JP3700010B2 - Plasma arc electrode material - Google Patents

Plasma arc electrode material Download PDF

Info

Publication number
JP3700010B2
JP3700010B2 JP31592694A JP31592694A JP3700010B2 JP 3700010 B2 JP3700010 B2 JP 3700010B2 JP 31592694 A JP31592694 A JP 31592694A JP 31592694 A JP31592694 A JP 31592694A JP 3700010 B2 JP3700010 B2 JP 3700010B2
Authority
JP
Japan
Prior art keywords
electrode material
plasma
plasma arc
weight
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31592694A
Other languages
Japanese (ja)
Other versions
JPH08148294A (en
Inventor
誠夫 牛尾
建二 池内
和士 田中
裕夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Toho Kinzoku Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd, Chubu Electric Power Co Inc filed Critical Toho Kinzoku Co Ltd
Priority to JP31592694A priority Critical patent/JP3700010B2/en
Publication of JPH08148294A publication Critical patent/JPH08148294A/en
Application granted granted Critical
Publication of JP3700010B2 publication Critical patent/JP3700010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プラズマ熱源を用いて溶断、溶解、高温分解、廃棄物処理等の処理を行なうために使用するに適したプラズマア−ク放電用電極材料に関するものである。
【0002】
【従来の技術】
従来、プラズマア−クを熱源とする溶解等の処理を行なう場合は、タングステン、タングステン合金、カ−ボン等の高融点材料を電極として、不活性ガス雰囲気又は還元性雰囲気を作って処理を行なってきた。
【0003】
しかしながら、上記タングステン等の電極材料は、反応性雰囲気中では使用できないか、または使用できたとしても消耗が激しくて、工業用としては不適である。特に、産業廃棄物や生活廃棄物の分解処理は、加熱による処理条件が難しいため、これらのプラズマア−クによる処理が行なえず、専ら単純な焼却や地中への埋め込みで処理しているのが現実である。
【0004】
【発明が解決しようとする課題】
近年、さまざまな産業廃棄物、有害廃棄物、生活廃棄物等が大量に発生するようになり、今後もさらに増大する傾向があるので、これらの安全で効率的な処理が求められている。さらに、有害廃棄物の中で、特に塩素系廃棄物の処理が急を要する問題として浮上しており、二次公害の発生のないプラズマア−クによる完全分解の可能性が検討されている。このプラズマア−クを熱源とする分解によると、化合物等が元素単位にまで分解されるので、有害な生成物が生じず、しかも夜間等の余剰電力を利用することができるので、経済的である。そこで、本発明は、安定した長時間運転ができる高寿命のプラズマア−ク用電極材料を提供することを課題としている。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明は次のような構成を採用した。すなわち、請求項1に記載のプラズマア−ク電極材料は、炭化タンタルを主成分とし、5〜30重量%の炭化ハフニウム及び/又は0.1〜3.0重量%の硼化ランタンを含有するプラズマ燒結体からなり、燒結前に5〜20重量%の金属タンタルを添加してプラズマ燒結が行われていることを特徴としている。
【0006】
以下、本発明のプラズマア−ク電極材料について、具体例を挙げつつ詳細に説明する。炭化タンタル、炭化ハフニウム等は、タングステンに比べて低仕事関数かつ高融点を有する材料であり、酸素や塩素を含むプラズマ雰囲気中での耐消耗性にすぐれているが、従来これらをプラズマア−ク用電極材として使用した例はない。
【0007】
これは、これらの炭化物が非常に高融点であるため、通常の鋳造や、燒結による成形が困難なことが一つの理由であると考えられる。本発明者らは、プラズマ燒結によりこれらの電極材料を製作し、そのすぐれた性能を見出して、この発明を完成したのである。
【0008】
本発明の電極材は、炭化タンタルを主成分とするもので、必要に応じて、これに炭化ハフニウム、硼化ランタン等を添加したものである。主成分である炭化タンタルには通常数%のフリ−カ−ボンが混入しているため、このカ−ボンの量によっては必要な密度が得られないおそれがある。このような場合には、少量の金属タンタルを添加して燒結することにより、燒結性、加工性の向上を図るのが好ましい。燒結前に添加する金属タンタルの量は、5〜20重量%が好ましい。この添加量が、これよりも多すぎると、燒結性が悪く、燒結体にクラック等が発生することが多い。また、金属タンタルの添加量が少なすぎると、所期の効果が得られにくい。添加した金属タンタルは、炭素等と化合するが、金属タンタルのまま燒結体中に残留することもある。
【0009】
上記炭化タンタルは、腐食性雰囲気中では耐久性にすぐれているが、耐酸化性が劣るため、耐酸化性にすぐれた炭化ハフニウムを5〜30重量%添加しておくのが好ましい。この添加により、電極材の耐酸化性が向上する。
【0010】
電極材中に含有される炭化ハフニウムの量が重量比で30%以上では燒結性が悪く、耐腐食性が低下する。また、5%よりも少ない場合は、耐酸化性向上の効果が乏しい。
【0011】
また、硼化ランタンは、仕事関数が低く、したがって電子放出性にすぐれている。耐熱、耐食、耐酸化性等の条件を具備した材料に硼化ランタンを0.1〜3.0重量%加えることにより、安定したプラズマア−クの放出を図ることができる。
【0012】
なお、上記成分の他に、電極の性能を大きく低下させない範囲で、他の成分を添加してもよく、不可避的に混入する微量の不純物等が存在してもよい。
【0013】
この電極材料は、プラズマ燒結法により製造することができる。この製法について例示すれば、まず、炭化タンタルその他の原料粉末(平均粒度数ミクロン)を混合し、金型を用いて所定形状に加圧成形する。これを、取り扱いに便利な強度が得られる条件、例えば1500〜1800Kの温度で常圧下で予備燒結する。この予備燒結体を、アルゴンを作動ガスとする高周波プラズマ中で燒結し、得られた燒結体を所望の形状に加工して、目的とする電極とする。プラズマ燒結の時間は、通常数分乃至十数分程度である。
【0014】
【実施例】
表1に示す配合比で原料粉末を配合し、均一な組成となるように乾式混合した。粉末の粒度は、いずれも1〜3ミクロンであった。なお、原料粉末の好ましい粒度は1〜10ミクロンであり、より好ましくは1〜3ミクロンである。この粉末を粉末冶金法における常法にしたがってプレス成形し、1500〜1800Kで常圧予備燒結した。この燒結時間はいずれも10分とした。なお、比較例として、公知のトリア2%入りタングステン電極材を従来法で製作した。
【0015】
【表1】

Figure 0003700010
【0016】
得られた予備燒結体は、表1に示す出力と処理温度でプラズマ燒結した。出力、処理温度以外の条件はいずれも各試料で同じであり、周波数は13.56MHz、雰囲気圧は40〜50KPs、作動ガスはアルゴンガス(Ar)、Ar流量は1〜4リットル/min、処理時間は3.6ksであった。
【0017】
得られた燒結体の寸法はф2.4X20L(mm)であり、密度はいずれも理論密度の92〜94%であった。また、燒結体の硬度(Hv)はNo.1,3,4,6が1700〜1800、No.2,5が1100〜1300であった。
【0018】
つぎに、得られた燒結体を成形加工して電極とし、直流ア−ク放電用の陰極に用いて、消耗特性とプラズマ安定性を調べた。作動ガスとしては、アルゴンガスに塩素ガス10%を添加したものを用いた。ア−ク電流は50〜300A、使用時間は10分であった。その結果は図1及び表2に示す通りであった。
【0019】
【表2】
Figure 0003700010
【0020】
従来のトリア2%(重量比)入りタングステン電極と比較した結果、炭化タンタルを主成分とする本発明の電極材料は、消耗特性及びア−ク安定性のいずれも充分使用に耐える状態であったのに対し、従来のトリア2%入りタングステン電極は、同一条件において50Aレベルで表面にタングステンと塩素の反応生成物が樹脂状に形成され、ア−クの不安定性が顕著となり、ア−ク電流の増加は不可能であった。
【0021】
【発明の効果】
以上の説明から明らかなように、本願発明のプラズマア−ク電極材料は、耐食性にすぐれた炭化タンタルを主成分とするもので、長寿命であり、プラズマ熱源を用いる溶断、溶解、高温分解等の電極として使用するに適したものとなった。このプラズマアーク電極材料は、5〜30重量%の炭化ハフニウムを含有することにより、耐酸化性が向上し、0.1〜3.0重量%の硼化ランタンを含有することにより、安定したプラズマアークが得られるものである。本発明の電極材料は、成分上、従来広く採用されてきた燒結法では高密度化が困難であるが、プラズマ燒結を採用することによってはじめて実用性を具備するものとなった。
【図面の簡単な説明】
【図1】消耗量テスト結果を表すグラフである。[0001]
[Industrial application fields]
The present invention relates to an electrode material for plasma arc discharge suitable for use in processing such as fusing, melting, high-temperature decomposition, waste treatment and the like using a plasma heat source.
[0002]
[Prior art]
Conventionally, when processing such as melting using plasma arc as a heat source, processing is performed by creating an inert gas atmosphere or a reducing atmosphere using a high melting point material such as tungsten, tungsten alloy, or carbon as an electrode. I came.
[0003]
However, the electrode material such as tungsten cannot be used in a reactive atmosphere, or even if it can be used, it is very consumed and is not suitable for industrial use. In particular, the decomposition treatment of industrial waste and domestic waste is difficult due to the difficult treatment conditions by heating, so these treatments by plasma arc cannot be performed, and the treatment is exclusively performed by simple incineration or embedding in the ground. Is the reality.
[0004]
[Problems to be solved by the invention]
In recent years, various industrial wastes, hazardous wastes, domestic wastes, etc. have been generated in large quantities and tend to increase further in the future. Therefore, these safe and efficient treatments are required. Further, among toxic wastes, particularly the treatment of chlorinated wastes has emerged as an urgent problem, and the possibility of complete decomposition by plasma arc without occurrence of secondary pollution is being investigated. According to the decomposition using the plasma arc as a heat source, since the compounds and the like are decomposed into elemental units, no harmful products are produced, and surplus power such as nighttime can be used. is there. Accordingly, an object of the present invention is to provide a plasma arc electrode material having a long life that can be stably operated for a long time.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration. That is, the plasma arc electrode material according to claim 1 is mainly composed of tantalum carbide and contains 5 to 30% by weight of hafnium carbide and / or 0.1 to 3.0% by weight of lanthanum boride. It consists of a plasma sintered body and is characterized in that plasma sintering is performed by adding 5 to 20% by weight of metal tantalum before sintering.
[0006]
Hereinafter, the plasma arc electrode material of the present invention will be described in detail with specific examples. Tantalum carbide, hafnium carbide, and the like are materials having a lower work function and higher melting point than tungsten, and have excellent wear resistance in a plasma atmosphere containing oxygen and chlorine. There is no example used as an electrode material.
[0007]
This is probably because one of the reasons is that these carbides have a very high melting point, so that it is difficult to perform normal casting or molding by sintering. The present inventors completed these inventions by producing these electrode materials by plasma sintering, finding their excellent performance.
[0008]
The electrode material of the present invention contains tantalum carbide as a main component, and if necessary, hafnium carbide, lanthanum boride, or the like is added thereto. Since tantalum carbide, which is the main component, usually contains several percent of free carbon, the required density may not be obtained depending on the amount of carbon. In such a case, it is preferable to improve sintering and workability by adding a small amount of metal tantalum and sintering. The amount of metal tantalum added before sintering is preferably 5 to 20% by weight. If the amount added is too much, the sinterability is poor and cracks and the like often occur in the sintered body. If the amount of metal tantalum added is too small, it is difficult to obtain the desired effect. The added metal tantalum combines with carbon or the like, but may remain in the sintered body as metal tantalum.
[0009]
The tantalum carbide is excellent in durability in a corrosive atmosphere, but is inferior in oxidation resistance. Therefore, it is preferable to add 5 to 30% by weight of hafnium carbide excellent in oxidation resistance. This addition improves the oxidation resistance of the electrode material.
[0010]
If the amount of hafnium carbide contained in the electrode material is 30% or more by weight, the sintering property is poor and the corrosion resistance is lowered. Moreover, when it is less than 5%, the effect of improving oxidation resistance is poor.
[0011]
In addition, lanthanum boride has a low work function, and thus has an excellent electron-emitting property. By adding 0.1 to 3.0% by weight of lanthanum boride to a material having conditions such as heat resistance, corrosion resistance, and oxidation resistance, stable plasma arc can be released.
[0012]
In addition to the above components, other components may be added within a range that does not significantly reduce the performance of the electrode, and trace amounts of impurities inevitably mixed may exist.
[0013]
This electrode material can be manufactured by a plasma sintering method. As an example of this production method, first, tantalum carbide and other raw material powders (average particle size of several microns) are mixed and pressure-formed into a predetermined shape using a mold. This is pre-sintered under normal pressure under conditions that provide a convenient strength for handling, for example, a temperature of 1500-1800K. The preliminary sintered body is sintered in a high-frequency plasma using argon as a working gas, and the obtained sintered body is processed into a desired shape to obtain a target electrode. The plasma sintering time is usually about a few minutes to a few dozen minutes.
[0014]
【Example】
The raw material powders were blended at a blending ratio shown in Table 1, and dry mixed so as to obtain a uniform composition. The particle sizes of the powders were all 1 to 3 microns. In addition, the preferable particle size of raw material powder is 1-10 microns, More preferably, it is 1-3 microns. This powder was press-molded according to a conventional method in the powder metallurgy method, and preliminarily sintered at 1500 to 1800K. The sintering time was 10 minutes in all cases. As a comparative example, a known tungsten electrode material containing 2% tria was manufactured by a conventional method.
[0015]
[Table 1]
Figure 0003700010
[0016]
The obtained preliminary sintered body was plasma sintered at the output and processing temperature shown in Table 1. The conditions other than the output and processing temperature are the same for each sample, the frequency is 13.56 MHz, the atmospheric pressure is 40 to 50 KPs, the working gas is argon gas (Ar), the Ar flow rate is 1 to 4 liters / min, the processing The time was 3.6 ks.
[0017]
The size of the obtained sintered body was ф2.4 × 20 L (mm), and the density was 92 to 94% of the theoretical density. The hardness (Hv) of the sintered body is No. 1, 3, 4 and 6 are 1700 to 1800, no. 2 and 5 were 1100 to 1300.
[0018]
Next, the obtained sintered body was formed into an electrode and used as a cathode for DC arc discharge, and the wear characteristics and plasma stability were examined. As the working gas, an argon gas added with 10% chlorine gas was used. The arc current was 50 to 300 A, and the usage time was 10 minutes. The results were as shown in FIG.
[0019]
[Table 2]
Figure 0003700010
[0020]
As a result of comparison with a conventional tungsten electrode containing 2% tria (weight ratio), the electrode material of the present invention containing tantalum carbide as a main component was in a state in which both consumption characteristics and arc stability were sufficiently endurable. In contrast, the conventional tungsten electrode containing 2% tria has a reaction product of tungsten and chlorine formed on the surface in a resin state at the 50A level under the same conditions, and the arc instability becomes remarkable, and the arc current is increased. It was impossible to increase.
[0021]
【The invention's effect】
As is clear from the above description, the plasma arc electrode material of the present invention is mainly composed of tantalum carbide having excellent corrosion resistance, has a long life, and uses a plasma heat source for fusing, melting, high temperature decomposition, etc. It was suitable for use as an electrode. This plasma arc electrode material has improved oxidation resistance by containing 5 to 30% by weight of hafnium carbide, and stable plasma by containing 0.1 to 3.0% by weight of lanthanum boride. An arc is obtained. Although the electrode material of the present invention is difficult to be densified by the sintering method that has been widely used in the past because of its components, the electrode material of the present invention has practicality only after adopting plasma sintering.
[Brief description of the drawings]
FIG. 1 is a graph showing a consumption test result.

Claims (1)

炭化タンタルを主成分とし、5〜30重量%の炭化ハフニウム及び/又は0.1〜3.0重量%の硼化ランタンを含有するプラズマ燒結体からなり、燒結前に5〜20重量%の金属タンタルを添加してプラズマ燒結が行われていることを特徴とするプラズマア−ク電極材料。 A plasma sintered body mainly composed of tantalum carbide and containing 5 to 30% by weight of hafnium carbide and / or 0.1 to 3.0% by weight of lanthanum boride, and 5 to 20% by weight of metal before sintering. A plasma arc electrode material characterized in that plasma sintering is performed by adding tantalum .
JP31592694A 1994-11-24 1994-11-24 Plasma arc electrode material Expired - Fee Related JP3700010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31592694A JP3700010B2 (en) 1994-11-24 1994-11-24 Plasma arc electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31592694A JP3700010B2 (en) 1994-11-24 1994-11-24 Plasma arc electrode material

Publications (2)

Publication Number Publication Date
JPH08148294A JPH08148294A (en) 1996-06-07
JP3700010B2 true JP3700010B2 (en) 2005-09-28

Family

ID=18071272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31592694A Expired - Fee Related JP3700010B2 (en) 1994-11-24 1994-11-24 Plasma arc electrode material

Country Status (1)

Country Link
JP (1) JP3700010B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979341B1 (en) 2011-08-31 2020-01-31 Arianegroup Sas ULTRA-REFRACTORY MATERIAL STABLE IN A HUMID ENVIRONMENT AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH08148294A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
WO2012053486A1 (en) Electrode for electric discharge machining
CN103553619B (en) Titanium carbide and vanadium carbide composite material as well as production method and application thereof
JP2012203998A (en) Tungsten cathode material
JPS62224495A (en) Tungsten electrode material
Velasco et al. Mechanical and corrosion behaviour of powder metallurgy stainless steel based metal matrix composites
JP3700010B2 (en) Plasma arc electrode material
Badrinarayan et al. Metal parts from selective laser sintering of metal-polymer powders
CN107267836A (en) A kind of twin crystal hard alloy and preparation method thereof
EP0334981B1 (en) Discharge electrode material
WO2018168735A1 (en) Hard sintered body
JP2011063487A (en) Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
JPH05147916A (en) Production of fine tungsten-based carbide powder
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP2000336404A (en) Method for pulverizing wc-containing alloy, oxide powder of wc-containing alloy, method for regenerating wc- containing alloy, regenerated wc-containing alloy powder, production of cemented carbide using the same powder and cemented carbide using the same powder
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
US5196273A (en) Tantalum carbide composite materials
JPH0691391A (en) Tungsten electrode material
JP4508736B2 (en) Copper-based material and method for producing the same
CN115354203B (en) High-wear-resistance high-temperature-resistance high-entropy-based composite material and preparation method thereof
JPH0976092A (en) Material for tungsten electrode
JPH07331361A (en) Copper-tungsten alloy
JPH05147917A (en) Production of fine tungsten-based carbide powder
JPH06212324A (en) Tic grain dispersed sintered ti alloy and its production
JP2000319734A (en) Composite material produced by powder metallurgy, and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees