

被写体からの赤外エネルギーを検出した温度データに基づき、画面全体の放射率を補正して被写体の温度分布像を表示して成るサーモグラフィ装置に於いて、
前記温度分布の画像内で温度値を知りたい点を指定し、当該点の位置を示す指定点表示の近傍に、指定された点に設定された放射率値及びその放射率で補正された温度値をデジタル表示して成ることを特徴とするサーモグラフィ装置。
In a thermography device that displays a temperature distribution image of a subject by correcting the emissivity of the entire screen based on temperature data obtained by detecting infrared energy from the subject.
Specify the point you want to know the temperature value in the image of the temperature distribution , near the specified point display showing the position of the point, the emissivity value set at the specified point and the temperature corrected with that emissivity A thermographic apparatus characterized by digitally displaying values .
前記指定点表示を前記温度分布の画像中に多点位置表示させて成ることを特徴とする請求項1記載のサーモグラフィ装置。2. The thermographic apparatus according to claim 1, wherein the designated point is displayed in a multipoint position in the temperature distribution image . 被写体からの赤外エネルギーを検出した温度データに基づき、画面全体の放射率を補正して被写体の温度分布像を表示して成るサーモグラフィの表示方法に於いて、
前記温度分布の画像内で温度値を知りたい点を指定し、当該点の位置を示す指定点表示の近傍に、指定された点に設定された放射率値及びその放射率で補正された温度値をデジタル表示して成ることを特徴とするサーモグラフィの表示方法。
In the thermography display method, which displays the temperature distribution image of the subject by correcting the emissivity of the entire screen based on the temperature data detected from the infrared energy from the subject.
Specify the point you want to know the temperature value in the image of the temperature distribution , near the specified point display showing the position of the point, the emissivity value set at the specified point and the temperature corrected with that emissivity A thermographic display method characterized by comprising digitally displaying values .
前記指定点表示を前記温度分布の画像中に多点位置表示させて成ることを特徴とする請求項1記載のサーモグラフィ装置。2. The thermographic apparatus according to claim 1, wherein the designated point is displayed in a multipoint position in the temperature distribution image .
JP14642097A 1997-06-04 1997-06-04 Thermographic apparatus and thermographic display method Expired - Lifetime JP3700099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14642097A JP3700099B2 (en) 1997-06-04 1997-06-04 Thermographic apparatus and thermographic display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14642097A JP3700099B2 (en) 1997-06-04 1997-06-04 Thermographic apparatus and thermographic display method

Publications (2)

Publication Number Publication Date
JPH10332489A JPH10332489A (en) 1998-12-18
JP3700099B2 true JP3700099B2 (en) 2005-09-28

Family

ID=15407295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14642097A Expired - Lifetime JP3700099B2 (en) 1997-06-04 1997-06-04 Thermographic apparatus and thermographic display method

Country Status (1)

Country Link
JP (1) JP3700099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326063A1 (en) * 2000-09-04 2003-07-09 Noboru Hayakawa Temperature indicator and temperature monitor system

Also Published As

Publication number Publication date
JPH10332489A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US6606115B1 (en) Method and apparatus for monitoring the thermal characteristics of an image
US9684978B2 (en) Camera, computer program and method for measuring thermal radiation and thermal rates of change
US5144446A (en) Image defect correcting circuit for a solid state imager
US10598550B2 (en) Radiometric correction and alignment techniques for thermal imager with non-contact temperature sensor
EP3265994B1 (en) Anomalous pixel detection
CN107836111B (en) System and method for enhanced dynamic range infrared imaging
US20060132626A1 (en) Pixel defect correction device
JPH0481178A (en) Dc offset correction method for irccd detector
KR101656173B1 (en) Method and apparatus for detecting faulty pixel in thermal camera
EP0986253A1 (en) Offset correction for infrared camera
US20200296301A1 (en) Image processing arrangement
US10362243B2 (en) Infrared imaging device, diaphragm control method, and diaphragm control program
US6295383B1 (en) Intensity correction in an optical scanner
JP3700099B2 (en) Thermographic apparatus and thermographic display method
JP3418812B2 (en) Pixel replacement method for infrared imaging device
JPH1023335A (en) Infrared ray image pickup device
KR102195072B1 (en) Thermal camera system and driving method thereof
JPH032250B2 (en)
KR102450629B1 (en) Thermal image camera apparatus and control method thereof
EP4090010A1 (en) Selective processing of anomalous pixels systems and methods
Hou et al. Real-time implementation of two-point nonuniformity correction for IR-CCD imagery
JPH1038697A (en) Narcissus correcting circuit and narcissus correcting method in infrared thermal image device
JPH06186085A (en) Method and device for measuring temperature
JP2019213193A (en) Infrared imaging apparatus and program used for the same
JPH0898091A (en) Automatic changeover circuit for offset correction data

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term