JP3699727B2 - Sertoli cells as nerve recovery-inducing cells for neurodegenerative diseases - Google Patents
Sertoli cells as nerve recovery-inducing cells for neurodegenerative diseases Download PDFInfo
- Publication number
- JP3699727B2 JP3699727B2 JP52777796A JP52777796A JP3699727B2 JP 3699727 B2 JP3699727 B2 JP 3699727B2 JP 52777796 A JP52777796 A JP 52777796A JP 52777796 A JP52777796 A JP 52777796A JP 3699727 B2 JP3699727 B2 JP 3699727B2
- Authority
- JP
- Japan
- Prior art keywords
- sertoli
- cells
- cell
- sertoli cells
- transplantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000000717 sertoli cell Anatomy 0.000 title claims description 93
- 210000004027 cell Anatomy 0.000 title description 35
- 230000004770 neurodegeneration Effects 0.000 title description 11
- 208000015122 neurodegenerative disease Diseases 0.000 title description 11
- 238000011084 recovery Methods 0.000 title description 7
- 230000001939 inductive effect Effects 0.000 title description 2
- 210000005036 nerve Anatomy 0.000 title description 2
- 230000001228 trophic effect Effects 0.000 claims description 17
- 238000011065 in-situ storage Methods 0.000 claims description 12
- 210000003169 central nervous system Anatomy 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims 3
- 239000003937 drug carrier Substances 0.000 claims 1
- 238000002054 transplantation Methods 0.000 description 31
- 241001465754 Metazoa Species 0.000 description 27
- 239000002609 medium Substances 0.000 description 26
- 210000004556 brain Anatomy 0.000 description 15
- 241000700159 Rattus Species 0.000 description 14
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 13
- 108010036949 Cyclosporine Proteins 0.000 description 13
- 229960001265 ciclosporin Drugs 0.000 description 13
- 229930105110 Cyclosporin A Natural products 0.000 description 12
- 238000011534 incubation Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 230000003902 lesion Effects 0.000 description 11
- 230000001506 immunosuppresive effect Effects 0.000 description 10
- 230000001605 fetal effect Effects 0.000 description 9
- 208000023105 Huntington disease Diseases 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 210000001577 neostriatum Anatomy 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 208000018737 Parkinson disease Diseases 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 230000003542 behavioural effect Effects 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 208000012902 Nervous system disease Diseases 0.000 description 5
- 208000025966 Neurological disease Diseases 0.000 description 5
- 102000004142 Trypsin Human genes 0.000 description 5
- 108090000631 Trypsin Proteins 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- VMWNQDUVQKEIOC-CYBMUJFWSA-N apomorphine Chemical compound C([C@H]1N(C)CC2)C3=CC=C(O)C(O)=C3C3=C1C2=CC=C3 VMWNQDUVQKEIOC-CYBMUJFWSA-N 0.000 description 5
- 229960004046 apomorphine Drugs 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 239000012588 trypsin Substances 0.000 description 5
- 206010051290 Central nervous system lesion Diseases 0.000 description 4
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000006735 deficit Effects 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 210000001259 mesencephalon Anatomy 0.000 description 4
- 230000000926 neurological effect Effects 0.000 description 4
- 230000000324 neuroprotective effect Effects 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 230000006736 behavioral deficit Effects 0.000 description 3
- 210000003754 fetus Anatomy 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- RDEIXVOBVLKYNT-VQBXQJRRSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(1-aminoethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2-yl]o Chemical compound OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)C(C)N)N)[C@@H](N)C[C@H]1N.O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-VQBXQJRRSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229940122618 Trypsin inhibitor Drugs 0.000 description 2
- 101710162629 Trypsin inhibitor Proteins 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 210000004958 brain cell Anatomy 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 210000003737 chromaffin cell Anatomy 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 239000003636 conditioned culture medium Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000003630 growth substance Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000000944 nerve tissue Anatomy 0.000 description 2
- 230000014511 neuron projection development Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229960003471 retinol Drugs 0.000 description 2
- 235000020944 retinol Nutrition 0.000 description 2
- 239000011607 retinol Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102000018386 EGF Family of Proteins Human genes 0.000 description 1
- 108010066486 EGF Family of Proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004125 Interleukin-1alpha Human genes 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 102100034475 Tastin Human genes 0.000 description 1
- 101710197164 Tastin Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 238000009227 behaviour therapy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 230000007277 glial cell activation Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003447 ipsilateral effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 208000018360 neuromuscular disease Diseases 0.000 description 1
- DIVDFFZHCJEHGG-UHFFFAOYSA-N oxidopamine Chemical compound NCCC1=CC(O)=C(O)C=C1O DIVDFFZHCJEHGG-UHFFFAOYSA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 208000013623 stereotypic movement disease Diseases 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Developmental Biology & Embryology (AREA)
- Animal Behavior & Ethology (AREA)
- Reproductive Health (AREA)
- Public Health (AREA)
- Virology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Description
技術分野
本発明は一般に細胞移植、詳しくは、中枢神経系(CNS)への移植後に、神経疾患と関連する挙動上及び機能上の欠損を回復する細胞の移植方法に関する。
発明の背景
疾患を治療する際に、組織を栄養因子で全身ではなく局所で、例えば、創傷治癒の場合のように組織損傷の領域で治療することがしばしば有益である。
更に別の例として、哺乳類中枢神経系(CNS)への神経組織の移植は、癲癇、卒中、ハンチントン病、頭部外傷、脊髄外傷、痛み、パーキンソン病、ミエリン欠乏、神経筋疾患、神経痛、筋萎縮性側索硬化、アルツハイマー病、及び脳の情動障害を含む神経疾患及び神経性疾患の別の治療になりつつある。前臨床データ及び臨床データは、神経変性疾患のこれらの型に関する細胞移植プロトコルに使用される移植細胞(移植片)が生存し、宿主組織と合体し、機能回復を与えることを示す(Sanbergら,1994)。
これらの移植片の主要源は胎児であった。例えば、胎児の腹側中脳組織はパーキンソン病における生存可能な移植片源であることが実証されていた(Lindvallら,1990;Bjorklund, 1992)。同様に、胎児の線条体組織がハンチントン病における移植片物質として成功裏に利用されていた(Isacsonら,1986; Sanbergら,1994)。
神経機能障害の動物は非胎児細胞及び非神経細胞/組織を移植されていた。例えば、成体ドナーからのクロム親和細胞がパーキンソン病の治療に使用されていた。移植プロトコルのこの型の主要な利点は、移植片源が胎児源ではなく、それにより、胎児組織を獲得することに関連する倫理的かつ論理的問題を回避することである。クロム親和細胞プロトコルを利用して、挙動の正常化が観察される。しかしながら、この挙動の機能回復は一時的であり、しかも動物がそれらの前移植状態のもどる(Bjorklund及びStenevi, 1985; Lindvallら,1987)。治療プロトコルのこの型がパーキンソン病モデルで動物の正常な挙動活動を維持できないことは、このプロトコルだけでなく、その他の治療療法の臨床上の適用を時期尚早にする。
神経疾患及び神経変性疾患を治療する手段としての成長因子の投与が当業界で意図されていた。しかしながら、これらの薬剤を脳に送出することは、未だに成功裏に解消されるべき多くの難点を伴う。一般に、これらの薬剤は全身投与できず、しかも脳への注入は非実用的かつ不完全な解決である。脳に移植される時に特定の単一栄養因子を送出するように細胞を操作することが示唆されていたが、脳に移植された時の細胞の安定なトランスフェクション及び生存が絶えず問題である。更に、協力して作用する多種栄養因子はおそらく神経症状及び神経変性症状の成功裏の治療に必要であることが次第に認められるようになりつつある。
機能回復の長期維持が、単離された膵島細胞及びセルトーリ細胞を使用する新規な移植治療プロトコルを使用して糖尿病動物モデルで観察されていた。その治療の効力は、セルトーリ細胞の存在のため、一部、それらの知られている免疫抑制分泌因子のためであることが明らかである(Selawry及びCameron, 1993; Cameronら,1990)。セルトーリ細胞は又幾つかの重要な栄養成長因子を分泌することが知られている。
それ故、損傷された組織の成長因子及び栄養因子支持が有益である疾患に関する源としてセルトーリ細胞単独を使用することが望ましいであろう。例として、創傷治癒及び神経変性疾患を含む神経疾患が挙げられる。セルトーリ細胞は栄養因子のin situファクトリーとして機能し、それにより創傷治癒を早め、かつ神経疾患及び神経変性疾患と関連する機能上及び挙動上の欠損を回復するのに使用し得る。
発明の要約
本発明によれば、セルトーリ細胞(その細胞は栄養因子をin situで分泌する)を哺乳類に移植することによるin situ栄養因子産生を生じる方法が提供される。
【図面の簡単な説明】
本発明のその他の利点は、添付図面に関して考慮される場合の下記の詳細な説明を参考にすることにより容易に理解されると同時に、良く理解されるようになる。
図1はアポモルヒネ誘発回転挙動の結果を示すグラフであり、両グループからの動物がアポモルヒネ前移植で攻撃誘発された時に1分間当たり>7回転、又は30分間にわたって少なくとも合計210の回転を示し(病変に対し反対側)、後移植期間に、培地単独をうけている動物は有意な回転を示し続け、対照的に、セルトーリ細胞をうけている動物は後移植期間にわたってそれらの回転挙動の著しい減少(60%より大きい)を有していた。
図2はバイアスされた揺動挙動を示すグラフであり、両グループからの動物が上昇された生体揺動試験により明らかなように>80%のバイアスされた揺動活動(病変に対し反対側)を示し、後移植期間に、培地単独を受けている動物は有意なバイアスされた揺動活動を示し続け、対照的に、セルトーリ細胞を受けている動物は後移植期間にわたってバイアスされた揺動挙動を示さなかった。
図3A-Cは対照培地(CM)又はセルトーリ細胞前ならし培地(SCM)中で7日間にわたって単離、培養され、暗視野、干渉コントラスト光学装置で撮影された胎児ラットの腹側中脳(VM)からの細胞を示す光学顕微鏡写真であり、(A)は刺激又は分化の証拠を示さないCM中でインキュベートされたVM細胞を示し、(B)は高度に刺激されたことが明らかであるSCM中でインキュベートされたVM細胞を示し、又(C)はセルトーリ分泌栄養因子の結果として神経突起外殖を示すSCM中でインキュベートされたVM細胞を高倍率で示す。
図4A-Bは侵入道(矢印)及びセルトーリ細胞移植の部位を示す脳の線条(A)を示す電子顕微鏡写真であり、(B)は高倍率で高分解能で(A)中の箱形領域を示し、セルトーリ細胞(矢印)が1μラテックスビード封入体(これらは移植の前に細胞に入れられた)のために容易に同定される。
図5A-Bは脳の線条への移植の前に蛍光標識(DiI)でin situ標識された移植されたセルトーリ細胞を示す二つの光学顕微鏡写真であり、(A)はシクロスポリンA(CsA)による免疫抑制治療を受けなかったラット宿主中の生存蛍光セルトーリ細胞を示し、又(B)はシクロスポリンA免疫抑制治療を受けたラット宿主中の生存蛍光セルトーリ細胞を示す。
発明の詳細な説明
一般に、本発明は、一般に栄養因子と称されるセルトーリ細胞由来成長因子及び調節因子のin situ産生を含むメカニズムにより機能障害組織の回復、保護、及び支持の促進方法を提供する。更に、本発明はin situ栄養因子産生を生じる方法を提供する。これは単離されたセルトーリ細胞(その細胞はin situで栄養因子を分泌する)を移植することにより行われる。
栄養因子を産生するためのin situファクトリーとしてセルトーリ細胞を利用することの一つの重要な利点は、セルトーリ細胞が有効な免疫抑制効果を有することが示されたことである。それ故、免疫抑制を生じるための同時の付加的な療法は必要とされない。換言すれば、セルトーリ細胞は栄養因子源として使用し得るとともに、又、自己誘発局所免疫抑制効果を与える。
セルトーリ細胞により分泌される栄養因子として、セルトーリ細胞由来成長因子及び調節因子、例えば、インスリン様成長因子I及びII、上皮成長因子、形質転換成長因子α及びβ、並びにインターロイキン1α(Griswold, 1992)が挙げられる。セルトーリ細胞分泌因子の更に広範囲のリストについて、表1を参照のこと。このような因子は神経変性疾患と関連する挙動上及び機能上の欠損に関して回復効果を有することが示された。これらの因子は、正常な細胞及び組織の代謝及び機能を支持する公知の栄養因子である(Griswold, 1992)。本発明は、セルトーリ細胞が細胞の機能障害又は細胞/組織の損傷の部位で栄養に富む、成長支持液体微小環境を生じることができるという現象を利用した。細胞/組織の損傷として、放射線損傷、やけど及び傷が挙げられるが、これらに限定されない。糖尿病モデルで使用されたセルトーリ細胞/膵島細胞移植プロトコルとは対照的に、本発明の方法は唯一の型の細胞、即ち、セルトーリ細胞を使用し、それにより二つの異なる細胞型を一つの宿主部位に移植しようと試みる際に固有の論理上及び操作上の問題をかなり減少する。
ラットセルトーリ細胞が下記の実施例に使用されるが、あらゆる好適な源からのセルトーリ細胞が使用し得る。例えば、ヒトセルトーリ細胞がヒトにおける移植に使用し得る。更に、本発明の好ましい実施態様において、ブタセルトーリ細胞がヒトの如き哺乳類に移植し得る。更に、本発明の獣医学的使用が意図されており、同系セルトーリ細胞が所望の哺乳類宿主への移植に選ばれるであろう。
下記の実験部分に実証されるように、本発明はハンチントン病及びパーキンソン病の如き神経変性疾患と関連する挙動上及び機能上の欠損を回復するための治療として利用し得る。これはシクロスポリンAの慢性使用の如き従来利用された免疫抑制アジュバント療法の付随の副作用を生じないで行い得る。セルトーリ細胞は栄養因子の分泌及び免疫抑制効果の両方を与える。
下記の実施例に示されるように、脳病変の誘発又は形成の前のセルトーリ細胞の移植は神経保護効果を与えることができる。例えば、以下に実証されるように、ハンチントン型の疾患の誘発の前のセルトーリ細胞の移植は、その後の脳病変に対し神経保護効果及び予防効果の両方を与えた。それ故、神経変性疾患の診断後の早期のセルトーリ細胞の移植は、その疾患の有益な治療、予防又は減少を与え得る。更に、セルトーリ細胞は頭部病変の如きCNSトラウマのその他の型の場合に移植されてCNS損傷の効果を治療し、阻止し、予防的に減少し得る。
下記の実施例は、神経変性疾患と関連する挙動上の欠損を回復する本発明の能力を実証する。
実施例1:セルトーリ細胞移植
特別なプロトコル:
プロトコルは一般に二つの基本的な工程、(1)セルトーリ細胞単離及び(2)細胞移植を伴い、その両方が以下に簡単に記載される(細胞単離に関する詳細について、Selawry及びCameron(1993)、又、細胞移植に関する詳細について、Pakzabanら(1993)を参照のこと;その両方が参考として含まれる)。
(1A)セルトーリ細胞単離
単離操作は良く記載された方法、Selawry及びCameron(1993)に従い、ルーチンで利用される。全ての単離工程に使用され、細胞がインキュベートされた細胞培地は、レチノール、ITS、及びゲンタマイシンスルフェートを補給したDMEM:Hams F12(Cameron及びMuffly, 1991)であった。睾丸を生後16日の雄のSDラットから手術により集めた。睾丸を被膜脱離し、酵素消化のために調製してセルトーリ細胞からその他の睾丸細胞型を分離した。酵素操作は、多くの細胞分離プロトコルに使用される典型的な操作であり、コラゲナーゼ(0.1%)、ヒアルロニダーゼ(0.1%)、及びトリプシン(0.25%)を使用した。連続酵素消化後に、セルトーリ細胞単離物を培地で洗浄し、無菌培養容器に移し、保湿された、5%CO2-95%空気の組織培養インキュベーターに入れた。39℃のインキュベーター中の48時間のプレインキュベーション後に、セルトーリ細胞を洗浄して汚染デブリを除去した。得られるセルトーリ細胞に富むフラクションをDMEM/F12培地0.25ml中で再度懸濁させ、少なくとも24時間にわたって37℃でインキュベートした。
次いでセルトーリ細胞をトリプシンで容器の床から放出し、無菌の円錐試験管に移し、遠心分離により繰り返し洗浄し、トリプシンインヒビターで処理してトリプシンの酵素作用を停止した。移植の日の間に、セルトーリ細胞に富むフラクションを再度懸濁させ、20ゲージのらせん針を有するハミルトンシリンジを使用して吸引した。
(1B)セルトーリ細胞の単離及び前処理
又、既に記載されたように(Cameronら,1987a; Cameronら,1987b)、0.25%のトリプシン(シグマ)及び0.1%のコラゲナーゼ(シグマ、型V)(Cameronら,1987a; Cameronら,1987b)を使用して、被膜脱離されたラット睾丸を37℃で連続酵素処理にかけた。得られるセルトーリ細胞凝集物75cm2の組織培養フラスコ(コスター)中の20mlの容積のインキュベーション培地中に均等に分配した。塗布されたセルトーリ凝集物を48時間にわたって5%CO2-95%空気中で39℃でインキュベートし、その後、細胞を1分間にわたって無菌の0.5mMのトリス-HCl緩衝液による低張処理(Galdieriら,1981)にかけて汚染生殖細胞の除去を促進した。インキュベーション培地で2回洗浄した後、フラスコにインキュベーション培地20mlを再度補給し、5%CO2-95%空気中で37℃でCO2噴射インキュベーターに戻した。得られる前処理されたセルトーリに富む単一培養物は95%より多いセルトーリ細胞を含んでいた。塗布密度(<2.0 X 106セルトーリ細胞/cm2)は細胞の集密単層をもたらさなかった。
(2) 細胞移植
移植プロトコルは既に記載された操作(Pakzabanら,1993)に従う。動物の手術を無菌条件下で行った。全ての動物を0.6ml/kgのナトリウムペントバルビタールで初期麻酔し、次いでコフ(Koph)定位手術装置に入れた。前後方向=+1.2、中外側=+/-2.8、背腹=6.0、5.9、及び5.8(Paxinos及びWatson, 1984の環椎を基準とする)にセットした座標を使用して、一側性線条体移植を行った。病変した黒質に同側性の線条にセルトーリ細胞を移植した。夫々の線条は全容積3μLのセルトーリ細胞懸濁液を受ける。セルトーリ細胞懸濁液1マイクロリットルを背腹部位に対し1分間にわたって注入した。対照は培地のみを受けた。針を引っ込める前に最後の背腹部位に達した後、更に5分間経過させた。手術後、動物を加熱パッドの上に置いて回復させた。手術直後及び移植後の日に、シクロスポリンA(20mg/kg/d、i.p.)を使用して、動物が短い経過の免疫抑制を受ける。しかしながら、その後の研究は、この短い経過のシクロスポリンAが必要とされないことを実証した(図5A-B)。
セルトーリ細胞をパーキンソン病の例に示されるように、特定の疾患について規定された定位手術座標により種々の神経変性疾患の動物モデルに移植し、次いでその動物モデルに特別の技術により機能回復について系統的に評価する。
本研究は6-OHDA誘発ヘミパーキンソン症の生後8週の雄のSDラット(n=12)を使用した。病変後3週で、動物を、アポモルヒネ誘発回転挙動及び揺動挙動を含む挙動試験にかけた。基準線データは全てのこれらの動物で有意なアポモルヒネ誘発回転挙動(CNSの病変側に反対側)を示した(30分間で少なくとも200回転)。上昇された生体揺動試験(EBST)を使用して、有意な右バイアスされた揺動活動(70%より大きい)が又観察された。
病変後3週で、動物の一つのグループ(n=6)はセルトーリ細胞を受け、一つのグループ(n=6)を同じ手術操作にかけたが、対照として培地のみ(血清を含まないDMEM)を受けた。全ての動物は移植の最初の2日後にシクロスポリン(20mg/kg)を受けた。移植後1ケ月、1.5ケ月、及び2ケ月で、動物を同挙動試験に再度導入した。
セルトーリ細胞を受けている動物は回転の有意な減少(30分間で平均50回転)を示し、一方、培地単独を受けている動物は移植前の回転レベルであった(図1)。回転挙動の正常化は2ケ月の試験期間にわたって持続した。セルトーリ細胞移植動物により既に示された右バイアスされた揺動活動が又移植後の試験期間で有意に減少された(図2)。培地を受けている動物はそれらの右バイアスされた揺動応答で有意な減少を示さなかった。
検死で、脳を動物から除去し、40-80μmでビブラトム(vibratome)切開のために固定した。染色後に、セルトーリ細胞が移植されなかった病変動物中の侵入部位と比較した時、セルトーリ細胞移植ラット中の侵入部位(即ち、病変部位)で活性化されたグリア細胞の著しい減少があった。
実施例2:神経細胞の成長
インキュベーション培地及びセルトーリ細胞前ならし培地
セルトーリ細胞培養及び同時培養に使用したインキュベーション培地は、3mg/mlのL−グルタミン(シグマ、銘柄III)、0.01cc/mlのインスリン−トランスフェリン−セレン(ITS、コラボラチブ・リサーチ社)、50ng/mlのレチノール(シグマ)、19μl/mlの乳酸(シグマ)及び0.01cc/mlのゲンタマイシンスルフェート(ギブコ)を補給した、1:1で混合されたダルベッコ最小必須培地:Hams F12栄養培地(ウィットテーカー・バイオプロダクツ)であった。
単離したセルトーリ細胞の最初の48時間のインキュベーション後に、培地を回収し、5分間にわたって1500rpmで遠心分離した。上澄みを回収し、直ちに無菌試験管中で凍結した。この培地をセルトーリ前ならし培地(SCM)と同定した。
胎児脳細胞の単離及びインキュベーション
胎児脳細胞(FBC)を胎児ラット(15-17日の妊娠)の腹側中脳から回収した。胎児組織を培地中に懸濁させ、それを一連の連続的に減少するサイズの皮下注射針(18-26ゲージ)に通すことにより最初に分散させた。得られる懸濁液を5分間にわたって0.1%のトリプシンで処理し、続いて2分間にわたって0.1%のトリプシンインヒビターで処理した。懸濁したFBCを3回洗浄し、インキュベーション培地中で再度懸濁させ、ポリ−L−リシン被覆培養容器に塗布した。
胎児ラットの腹側中脳(VM)からの細胞を単離し、図3Aに示されたように、対照培地(CM)又はセルトーリ細胞前ならし培地(SCM)中で7日間にわたって培養した。CM中でインキュベートしたVM細胞は細胞の刺激又は分化の証拠を示さなかった。図3Bを参照して、SCM中でインキュベートしたVM細胞は高度に刺激された。図3Cは、高倍率で、SCM中でインキュベートしたVM細胞がセルトーリ細胞分散栄養因子に対する応答として神経突起外殖を示すことを示す。
実施例3:セルトーリ細胞の同定
ラテックスビーズの混入:
セルトーリ細胞を単離し、記載されたようにしてインキュベーションのために調製した。移植の前(約12時間)、無菌の1μmのラテックスビーズ(10μg/mlの培地、ペルコ、タスチン、CA)をインキュベーション培地に添加した。セルトーリ細胞はビーズを迅速に貧食した。移植の直前に、ビーズ処理されたセルトーリ細胞を洗浄(3回)し、インキュベーション培地1ml中で再度懸濁させた。
図4Aを参照して、セルトーリ細胞を脳の線条に移植し、その図に侵入道(矢印)及びセルトーリ細胞移植の部位が示される。図4Bに示されたような高倍率で、セルトーリ細胞(矢印)を、移植の前にセルトーリ細胞に装填された1μのラテックスビーズの混入のために容易に同定した。
実施例4:移植したセルトーリ細胞の生存に関するシクロスポリンA(CSA)の効果
蛍光細胞標識:
移植の直前(約2時間)に、セルトーリ細胞単一培養物を細胞トラッキング(100μlの原液/ml培地;モレキュラー・プローブズ社(オイゲン、OR))のために37℃で7分間にわたってCM-DiI蛍光色素で処理し、次いで更に15分間にわたって4℃で置いた。蛍光“標識された” セルトーリ細胞を洗浄し(3回)、インキュベーション培地1ml中で再度懸濁させた。
in situで移植されたセルトーリ細胞の生存に関するシクロスポリンAの効果を調べた。移植されるセルトーリ細胞を脳の線条への移植の前に蛍光標識(DiI)で標識した。その組織を移植後1ケ月で回収した。図5Aを参照して、生存蛍光セルトーリ細胞が、シクロスポリンAによる免疫抑制治療を受けなかったラット宿主中で見られた。図5Bを参照して、生存蛍光セルトーリ細胞が、シクロスポリンA免疫抑制治療を受けなかったラット宿主中に示される。この実施例は、シクロスポリンAが脳に移植されたセルトーリ細胞の生存に必要ではないことを実証する。
実施例5:セルトーリ細胞の予防効果
セルトーリ細胞の移植は、脳病変を誘発する前に移植された時に神経保護性である。セルトーリ細胞のこの予防効果をハンチントン病(HD)の動物モデルで実証した。このモデルはミトコンドリアインヒビター、3−ニトロプロプロン酸(3NP)の全身投与により生じられる。3NPの注射がハンチントン病に見られる病変を模擬する線条中の特別な病変を生じることが、Sanberg及び同僚(Koutouzisら,1994; Borlonganら,1995)並びにその他により実証されていた。
本実験において、8匹のラットに正常なラットの一つの線条に一側にラットセルトーリ細胞(前記のとおり)を移植した。それ故、脳の一側はセルトーリ細胞を有し、別の側は有していなかった。1ケ月後に、動物にいずれかに記載されたようにして(Koutouzisら,1994; Borlonganら,1995)3NPを注射してHDを誘発した。3NPを注射された時の正常なラットは脳の線条の左右の損傷を示し、生体の両側で等しい挙動上の欠損を有する(Koutouzisら,1994; Borlonganら,1995)。
3NP投与の1ケ月後に、動物は一側の挙動上の欠損を示した。これは、対照ではなく、セルトーリ移植動物中の病変後のアポモルヒネ誘発回転の実証により見られた(回転の数;対照=0.25±0.6;セルトーリ移植=197±31.9、p<0.0001)。この非対称の回転挙動は、セルトーリ細胞を移植されなかった脳の側部の病変を示した。それ故、セルトーリ細胞移植体は、栄養メカニズムに関して、その後の脳病変に対し神経保護効果及び予防効果を有する。これは、有意な損傷が存在する前に、セルトーリ移植が神経変性疾患を早期に治療するのに又は有益であり得るという証拠を与える。
これらの結果は、一緒にされると、セルトーリ細胞がパーキンソン病及びハンチントン病の動物モデルの挙動上及び機能上の欠損を回復することを示す。関係するメカニズムはおそらく実施例2に示されたような神経組織の成長により実証されるようなセルトーリ細胞由来成長因子、及び関連する神経組織の回復及び延長された支持を促進する調節因子の分泌である。更に、セルトーリ細胞は病変部位でグリア細胞活性化を抑制することにより脳中で神経組織を保護し、神経組織回復を促進し得る。又、これらの結果は移植されたセルトーリ細胞のin situの生存を実証する。
この出願中で、種々の刊行物が引用又は番号により参照される。刊行物に関する充分な引用が以下にリストされる。本発明が関係する技術水準を更に充分に記載するために、これらの刊行物のそのままの開示がこの出願への参照により本明細書に含まれる。
本発明が例示の様式で記載され、使用される用語は限定ではなく、説明の性質であることが意図されることが理解されるべきである。
明らかに、本発明の多くの改良及び変化が上記教示に鑑みて可能である。それ故、請求の範囲内で、本発明は明記された以外に実施し得ることが理解されるべきである。
TECHNICAL FIELD The present invention relates generally to cell transplantation, and more particularly to a method for transplanting cells that recovers behavioral and functional deficits associated with neurological disease after transplantation into the central nervous system (CNS).
In treating disease, it is often beneficial to treat tissue with trophic factors locally rather than systemically, for example, in the area of tissue damage as in wound healing.
As yet another example, transplantation of neural tissue into the mammalian central nervous system (CNS) includes sputum, stroke, Huntington's disease, head trauma, spinal cord trauma, pain, Parkinson's disease, myelin deficiency, neuromuscular disease, neuralgia, muscle It is becoming another treatment for neurological and neurological diseases, including atrophic lateral sclerosis, Alzheimer's disease, and brain affective disorders. Preclinical data and clinical data show that transplanted cells (grafts) used in cell transplantation protocols for these types of neurodegenerative diseases survive, coalesce with host tissues, and provide functional recovery (Sanberg et al., 1994).
The primary source of these grafts was the fetus. For example, fetal ventral midbrain tissue has been demonstrated to be a viable graft source in Parkinson's disease (Lindvall et al., 1990; Bjorklund, 1992). Similarly, fetal striatal tissue has been used successfully as a graft material in Huntington's disease (Isacson et al., 1986; Sanberg et al., 1994).
Nerve dysfunctional animals had been transplanted with non-fetal cells and non-neuronal cells / tissues. For example, chromaffin cells from adult donors have been used to treat Parkinson's disease. A major advantage of this type of transplant protocol is that the graft source is not a fetal source, thereby avoiding ethical and logical problems associated with acquiring fetal tissue. Normalization of behavior is observed using the chromaffin cell protocol. However, functional recovery of this behavior is temporary, and animals return to their pre-transplant state (Bjorklund and Stenevi, 1985; Lindvall et al., 1987). The inability of this type of treatment protocol to maintain the animal's normal behavioral activity in Parkinson's disease models prematurely applies the clinical application of other treatment therapies as well as this protocol.
The administration of growth factors as a means of treating neurological and neurodegenerative diseases was intended in the art. However, delivering these drugs to the brain still involves a number of difficulties that should be resolved successfully. In general, these drugs cannot be administered systemically, and injection into the brain is an impractical and incomplete solution. Although it has been suggested to manipulate cells to deliver specific monotrophic factors when transplanted into the brain, stable transfection and survival of cells when transplanted into the brain is a constant problem. Furthermore, it is becoming increasingly recognized that multitrophic factors acting in concert are likely necessary for the successful treatment of neurological and neurodegenerative symptoms.
Long-term maintenance of functional recovery has been observed in diabetic animal models using a novel transplantation treatment protocol using isolated islet cells and Sertoli cells. It is clear that the efficacy of the treatment is due, in part, to their known immunosuppressive secreted factors due to the presence of Sertoli cells (Selawry and Cameron, 1993; Cameron et al., 1990). Sertoli cells are also known to secrete several important vegetative growth factors.
Therefore, it would be desirable to use Sertoli cells alone as a source for diseases in which damaged tissue growth factor and trophic factor support is beneficial. Examples include neurological diseases including wound healing and neurodegenerative diseases. Sertoli cells can serve as an in situ factory for trophic factors, thereby speeding wound healing and restoring functional and behavioral deficits associated with neurological and neurodegenerative diseases.
SUMMARY OF THE INVENTION In accordance with the present invention, a method is provided for producing in situ trophic factor production by transplanting Sertoli cells, which cells secrete trophic factors in situ, into a mammal.
[Brief description of the drawings]
Other advantages of the present invention will be readily understood and become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
FIG. 1 is a graph showing the results of apomorphine-induced rotational behavior, showing> 7 rotations per minute when animals from both groups were challenged with apomorphine pre-transplantation, or at least a total of 210 rotations over 30 minutes (lesions) In contrast, animals receiving media alone continued to show significant rotation during the post-transplant period, in contrast, animals receiving Sertoli cells had a marked decrease in their rotational behavior over the post-transplant period ( Greater than 60%).
FIG. 2 is a graph showing biased rocking behavior, with> 80% biased rocking activity (opposite to lesion) as evidenced by an elevated body rocking test with animals from both groups. In the post-transplant period, animals receiving medium alone continued to exhibit significant biased rocking activity, in contrast, animals receiving Sertoli cells were biased rocking behavior over the post-transplant period. Did not show.
FIGS. 3A-C show the ventral mesencephalon of fetal rats isolated and cultured for 7 days in control medium (CM) or Sertoli cell conditioned medium (SCM) and photographed with dark field, interference contrast optics ( Photomicrograph showing cells from (VM), (A) shows VM cells incubated in CM showing no evidence of stimulation or differentiation, and (B) is clearly highly stimulated (C) shows VM cells incubated in SCM showing neurite outgrowth as a result of Sertoli secretory trophic factor at high magnification.
4A-B are electron micrographs showing the invasion path (arrow) and the striae of the brain showing the site of Sertoli cell transplantation (A), (B) is a box shape in (A) at high magnification and high resolution. Regions are shown and Sertoli cells (arrows) are easily identified for 1μ latex bead inclusions, which were placed in the cells prior to transplantation.
Figures 5A-B are two light micrographs showing transplanted Sertoli cells labeled in situ with a fluorescent label (DiI) prior to transplantation into the striatum of the brain, (A) is cyclosporin A (CsA). (B) shows viable fluorescent Sertoli cells in a rat host that received cyclosporin A immunosuppressive treatment.
DETAILED DESCRIPTION OF THE INVENTION Generally, the present invention provides a method for promoting the recovery, protection, and support of dysfunctional tissues by a mechanism that includes in situ production of Sertoli cell-derived growth factors and regulators, commonly referred to as trophic factors . Furthermore, the present invention provides a method for producing in situ trophic factor production. This is done by transplanting isolated Sertoli cells, which secrete trophic factors in situ.
One important advantage of utilizing Sertoli cells as an in situ factory for producing trophic factors is that Sertoli cells have been shown to have an effective immunosuppressive effect. Therefore, no concurrent additional therapy is required to produce immunosuppression. In other words, Sertoli cells can be used as a source of trophic factors and also provide a self-induced local immunosuppressive effect.
As trophic factors secreted by Sertoli cells, Sertoli cell-derived growth factors and regulators such as insulin-like growth factors I and II, epidermal growth factors, transforming growth factors α and β, and interleukin 1α (Griswold, 1992) Is mentioned. See Table 1 for a more extensive list of Sertoli cell secretory factors. Such factors have been shown to have a healing effect on behavioral and functional deficits associated with neurodegenerative diseases. These factors are known trophic factors that support normal cell and tissue metabolism and function (Griswold, 1992). The present invention takes advantage of the phenomenon that Sertoli cells can produce a growth-supporting liquid microenvironment that is rich in nutrients at the site of cellular dysfunction or cell / tissue damage. Cell / tissue damage includes, but is not limited to, radiation damage, burns and wounds. In contrast to the Sertoli cell / islet cell transplant protocol used in the diabetes model, the method of the present invention uses only one type of cell, namely Sertoli cells, thereby allowing two different cell types to be transferred to a single host site. Considerably reduces the inherent logical and operational problems in attempting to port to
Rat Sertoli cells are used in the examples below, but Sertoli cells from any suitable source may be used. For example, human Sertoli cells can be used for transplantation in humans. Furthermore, in a preferred embodiment of the present invention, porcine Sertoli cells can be transplanted into a mammal such as a human. Further, veterinary use of the present invention is contemplated and syngeneic Sertoli cells will be selected for transplantation into the desired mammalian host.
As demonstrated in the experimental part below, the present invention may be used as a treatment to recover behavioral and functional deficits associated with neurodegenerative diseases such as Huntington's disease and Parkinson's disease. This can be done without the side effects associated with conventionally used immunosuppressive adjuvant therapy, such as the chronic use of cyclosporin A. Sertoli cells provide both secretory factor secretion and immunosuppressive effects.
As shown in the examples below, transplantation of Sertoli cells prior to the induction or formation of brain lesions can provide a neuroprotective effect. For example, as demonstrated below, transplantation of Sertoli cells prior to induction of Huntington-type disease provided both neuroprotective and prophylactic effects for subsequent brain lesions. Therefore, early Sertoli cell transplantation after diagnosis of a neurodegenerative disease can provide beneficial treatment, prevention or reduction of the disease. In addition, Sertoli cells can be transplanted in other types of CNS trauma, such as head lesions, to treat, prevent and prophylactically reduce the effects of CNS injury.
The following examples demonstrate the ability of the present invention to recover the behavioral deficits associated with neurodegenerative diseases.
Example 1: Sertoli cell transplantation
Special protocol:
Protocols generally involve two basic steps, (1) Sertoli cell isolation and (2) cell transplantation, both of which are described briefly below (for details on cell isolation, see Selawry and Cameron (1993)). Also, see Pakzaban et al. (1993) for details on cell transplantation, both of which are included for reference).
(1A) Sertoli cell isolation Isolation procedures are routinely utilized according to well-described methods, Selawry and Cameron (1993). The cell medium used for all isolation steps and in which the cells were incubated was DMEM: Hams F12 (Cameron and Muffly, 1991) supplemented with retinol, ITS, and gentamicin sulfate. Testes were collected from 16-day-old male SD rats by surgery. Testes were decapsulated and prepared for enzymatic digestion to separate other testicular cell types from Sertoli cells. Enzymatic manipulation is a typical manipulation used in many cell separation protocols, using collagenase (0.1%), hyaluronidase (0.1%), and trypsin (0.25%). After continuous enzyme digestion, the Sertoli cell isolate was washed with media, transferred to a sterile culture vessel, and placed in a humidified 5% CO 2 -95% air tissue culture incubator. After 48 hours of preincubation in a 39 ° C. incubator, Sertoli cells were washed to remove contaminating debris. The resulting Sertoli cell rich fraction was resuspended in 0.25 ml of DMEM / F12 medium and incubated at 37 ° C. for at least 24 hours.
Sertoli cells were then released from the container floor with trypsin, transferred to a sterile conical tube, washed repeatedly by centrifugation, and treated with trypsin inhibitor to stop the trypsin enzymatic action. During the day of implantation, the Sertoli cell rich fraction was resuspended and aspirated using a Hamilton syringe with a 20 gauge spiral needle.
(1B) Isolation and pretreatment of Sertoli cells Also as previously described (Cameron et al., 1987a; Cameron et al., 1987b), 0.25% trypsin (Sigma) and 0.1% collagenase (Sigma, Using type V) (Cameron et al., 1987a; Cameron et al., 1987b), the delaminated rat testicles were subjected to continuous enzyme treatment at 37 ° C. The resulting Sertoli cell aggregate was evenly distributed in a 20 ml volume of incubation medium in a 75 cm 2 tissue culture flask (Costar). The coated Sertoli aggregates were incubated for 48 hours at 39 ° C. in 5% CO 2 -95% air, after which the cells were hypotonicized with sterile 0.5 mM Tris-HCl buffer (Galdieri et al. 1981) promoted removal of contaminating germ cells. After washing twice with incubation medium, the flask was again refilled with 20 ml of incubation medium and returned to the CO 2 injection incubator at 37 ° C. in 5% CO 2 -95% air. The resulting pretreated sertoli rich single culture contained more than 95% sertoli cells. The coating density (<2.0 × 10 6 Sertoli cells / cm 2 ) did not result in a confluent monolayer of cells.
(2) Cell transplantation The transplantation protocol follows the procedure already described (Pakzaban et al., 1993). Animal surgery was performed under aseptic conditions. All animals were initially anesthetized with 0.6 ml / kg sodium pentobarbital and then placed in a Koph stereotaxic surgical device. Unilateral line using coordinates set in anteroposterior direction = +1.2, medial lateral = +/- 2.8, dorsal ventral = 6.0, 5.9, and 5.8 (based on Paxinos and Watson, 1984 atlas) A striatum transplant was performed. Sertoli cells were transplanted into the ipsilateral striatum of the affected substantia nigra. Each filament receives a Sertoli cell suspension with a total volume of 3 μL. One microliter of Sertoli cell suspension was injected over the dorsoventral region for 1 minute. The control received medium only. An additional 5 minutes was allowed after reaching the last dorsoventral region before the needle was retracted. After surgery, the animals were placed on a heating pad and allowed to recover. Animals receive a short course of immunosuppression using cyclosporin A (20 mg / kg / d, ip) immediately after surgery and on the day after transplantation. However, subsequent studies have demonstrated that this short course of cyclosporin A is not required (FIGS. 5A-B).
Sertoli cells are transplanted into animal models of various neurodegenerative diseases with stereotactic surgical coordinates defined for a specific disease, as shown in the example of Parkinson's disease, and the animal model is then systematically restored to function by special techniques To evaluate.
This study used 8-week-old male SD rats (n = 12) with 6-OHDA-induced hemiparkinsonism. Three weeks after the lesion, animals were subjected to behavioral tests including apomorphine-induced rotational and rocking behavior. Baseline data showed significant apomorphine-induced rotational behavior (opposite to lesion side of CNS) in all these animals (at least 200 rotations in 30 minutes). Significant right-biased rocking activity (greater than 70%) was also observed using the elevated biological rocking test (EBST).
Three weeks after the lesion, one group of animals (n = 6) received Sertoli cells and one group (n = 6) was subjected to the same surgical procedure, but only medium (DMEM without serum) as a control. I received it. All animals received cyclosporine (20 mg / kg) after the first 2 days of transplantation. The animals were reintroduced into the behavior test at 1, 1.5, and 2 months after transplantation.
Animals receiving Sertoli cells showed a significant decrease in rotation (average 50 rotations in 30 minutes), while animals receiving medium alone were at the pre-transplant rotation level (FIG. 1). Normalization of rotational behavior persisted over a 2 month test period. The right-biased rocking activity already demonstrated by Sertoli cell transplanted animals was also significantly reduced in the test period after transplantation (FIG. 2). Animals receiving medium did not show a significant decrease in their right-biased rocking response.
At necropsy, the brains were removed from the animals and fixed for vibratome incision at 40-80 μm. After staining, there was a marked decrease in glial cells activated at the invasion site (ie, lesion site) in Sertoli cell transplanted rats when compared to the invasion site in lesioned animals where the Sertoli cells were not transplanted.
Example 2: Growth of nerve cells
Incubation medium and Sertoli cell preconditioned medium The incubation medium used for Sertoli cell culture and co-culture was 3 mg / ml L-glutamine (Sigma, brand III), 0.01 cc / ml insulin-transferrin-selenium. (ITS, Collaborative Research), Dulbecco mixed 1: 1, supplemented with 50 ng / ml retinol (Sigma), 19 μl / ml lactic acid (Sigma) and 0.01 cc / ml gentamicin sulfate (Gibco) Minimum essential medium: Hams F12 nutrient medium (Wittaker Bioproducts).
After the first 48 hours of incubation of isolated Sertoli cells, the medium was collected and centrifuged at 1500 rpm for 5 minutes. The supernatant was collected and immediately frozen in a sterile test tube. This medium was identified as Sertoli preconditioned medium (SCM).
Isolation and incubation of fetal brain cells Fetal brain cells (FBC) were harvested from the ventral midbrain of fetal rats (15-17 gestation). The fetal tissue was first dispersed by suspending it in the medium and passing it through a series of successively decreasing size hypodermic needles (18-26 gauge). The resulting suspension was treated with 0.1% trypsin for 5 minutes followed by 0.1% trypsin inhibitor for 2 minutes. The suspended FBC was washed three times, resuspended in incubation medium and applied to poly-L-lysine coated culture vessels.
Cells from the ventral midbrain (VM) of fetal rats were isolated and cultured for 7 days in control medium (CM) or Sertoli cell conditioned medium (SCM) as shown in FIG. 3A. VM cells incubated in CM showed no evidence of cell stimulation or differentiation. Referring to FIG. 3B, VM cells incubated in SCM were highly stimulated. FIG. 3C shows that VM cells incubated in SCM at high magnification show neurite outgrowth as a response to Sertoli cell-dispersing trophic factor.
Example 3: Identification of Sertoli cells
Latex beads contamination :
Sertoli cells were isolated and prepared for incubation as described. Prior to implantation (approximately 12 hours), sterile 1 μm latex beads (10 μg / ml medium, Perco, Tastin, CA) were added to the incubation medium. Sertoli cells phagocytosed the beads quickly. Just prior to transplantation, beaded Sertoli cells were washed (3 times) and resuspended in 1 ml of incubation medium.
Referring to FIG. 4A, Sertoli cells are transplanted into the striatum of the brain, and the entry path (arrow) and the site of Sertoli cell transplantation are shown. At high magnification as shown in FIG. 4B, Sertoli cells (arrows) were readily identified due to contamination of 1 μ latex beads loaded into Sertoli cells prior to transplantation.
Example 4: Effect of cyclosporin A (CSA) on survival of transplanted Sertoli cells
Fluorescent cell labeling :
Immediately prior to transplantation (approximately 2 hours), Sertoli cell single cultures were subjected to CM-DiI fluorescence for 7 minutes at 37 ° C. for cell tracking (100 μl stock / ml medium; Molecular Probes (Eugen, OR)). Treated with dye and then left at 4 ° C. for an additional 15 minutes. Fluorescent “labeled” Sertoli cells were washed (3 times) and resuspended in 1 ml of incubation medium.
The effect of cyclosporin A on the survival of Sertoli cells transplanted in situ was investigated. The transplanted Sertoli cells were labeled with a fluorescent label (DiI) prior to transplantation into the striatum of the brain. The tissue was collected 1 month after transplantation. Referring to FIG. 5A, viable fluorescent Sertoli cells were seen in rat hosts that did not receive immunosuppressive treatment with cyclosporin A. Referring to FIG. 5B, live fluorescent Sertoli cells are shown in a rat host that did not receive cyclosporin A immunosuppressive treatment. This example demonstrates that cyclosporin A is not required for the survival of Sertoli cells transplanted into the brain.
Example 5: Prophylactic effect of Sertoli cells Sertoli cell transplantation is neuroprotective when transplanted prior to inducing brain lesions. This preventive effect of Sertoli cells was demonstrated in an animal model of Huntington's disease (HD). This model is generated by systemic administration of a mitochondrial inhibitor, 3-nitroproproic acid (3NP). It has been demonstrated by Sanberg and colleagues (Koutouzis et al., 1994; Borlongan et al., 1995) and others that 3NP injections produce special lesions in the striatum that mimic those found in Huntington's disease.
In this experiment, rat Sertoli cells (as described above) were transplanted on one side into one normal striatum in 8 rats. Therefore, one side of the brain had Sertoli cells and the other side did not. One month later, the animals were injected with 3NP as described elsewhere (Koutouzis et al., 1994; Borlongan et al., 1995) to induce HD. Normal rats when injected with 3NP show left and right damage to the striatum of the brain and have equal behavioral defects on both sides of the organism (Koutouzis et al., 1994; Borlongan et al., 1995).
One month after administration of 3NP, the animals showed unilateral behavioral deficits. This was seen by demonstration of apomorphine-induced rotation after lesions in Sertoli transplanted animals, not controls (number of rotations; control = 0.25 ± 0.6; Sertoli transplant = 197 ± 31.9, p <0.0001). This asymmetric rotational behavior indicated a lesion on the side of the brain that was not transplanted with Sertoli cells. Therefore, Sertoli cell transplants have a neuroprotective and preventive effect on subsequent brain lesions with respect to trophic mechanisms. This provides evidence that Sertoli transplantation may be beneficial for early treatment or benefit of neurodegenerative disease before significant damage is present.
These results indicate that when combined, Sertoli cells restore the behavioral and functional deficits of animal models of Parkinson's disease and Huntington's disease. The mechanism involved is probably the secretion of Sertoli cell-derived growth factor, as demonstrated by neural tissue growth as shown in Example 2, and regulatory factors that promote the recovery and prolonged support of the associated neural tissue. is there. Furthermore, Sertoli cells can protect nerve tissue in the brain by inhibiting glial cell activation at the lesion site and promote nerve tissue recovery. These results also demonstrate the in situ survival of transplanted Sertoli cells.
Within this application, various publications are referenced by citation or number. Full citations for the publication are listed below. In order to more fully describe the state of the art to which this invention pertains, the entire disclosures of these publications are incorporated herein by reference to this application.
It is to be understood that the present invention is described in an exemplary manner and the terminology used is intended to be illustrative and not limiting.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.
Claims (4)
セルトーリ細胞を人体を除く対象の中枢神経系へ移植する工程を含み、
該セルトーリ細胞がin situで栄養因子を分泌することを特徴とする方法。A method of producing trophic factor production in situ in the central nervous system,
Transplanting Sertoli cells to the central nervous system of the subject excluding the human body,
A method wherein the Sertoli cells secrete trophic factors in situ.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/402,389 | 1995-03-13 | ||
US08/402,389 US5702700A (en) | 1995-03-13 | 1995-03-13 | Sertoli cells as neurorecovery inducing cells for Parkinson's disease |
PCT/US1996/003335 WO1996028030A1 (en) | 1995-03-13 | 1996-03-12 | Sertoli cells as neurorecovery inducing cells for neurodegenerative disorders |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11501818A JPH11501818A (en) | 1999-02-16 |
JP3699727B2 true JP3699727B2 (en) | 2005-09-28 |
Family
ID=23591681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52777796A Expired - Lifetime JP3699727B2 (en) | 1995-03-13 | 1996-03-12 | Sertoli cells as nerve recovery-inducing cells for neurodegenerative diseases |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1006801A4 (en) |
JP (1) | JP3699727B2 (en) |
KR (1) | KR100297899B1 (en) |
AU (1) | AU705932B2 (en) |
CA (1) | CA2215343C (en) |
NZ (1) | NZ304646A (en) |
TW (1) | TW427907B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9401192L (en) * | 1994-04-11 | 1995-10-12 | Jne Ab | Symmetry measuring device |
SE524543C2 (en) | 2002-01-17 | 2004-08-24 | Jne Ab | Measuring ruler, intended for symmetry measurements on vehicles |
CN1891826B (en) | 2002-10-22 | 2011-09-14 | 卫材R&D管理有限公司 | Gene specifically expressed in postmitotic dopaminergic neuron precursor cells |
KR101375603B1 (en) | 2004-07-22 | 2014-04-01 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Lrp4/Corin DOPAMINERGIC NEURON PROGENITOR CELL MARKERS |
EP2006382B1 (en) | 2006-04-11 | 2016-08-03 | Eisai R&D Management Co., Ltd. | Dopamine-producing neuron progenitor cell marker 187a5 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5082670A (en) * | 1988-12-15 | 1992-01-21 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system |
DE69133205T2 (en) * | 1990-10-19 | 2003-12-11 | New York University, New York | A METHOD FOR THE TRANSPLANTATION OF CELLS IN THE BRAIN AND THEIR THERAPEUTIC USE |
US5702700A (en) * | 1995-03-13 | 1997-12-30 | University Of South Florida | Sertoli cells as neurorecovery inducing cells for Parkinson's disease |
-
1996
- 1996-03-12 EP EP96908758A patent/EP1006801A4/en not_active Withdrawn
- 1996-03-12 NZ NZ304646A patent/NZ304646A/en unknown
- 1996-03-12 JP JP52777796A patent/JP3699727B2/en not_active Expired - Lifetime
- 1996-03-12 CA CA002215343A patent/CA2215343C/en not_active Expired - Fee Related
- 1996-03-12 KR KR1019970706436A patent/KR100297899B1/en not_active IP Right Cessation
- 1996-03-12 AU AU51897/96A patent/AU705932B2/en not_active Ceased
- 1996-04-24 TW TW085104903A patent/TW427907B/en active
Also Published As
Publication number | Publication date |
---|---|
NZ304646A (en) | 1998-01-26 |
EP1006801A1 (en) | 2000-06-14 |
EP1006801A4 (en) | 2001-05-02 |
TW427907B (en) | 2001-04-01 |
CA2215343A1 (en) | 1996-09-19 |
JPH11501818A (en) | 1999-02-16 |
AU5189796A (en) | 1996-10-02 |
KR100297899B1 (en) | 2001-10-25 |
AU705932B2 (en) | 1999-06-03 |
KR19980703028A (en) | 1998-09-05 |
CA2215343C (en) | 2002-02-19 |
MX9707028A (en) | 1998-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9439931B2 (en) | Administering umbilical cord blood-derived mesenchymal stem cells to treat nerve injury | |
CN101801397A (en) | The therapeutic cell is given method, pharmaceutical composition and the goods of mammalian central nervous system | |
JPH06502406A (en) | Methods of transplantation of cells into the brain and therapeutic uses thereof | |
WO1996028030A1 (en) | Sertoli cells as neurorecovery inducing cells for neurodegenerative disorders | |
KR20080049917A (en) | Composition for inducing differentiation and proliferation of neural precursor cells or neural stem cells to neural cells, comprising a human umbilical cord blood-derived mesenchymal stem cell as an active ingredient | |
KR100297898B1 (en) | Methods and pharmaceutical compositions for producing sustained local immunosuppressive and nutritional effects | |
JP3699727B2 (en) | Sertoli cells as nerve recovery-inducing cells for neurodegenerative diseases | |
KR20090055691A (en) | Composition for inducing differentiation and proliferation of neural precursor cells or neural stem cells to neural cells, comprising a human umbilical cord blood-derived mesenchymal stem cell as an active ingredient | |
US6036951A (en) | Sertoli cells as neurorecovery inducing cells for neurodegenerative disorders | |
JP2003532621A (en) | How to treat schizophrenia | |
EP0814819B1 (en) | Sertoli cells as transplantation facilitator for cell transplantation | |
US20200181569A1 (en) | Expandable cell populations from brain biopsies of living subjects | |
Mendez et al. | Sustained intracerebral delivery of nerve growth factor with biodegradable polymer microspheres | |
MXPA97007028A (en) | Sertoli cells as induction cells of neurorecuperation for neurodegenerati disorders | |
Hudspith et al. | Proof of principle: preclinical data on retinal cell transplantation | |
US7323333B2 (en) | Materials and methods for regulating process formation in cell culture | |
MXPA97007027A (en) | Sertolia cells as auxiliary of transplantation for the transplantation of celu | |
Date et al. | Neurotransmitter and Neurotrophic Factor-Secreting Cell Line Grafting for the Treatment of Parkinson’s Disease | |
Granholm | Trophic influences on neural tissue transplants: Delivery methods and co-graft interaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040514 |
|
A313 | Final decision of rejection without a dissenting response from the applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A313 Effective date: 20041011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050506 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050711 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |