JP3699708B2 - Water leak occurrence position detection method - Google Patents

Water leak occurrence position detection method Download PDF

Info

Publication number
JP3699708B2
JP3699708B2 JP2003031243A JP2003031243A JP3699708B2 JP 3699708 B2 JP3699708 B2 JP 3699708B2 JP 2003031243 A JP2003031243 A JP 2003031243A JP 2003031243 A JP2003031243 A JP 2003031243A JP 3699708 B2 JP3699708 B2 JP 3699708B2
Authority
JP
Japan
Prior art keywords
water
reflected wave
occurrence position
core electric
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003031243A
Other languages
Japanese (ja)
Other versions
JP2004239839A (en
Inventor
嘉一 山口
裕之 市原
俊秀 小堀
宣悦 山崎
知英 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2003031243A priority Critical patent/JP3699708B2/en
Publication of JP2004239839A publication Critical patent/JP2004239839A/en
Application granted granted Critical
Publication of JP3699708B2 publication Critical patent/JP3699708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮水構造物、例えばコンクリートまたはアスファルト等を遮水フェーシング材料としてダム堤体表面に敷設して造成されたダムフェーシングにおける漏水発生位置検出方式に関する。本発明は特に、ロックフィルダムの堤体表面に造成されたコンクリート遮水壁における漏水発生位置検出に適している。
【0002】
【従来の技術】
従来、ロックフィルダムでは堤体中心部に幅方向にわたるように遮水層を形成する工事手法が用いられていたが、近年では遮水層を堤体の上流側表面にダムフェーシングとして施工する方式が用いられる傾向にある。その理由としては、遮水層を堤体の上流側表面に施工する方式は、遮水層を堤体中心部に設ける方式に比べて施工費用の低減が可能となることが挙げられる。
【0003】
堤体表面に施工される遮水層の材料にはコンクリートやアスファルト等が用いられているが、遮水層に僅かでも亀裂が発生するとそこから漏水が発生し、最悪の場合には堤体自体が損傷を受けることが想定される。そこで、遮水層を堤体表面に施工する場合、遮水層の健全性を常に監視することが必要となる。万一、遮水層に漏水が検出された場合には貯留水位を下げて遮水層の補修を行うことが必要となる。
【0004】
この監視技術として、透水性被覆を有するツイスト線を遮水層内に埋設し、このツイスト線に電気パルスを入射させ、その反射波を観測することで漏水発生位置を検出する方式が提案されている(例えば、特許文献1)。
【0005】
簡単に説明すると、この漏水発生位置検出方式では、ツイスト線の透水性被覆のいずれかの箇所に漏水による浸潤箇所があると、電気パルスを入射した場合にそこからの反射波が発生する。そこで、入射波と反射波との間の時間関係を計測することで漏水発生位置を検出することができる。
【0006】
【特許文献1】
特願2002−244525号公報(第4頁、第5頁、図4)
【0007】
【発明が解決しようとする課題】
しかしながら、上記提案による漏水発生位置検出方式では、漏水発生位置から浸水した水分が時間と共に透水性被覆内の広範囲に拡散し、漏水発生位置の検出精度が低下するという問題点がある。
【0008】
そこで、本発明の課題は、上記の漏水発生位置検出方式の多芯電線における透水性被覆に浸潤する水分の拡散を抑制できるようにして漏水発生位置の検出精度を向上させることのできる漏水発生位置検出方式を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、遮水構造物内に埋設された透水性被覆を有する少なくとも1組の多芯電線と、該多芯電線に対して電気パルスを出力するパルス発生回路と、前記多芯電線からの前記電気パルスの反射波を受ける反射波測定回路とを含み、前記パルス発生回路から前記多芯電線へ入射した入射波と当該多芯電線内部で生じる反射波を前記反射波測定回路により計測し、入射波に対する反射波の発生までの時間を測定することから前記遮水構造物内部の漏水発生位置を検出する漏水発生位置検出方式であって、前記多芯電線は、前記透水性被覆が前記多芯電線の長さ方向に間隔をおいて設けられた遮水性被覆により前記間隔毎に隔離されていることを特徴とする漏水発生位置検出方式が提供される。
【0010】
本漏水発生位置検出方式においては、前記多芯電線としてツイスト線またはレッヘル線が用いられる。
【0011】
本漏水発生位置検出方式においてはまた、前記多芯電線は、前記遮水構造物の天端部と底部との間にわたる線が前記遮水構造物の幅方向に関して所定距離隔てて平行に存在するような略四角形状を描くように埋設され、前記多芯電線に接続される前記入射波及び反射波の伝送経路に切替器を接続し、該切替器は、前記多芯電線の2つの端部に対していずれか一方を前記パルス発生回路及び反射波測定回路に接続する切替え接続を交互に行うことにより、前記多芯電線の前記2つの端部からの漏水発生位置検出を行うことが望ましい。
【0012】
【作用】
上記の漏水発生位置検出方式においては、遮水構造物に亀裂などが生じた場合、多芯電線の透水性被覆内部に水が侵入することから、その位置において多芯電線の特性インピーダンスに変化が生じるため、入射波とは極性の異なる反射波が生じる。これにより、入射波と反射波とを観測してこれらの間の時間間隔を測定することで多芯電線に沿った漏水発生位置を特定することが可能となる。
【0013】
特に、多芯電線における透水性被覆を、間隔をおいて遮水性被覆として透水性被覆に浸潤する水分の拡散を抑制することで漏水発生位置の検出精度を向上させることができる。
【0014】
【発明の実施の形態】
図1〜図5を参照して、上記提案に基づく漏水発生位置検出方式の原理について説明する。図1はコンクリート表面遮水型ロックフィルダムにおけるダム堤体及びコンクリートによる遮水層の断面を示す図である。ダム堤体10の上流側表面には遮水層20が施工される。その際、遮水層20内部には面と平行な方向、つまり上部から底部に金属線によるツイスト線30が埋設される。ツイスト線30は、ダム堤体10の幅方向に間隔をおいて複数本互いに平行に設置される。設置間隔は数m〜数十m程度とされる。複数のツイスト線30にそれぞれ、ダム堤体10の天端側においてパルス発生回路31と反射波測定手段としてのオシロスコープ32が接続されるが、切替器を備えることで複数のツイスト線30に共通に1組のパルス発生回路31とオシロスコープ32とを接続するようにしても良い。また、オシロスコープ32には観測波形を記憶するための記憶装置を接続することが望ましい。
【0015】
漏水発生位置検出に際しては、パルス発生回路31からツイスト線30に対して10nsec程度の幅のパルスを10μsec程度の間隔で連続的に出力し、ツイスト線30からの反射波形をオシロスコープ32で観測する。
【0016】
図2はツイスト線30の周囲に生じる電界の状況を示す図であり、ツイスト線30における二本の金属線(芯線)の間に電気力線が集中している。そのため、この領域において水分等により誘電率に変動が生じれば特性インピーダンスの変化が生じ、ツイスト線30の一端からパルスを入射した場合にはそこから反射波が生じることから水の浸入を検出することが可能となる。
【0017】
図3は本発明において使用されるツイスト線30の構造を示す断面図である。ツイスト線30の二本の金属線30−1は絶縁体30−2で絶縁処埋されて所定の間隔を保って連続しており、特性インピーダンスは一様となっている。さらにツイスト線30をケーブル化するために外周被覆が施され、この外周被覆として透水性テープによる透水性被覆30−3が巻き付けられている。
【0018】
透水性被覆30−3の素材としてはポリエステルテープ、綿テープ等の素材が適している。一方、絶縁体30−2の素材としてはポリエチレンの他、紙テープ等を用いることが可能である。
【0019】
なお、図3に示したのはツイスト線30の断面構造であり、以降で説明される本発明の実施の形態において使用されるツイスト線30はその長さ方向に関して改良が加えられているが、これについては後述する。
【0020】
図4は図1の構成による漏水発生位置検出方式においてパルス入射による反射波発生状況をオシロスコープ32を用いて観測した例を示す図である。また、図5は遮水層20の一部に亀裂が生じてツイスト線30の埋設された領域まで浸水した状況を拡大して示している。ツイスト線30における特性インピーダンスZ0の線路の一部が浸水により特性インピーダンスZ1に変化した場合、その点における反射率Rは、以下の式で表される。
【0021】
R=(Z1−Z0)/(Z1+Z0)
上記式において、ツイスト線30の周囲の透水性被覆30−3に水が染み込んでいるような場合にはZ1<Z0となることから、反射率RはR<0となり、特性インピーダンスの変化点における反射波は、入射波とは逆極性となる。透水性被覆30−3の水が染み込んでいる領域から水が染み込んでいない領域に変化する所では反射率RはR>0となることから反射波の極性は入射波と同じ極性となる。また、ツイスト線30の終端(開放端)でも入射波と同極性の反射波となる。これにより、特性インピーダンスの変化点における反射波と終端における反射波とを容易に識別できる。
【0022】
ツイスト線30を伝搬する電気パルスの伝搬速度をおよそ20万km/sとすると、例えば入射波の立上がりから反射波の立上がりまでが1μsであれば、パルス発生回路31と同じ場所にあるオシロスコープ32から漏水発生位置までの距離は100m(20×107 ×10-6/2=100)となる。従って、入射波−反射波間の時間を測定して計算された距離から、オシロスコープ32からダム堤体の天端、つまりツイスト線30の端部までの距離を考慮(減算)することで漏水発生位置を特定することができる。なお、前述したように、オシロスコープ32を1個で共用する場合であって、複数のツイスト線毎にオシロスコープ32から各ツイスト線の端部までの距離が異なる場合には、ツイスト線毎に考慮すべき値をあらかじめ用意しておけば良い。
【0023】
図6は、本発明による漏水発生位置検出方式の実施の形態を説明するための図である。図6は、遮水層20をダムの上流側から見た図であり、ツイスト線1本について示している。図6において、コンクリートによる遮水層20の内部には表面と平行な方向に、前述したような透水性被覆を有したツイスト線30が数m〜数十mの間隔をおいて埋設されている。つまり、1本のツイスト線30は略四角形状となるように埋設され、ダム堤体の幅方向において対向する平行の線の間隔が数m〜数十mとなるようにされている。図示していないが、ダム堤体の幅方向の長さに応じて、このツイスト線30の図中、左右両側にも同程度の間隔をおいて同様な形状のツイスト線が埋設されることは言うまでも無い。
【0024】
なお、図6に示された切替器33は、前に述べた複数のツイスト線30の切替えを行うための切替器とは別であるが、前に述べた切替器の機能と図6に示された切替器の機能とを1つの切替器で実現しても良い。切替器33の機能については後述する。
【0025】
ツイスト線30の両端部はダム堤体の天端側に設置した切替器33に接続されている。更に、ダム堤体の天端側においてパルス発生回路31とオシロスコープ32が切替器33を介してツイスト線30に接続される。切替器33はコンピュータ34から出力される制御信号でツイスト線30の2つの端部のいずれか一方にパルス発生回路31及びオシロスコープ32を接続する動作を交互に行う。この場合、接続されない方のツイスト線30の終端部は開放状態、短絡状態のいずれでも良い。これは以下の理由による。つまり、終端部を開放とした場合には前述したように終端部からの反射波は入射波と同極性となり、漏水発生位置からの反射波との区別がし易い。一方、終端部を短絡した場合にはそこからの反射波は入射波と逆極性、つまり漏水発生位置からの反射波と同極性となるが、終端部までの距離はあらかじめ知られているので漏水発生位置からの反射波との区別が困難となることは無い。
【0026】
パルス発生回路31からツイスト線30に入射したパルス波はツイスト線30上の漏水発生位置またはパルス発生回路31に接続されていない方の端部で反射し、その反射波はオシロスコープ32で観測される。この観測データはコンピュータ34を介して付属の記憶装置に収録される。特に、コンピュータ34はあらかじめ定められた手順で切替器33を制御してツイスト線30の両端から交互にパルス波を入射させ、それぞれの反射波を記憶装置に収録する。例えば、はじめに図6に示されたツイスト線30の左側の端部からパルス波を入射させてその反射波を記憶装置に収録し、次に図6に示されたツイスト線30の右側の端部からパルス波を入射させてその反射波を記憶装置に収録する。
【0027】
その結果、漏水発生箇所がある場合には、はじめにツイスト線30において図6中、反時計回りの経路による漏水発生位置の測定、検出が行われ、続いて時計回りの経路による漏水発生位置の測定、検出が行われる。このようにツイスト線30の両端から漏水発生位置の測定、検出をそれぞれ少なくとも1回行うことで測定精度の向上を図ることができる。
【0028】
なお、多数の位置の漏水によりツイスト線30の複数箇所が浸潤して反射波の減衰が顕著となり、反射波の検出が困難となる場合がある。このような場合においては、漏水位置により近いツイスト線の端部側から測定することで反射波の減衰による検出能力低下を最小限に抑えることができる。漏水位置により近いツイスト線の端部は、パルス入射波と反射波との間隔が短い方の端部側として知ることができる。
【0029】
図7は、本発明の実施の形態において用いられる、改良されたツイスト線の一例を示す。この例では、ツイスト線30に、1m間隔で透水性被覆30−3に代えて約3cmの長さの遮水性被覆30−5を設けて水分がツイスト線30内を拡散する範囲を制限している。遮水性被覆30−5はアクリル系樹脂やピッチなどの樹脂をモールド等の方法で設けることで実現されるが、シリコーンなどの止水効果を有するその他の材料でも同様の効果が得られる。
【0030】
なお、図7では遮水性被覆30−5の太さが透水性被覆30−3の太さと同じとなっているが、遮水性被覆30−5と透水性被覆30−3の太さが異なっても同様の効果が得られる。また、遮水性被覆30−5の設置間隔や長さがこの例と異なっても同様の効果が得られる。
【0031】
図8は上述したような遮水性被覆を持たないツイスト線を用いて、計測器側から40mの地点に模擬クラックを想定して注水した時に計測された反射波を示す。図8において、6種類の反射波は、上から順に注水前、注水から2分後、4分後、8分後、28分後の波形をそれぞれ示す。模擬クラックからの注水により注水位置周辺に反射波が生じていることが確認された。しかし、透水性被覆に水分が浸潤することで、注水の検出区間が時間とともに広がってゆくために注水位置の特定が困難になる。
【0032】
一方、図9は本発明による遮水性被覆30−5を有するツイスト線30を用いて、計測器側から40mの地点に模擬クラックを想定して注水した時に計測された反射波を示す。図9において、10種類の反射波は、上から順に注水直前、注水から1分後、15分後、31分後、45分後、61分後、75分後、91分後、105分後、121分後の波形をそれぞれ示す。注水直後より注水地点(40〜41m)に反射波が生じるが、注水開始から約15分後より実験終了後に配管から水を排出するまでの2時間、注水地点の反射波は振幅、幅ともに一定であった。これにより本発明による遮水性被覆30−5の効果が確認できた。
【0033】
以上、本発明の実施の形態を多芯電線として2本の芯線を持つツイスト線を用いた場合について説明したが、本発明はツイスト線に代えてレッヘル線、つまり平行2線を用いても良いし、さらには3本以上の芯線を持つ多芯電線を用いても良い。レッヘル線について言えば、これ自体は周知であり、その周囲を図3で説明したものと同様の透水性被覆で被覆すると共に、所定の間隔で透水性被覆に代えてあらかじめ定めた長さの遮水性被覆を設けることにより水分がレッヘル線内を拡散する範囲を制限することができる。
【0034】
この例でも、遮水層20内部に侵入してきた水が透水性被覆に染み込み、空気と水の比誘電率の違いによる特性インピーダンスの局所的な変化から、図4で説明したのと同様の原理で漏水位置を測定、検出することができる。
【0035】
なお、オシロスコープ32に代えて同様の機能を持つ他の反射波測定手段が用いられても良い。
【0036】
更に、本発明の適用範囲は、上述したダム堤体に施工される遮水層に限らず、河川あるいは湖沼、更には海等に設けられる遮水構造物全般に適用可能である。
【0037】
【発明の効果】
以上の説明から明らかなように、本発明による漏水発生位置検出方式は、ダム堤体等の上流側に施工された遮水構造物内部に透水性被覆を有する多芯電線、特にツイスト線あるいはレッヘル線を設置し、漏水発生により侵入した水を透水性被覆に染み込ませることでツイスト線あるいはレッヘル線の特性インピーダンスの変化としてとらえ、その変化を電気パルスの反射波として検出する方式であり、少ない設置個数で漏水発生位置を早期かつ広域的に捉えることが可能となるため得られる効果は大である。
【0038】
特に、透水性被覆をある間隔をおいて遮水性被覆に代えて透水性被覆に浸潤する水分の拡散を抑制することで漏水発生位置の検出精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明による漏水発生位置検出方式の原理を説明するための図であり、ダム堤体及び遮水層構造の断面を示す図である。
【図2】本発明で使用されるツイスト線の周囲に生じる電界の状況を説明するための図である。
【図3】本発明で使用される透水性被覆を有するツイスト線の断面構造を示す図である。
【図4】本発明で使用されるツイスト線におけるパルス入射波とその反射波の発生状況を説明するための図である。
【図5】図1のダム堤体に施工された遮水層に亀裂が生じた場合におけるツイスト線への浸水状況を説明するための図である。
【図6】本発明による漏水発生位置検出方式の実施の形態を説明するための図である。
【図7】本発明の実施の形態において用いられる、改良されたツイスト線の一例を示した図である。
【図8】図7に示された遮水性被覆を持たないツイスト線を用いて注水試験を行った際に得られた反射波の例を示した図である。
【図9】図7に示された遮水性被覆を持つ、本発明によるツイスト線を用いて注水試験を行った際に得られた反射波の例を示した図である。
【符号の説明】
10 ダム堤体
20 遮水層
30 ツイスト線
30−1 金属線
30−2 絶縁体
30−3 透水性被覆
30−5 遮水性被覆
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a leakage occurrence position in a dam facing constructed by laying a surface of a dam body using a water shielding structure such as concrete or asphalt as a water shielding facing material. The present invention is particularly suitable for detecting a leakage occurrence position on a concrete impermeable wall formed on the surface of a rockfill dam.
[0002]
[Prior art]
Conventionally, the construction method of forming a water-impervious layer in the center of the dam body in the rock fill dam has been used, but in recent years, a method of constructing the water-impervious layer as a dam facing on the upstream surface of the dam body has been used. Tend to be used. The reason is that the construction cost can be reduced by the method of constructing the water shielding layer on the upstream surface of the levee body as compared with the method of constructing the water shielding layer at the center of the dam body.
[0003]
Concrete or asphalt is used as the material of the water barrier layer to be constructed on the surface of the levee body, but even if a slight crack occurs in the water barrier layer, water leaks from it, and in the worst case the dam body itself Is expected to be damaged. Therefore, when constructing the impermeable layer on the surface of the levee body, it is necessary to always monitor the soundness of the impermeable layer. In the unlikely event that water leakage is detected in the impermeable layer, it is necessary to lower the stored water level and repair the impermeable layer.
[0004]
As this monitoring technology, a method has been proposed in which a twisted wire with a water-permeable coating is embedded in a water shielding layer, an electric pulse is incident on this twisted wire, and the reflected wave is observed to detect the location of water leakage. (For example, Patent Document 1).
[0005]
Briefly, in this water leak occurrence position detection method, if there is an infiltrated part due to water leak at any part of the water-permeable coating of the twisted wire, a reflected wave is generated when an electric pulse is incident. Therefore, it is possible to detect the water leakage occurrence position by measuring the time relationship between the incident wave and the reflected wave.
[0006]
[Patent Document 1]
Japanese Patent Application No. 2002-244525 (4th page, 5th page, FIG. 4)
[0007]
[Problems to be solved by the invention]
However, the water leak occurrence position detection method proposed above has a problem that the water submerged from the water leak occurrence position diffuses over a wide area in the water-permeable coating with time, and the detection accuracy of the water leak occurrence position is lowered.
[0008]
Therefore, the problem of the present invention is that the leak occurrence position can improve the detection accuracy of the leak occurrence position by suppressing the diffusion of moisture infiltrating the water-permeable coating in the multi-core electric wire of the leak occurrence position detection method described above. It is to provide a detection method.
[0009]
[Means for Solving the Problems]
According to the present invention, at least one set of multi-core electric wires having a water-permeable coating embedded in a water-impervious structure, a pulse generation circuit that outputs electric pulses to the multi-core electric wires, and the multi-core electric wires A reflected wave measuring circuit that receives the reflected wave of the electric pulse from the pulse, and the reflected wave measuring circuit measures an incident wave incident on the multicore electric wire from the pulse generating circuit and a reflected wave generated inside the multicore electric wire And a water leakage occurrence position detection method for detecting a water leakage occurrence position inside the water shielding structure by measuring a time until the generation of a reflected wave with respect to an incident wave, wherein the multi-core electric wire is provided with the water permeable coating. A water leak occurrence position detecting system is provided, wherein the multicore electric wires are separated at each interval by a water shielding coating provided at intervals in the length direction of the multi-core electric wire.
[0010]
In the present water leakage occurrence position detection method, a twisted wire or a Lehel wire is used as the multicore electric wire.
[0011]
In the water leakage occurrence position detection method, the multi-core electric wire has a line extending between the top end and the bottom of the water shielding structure parallel to each other with a predetermined distance in the width direction of the water shielding structure. The switch is connected to the transmission path of the incident wave and the reflected wave that is embedded so as to draw a substantially quadrangular shape and connected to the multicore electric wire, and the switch has two end portions of the multicore electric wire. On the other hand, it is desirable to detect the position of occurrence of water leakage from the two ends of the multi-core electric wire by alternately performing switching connection for connecting either one to the pulse generation circuit and the reflected wave measurement circuit.
[0012]
[Action]
In the water leak occurrence position detection method described above, when a crack or the like occurs in the impermeable structure, water enters the water-permeable coating of the multicore electric wire, so that the characteristic impedance of the multicore electric wire changes at that position. Therefore, a reflected wave having a polarity different from that of the incident wave is generated. Thereby, it becomes possible to identify the water leak generation position along the multicore electric wire by observing the incident wave and the reflected wave and measuring the time interval between them.
[0013]
In particular, it is possible to improve the detection accuracy of the water leakage occurrence position by suppressing the diffusion of moisture infiltrating into the water-permeable coating as a water-permeable coating at intervals with the water-permeable coating in the multicore electric wire.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
With reference to FIGS. 1-5, the principle of the water leak generation | occurrence | production position detection system based on the said proposal is demonstrated. FIG. 1 is a diagram showing a cross section of a dam dam body and a concrete impermeable layer in a concrete surface impermeable rockfill dam. A water shielding layer 20 is constructed on the upstream surface of the dam body 10. At that time, a twisted wire 30 made of a metal wire is embedded in the water shielding layer 20 in a direction parallel to the surface, that is, from the top to the bottom. A plurality of twist lines 30 are installed in parallel with each other at intervals in the width direction of the dam body 10. The installation interval is about several meters to several tens of meters. A pulse generation circuit 31 and an oscilloscope 32 as reflected wave measuring means are connected to the plurality of twist lines 30 on the top end side of the dam dam body 10, respectively. One set of pulse generation circuit 31 and oscilloscope 32 may be connected. The oscilloscope 32 is preferably connected to a storage device for storing the observed waveform.
[0015]
When detecting the water leakage occurrence position, pulses having a width of about 10 nsec are continuously output from the pulse generation circuit 31 to the twist line 30 at intervals of about 10 μsec, and the reflected waveform from the twist line 30 is observed by the oscilloscope 32.
[0016]
FIG. 2 is a diagram illustrating a state of an electric field generated around the twisted wire 30, and electric lines of force are concentrated between two metal wires (core wires) in the twisted wire 30. Therefore, if the dielectric constant fluctuates due to moisture or the like in this region, the characteristic impedance changes, and when a pulse is incident from one end of the twisted wire 30, a reflected wave is generated therefrom, so that water intrusion is detected. It becomes possible.
[0017]
FIG. 3 is a cross-sectional view showing the structure of the twisted wire 30 used in the present invention. The two metal wires 30-1 of the twisted wire 30 are insulated with an insulator 30-2 and are continuous at a predetermined interval, and the characteristic impedance is uniform. Furthermore, in order to make the twist wire 30 into a cable, an outer periphery coating is applied, and a water-permeable coating 30-3 made of a water-permeable tape is wound around the outer periphery coating.
[0018]
A material such as polyester tape or cotton tape is suitable for the material of the water-permeable coating 30-3. On the other hand, as the material of the insulator 30-2, paper tape or the like can be used in addition to polyethylene.
[0019]
FIG. 3 shows a cross-sectional structure of the twist line 30. The twist line 30 used in the embodiment of the present invention described below is improved in the length direction. This will be described later.
[0020]
FIG. 4 is a diagram showing an example in which a reflected wave generation state due to pulse incidence is observed using an oscilloscope 32 in the water leak occurrence position detection method having the configuration of FIG. Further, FIG. 5 shows an enlarged view of a situation where a part of the water shielding layer 20 is cracked and the area where the twisted wire 30 is buried is submerged. When a part of the line of the characteristic impedance Z0 in the twist line 30 is changed to the characteristic impedance Z1 due to water immersion, the reflectance R at that point is expressed by the following equation.
[0021]
R = (Z1-Z0) / (Z1 + Z0)
In the above equation, when water penetrates into the water-permeable coating 30-3 around the twisted wire 30, Z1 <Z0, so the reflectance R is R <0, and the characteristic impedance changes at the point of change. The reflected wave has the opposite polarity to the incident wave. The reflectivity R is R> 0 where the water permeability of the water-permeable coating 30-3 changes from the region soaked with water, so that the reflected wave has the same polarity as the incident wave. In addition, a reflected wave having the same polarity as the incident wave is also generated at the end (open end) of the twisted wire 30. Thereby, the reflected wave at the characteristic impedance change point and the reflected wave at the terminal can be easily identified.
[0022]
Assuming that the propagation speed of the electric pulse propagating through the twist line 30 is approximately 200,000 km / s, for example, if the time from the rising of the incident wave to the rising of the reflected wave is 1 μs, the oscilloscope 32 located at the same location as the pulse generating circuit 31 The distance to the leakage occurrence position is 100 m (20 × 10 7 × 10 −6 / 2 = 100). Accordingly, the position of occurrence of water leakage is determined by considering (subtracting) the distance from the oscilloscope 32 to the top of the dam dam body, that is, the end of the twist line 30 from the distance calculated by measuring the time between the incident wave and the reflected wave. Can be specified. As described above, when the oscilloscope 32 is shared by one and the distance from the oscilloscope 32 to the end of each twist line is different for each of the plurality of twist lines, the twist line is considered. A power value should be prepared in advance.
[0023]
FIG. 6 is a diagram for explaining an embodiment of a water leak occurrence position detection method according to the present invention. FIG. 6 is a view of the water shielding layer 20 as seen from the upstream side of the dam, and shows one twisted wire. In FIG. 6, twist wires 30 having a water-permeable coating as described above are embedded in the interior of the water shielding layer 20 made of concrete at intervals of several m to several tens m in a direction parallel to the surface. . That is, one twist line 30 is embedded so as to have a substantially rectangular shape, and the interval between parallel lines facing each other in the width direction of the dam dam body is set to several m to several tens m. Although not shown, according to the length of the dam dam body in the width direction, in the drawing of the twist line 30, twist lines having the same shape are embedded at the same interval on both the left and right sides. Needless to say.
[0024]
The switch 33 shown in FIG. 6 is different from the switch for switching the plurality of twist lines 30 described above, but the function of the switch described above and the switch 33 shown in FIG. The function of the selected switch may be realized by one switch. The function of the switch 33 will be described later.
[0025]
Both ends of the twisted wire 30 are connected to a switch 33 installed on the top end side of the dam dam body. Further, a pulse generation circuit 31 and an oscilloscope 32 are connected to the twist line 30 via a switch 33 on the top end side of the dam dam body. The switch 33 alternately performs an operation of connecting the pulse generation circuit 31 and the oscilloscope 32 to one of the two ends of the twist line 30 by a control signal output from the computer 34. In this case, the terminal portion of the twisted wire 30 that is not connected may be in an open state or a short-circuited state. This is due to the following reason. That is, when the terminal portion is open, the reflected wave from the terminal portion has the same polarity as the incident wave as described above, and it is easy to distinguish the reflected wave from the leakage occurrence position. On the other hand, when the terminal is short-circuited, the reflected wave from there is opposite in polarity to the incident wave, that is, the same polarity as the reflected wave from the position where the water leak occurred, but the distance to the terminal is known in advance so It is not difficult to distinguish the reflected wave from the generation position.
[0026]
The pulse wave incident on the twist line 30 from the pulse generation circuit 31 is reflected at the water leakage generation position on the twist line 30 or the end not connected to the pulse generation circuit 31, and the reflected wave is observed by the oscilloscope 32. . This observation data is recorded in an attached storage device via the computer 34. In particular, the computer 34 controls the switch 33 according to a predetermined procedure so that pulse waves are alternately incident from both ends of the twisted wire 30 and records each reflected wave in the storage device. For example, a pulse wave is first incident from the left end portion of the twist line 30 shown in FIG. 6 and the reflected wave is recorded in the storage device, and then the right end portion of the twist line 30 shown in FIG. The reflected wave is recorded in the storage device.
[0027]
As a result, if there is a water leak occurrence location, first, the measurement and detection of the water leak occurrence position are performed by the counterclockwise path in FIG. 6 on the twist line 30, and then the water leak occurrence position is measured by the clockwise path. Detection is performed. As described above, the measurement accuracy can be improved by measuring and detecting the leakage occurrence position from both ends of the twisted wire 30 at least once.
[0028]
In addition, due to water leakage at a large number of positions, a plurality of portions of the twisted wire 30 may infiltrate and the attenuation of the reflected wave becomes remarkable, and it may be difficult to detect the reflected wave. In such a case, a decrease in detection capability due to attenuation of the reflected wave can be minimized by measuring from the end side of the twist line closer to the water leakage position. The end portion of the twist line that is closer to the water leakage position can be known as the end portion side having a shorter interval between the pulse incident wave and the reflected wave.
[0029]
FIG. 7 shows an example of an improved twist line used in the embodiment of the present invention. In this example, the twisted wire 30 is provided with a water-impervious coating 30-5 having a length of about 3 cm instead of the water-permeable coating 30-3 at intervals of 1 m to limit the range in which moisture diffuses in the twisted wire 30. Yes. The water-impervious coating 30-5 is realized by providing a resin such as an acrylic resin or pitch by a method such as molding, but the same effect can be obtained with other materials having a water-stopping effect such as silicone.
[0030]
In FIG. 7, the thickness of the water-permeable coating 30-5 is the same as the thickness of the water-permeable coating 30-3, but the thickness of the water-permeable coating 30-5 and the water-permeable coating 30-3 are different. The same effect can be obtained. Moreover, even if the installation interval and length of the water-impervious coating 30-5 are different from this example, the same effect can be obtained.
[0031]
FIG. 8 shows a reflected wave measured when water is poured assuming a simulated crack at a point 40 m from the measuring instrument side using a twisted wire having no water-shielding coating as described above. In FIG. 8, six types of reflected waves indicate waveforms before water injection, after 2 minutes, after 4 minutes, after 8 minutes, and after 28 minutes, respectively, from the top. It was confirmed that the reflected wave was generated around the water injection position by water injection from the simulated crack. However, since water infiltrates into the water-permeable coating, the water injection detection section expands with time, so that it is difficult to specify the water injection position.
[0032]
On the other hand, FIG. 9 shows a reflected wave measured when water is poured by assuming a simulated crack at a point 40 m from the measuring instrument side using the twisted wire 30 having the water-impervious coating 30-5 according to the present invention. In FIG. 9, 10 kinds of reflected waves are in order from the top immediately before water injection, 1 minute, 15 minutes, 31 minutes, 45 minutes, 61 minutes, 75 minutes, 91 minutes, and 105 minutes after water injection. The waveforms after 12 minutes are shown. Although a reflected wave is generated at the water injection point (40-41m) immediately after water injection, the amplitude and width of the reflected wave at the water injection point are constant for 2 hours from the start of water injection to the time when water is discharged from the pipe after the end of the experiment. Met. Thereby, the effect of the water-impervious coating 30-5 according to the present invention was confirmed.
[0033]
As described above, the embodiment of the present invention has been described with respect to the case where a twisted wire having two core wires is used as a multi-core electric wire. However, the present invention may use a Reher wire, that is, a parallel two wire instead of the twisted wire. In addition, a multi-core electric wire having three or more core wires may be used. Speaking of the Lecher line, it is well known, and its periphery is covered with a water-permeable coating similar to that described with reference to FIG. 3, and a predetermined length of shielding is provided instead of the water-permeable coating at predetermined intervals. By providing the aqueous coating, it is possible to limit the range in which moisture diffuses in the Reher line.
[0034]
Also in this example, the water that has penetrated into the water-impervious layer 20 soaks into the water-permeable coating, and from the local change in characteristic impedance due to the difference in relative permittivity between air and water, the same principle as described in FIG. It is possible to measure and detect the water leak position.
[0035]
Instead of the oscilloscope 32, other reflected wave measuring means having the same function may be used.
[0036]
Furthermore, the scope of application of the present invention is not limited to the above-described water-impervious layer constructed on the dam body, but can be applied to general water-impervious structures provided in rivers, lakes, and the sea.
[0037]
【The invention's effect】
As is clear from the above description, the water leakage occurrence position detection method according to the present invention is a multi-core electric wire having a water-permeable coating inside a water-impervious structure constructed upstream such as a dam dam body, particularly a twisted wire or a reher This is a method to detect the change as a reflected wave of an electric pulse by detecting the change as the characteristic impedance of the twisted wire or the Rehel wire by installing the wire and infiltrating the water permeable coating with the water that has penetrated due to the occurrence of water leakage. Since the number of water leaks can be quickly and widely grasped by the number, the effect obtained is great.
[0038]
In particular, the detection accuracy of the water leakage occurrence position can be improved by suppressing the diffusion of moisture infiltrating into the water-permeable coating instead of the water-impermeable coating at a certain interval.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of a water leak occurrence position detection method according to the present invention, and is a diagram showing a cross section of a dam dam body and a water shielding layer structure.
FIG. 2 is a diagram for explaining a state of an electric field generated around a twist line used in the present invention.
FIG. 3 is a view showing a cross-sectional structure of a twisted wire having a water-permeable coating used in the present invention.
FIG. 4 is a diagram for explaining a generation state of a pulse incident wave and its reflected wave in a twist line used in the present invention.
FIG. 5 is a diagram for explaining a state of water intrusion to the twisted wire when a crack occurs in the water shielding layer constructed on the dam dam body in FIG. 1;
FIG. 6 is a diagram for explaining an embodiment of a water leak occurrence position detection method according to the present invention.
FIG. 7 is a diagram showing an example of an improved twist line used in the embodiment of the present invention.
8 is a diagram showing an example of a reflected wave obtained when a water injection test is performed using a twist line not having a water-impervious coating shown in FIG.
9 is a diagram showing an example of a reflected wave obtained when a water injection test is performed using the twisted wire according to the present invention having the water-impervious coating shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Dam dam body 20 Water shielding layer 30 Twist wire 30-1 Metal wire 30-2 Insulator 30-3 Water-permeable coating 30-5 Water-permeable coating

Claims (3)

遮水構造物内に埋設された透水性被覆を有する少なくとも1組の多芯電線と、該多芯電線に対して電気パルスを出力するパルス発生回路と、前記多芯電線からの前記電気パルスの反射波を受ける反射波測定回路とを含み、前記パルス発生回路から前記多芯電線へ入射した入射波と当該多芯電線内部で生じる反射波を前記反射波測定回路により計測し、入射波に対する反射波の発生までの時間を測定することから前記遮水構造物内部の漏水発生位置を検出する漏水発生位置検出方式であって、
前記多芯電線は、前記透水性被覆が前記多芯電線の長さ方向に間隔をおいて設けられた遮水性被覆により前記間隔毎に隔離されていることを特徴とする漏水発生位置検出方式。
At least one set of multi-core electric wires having a water-permeable coating embedded in a water-impervious structure, a pulse generation circuit for outputting electric pulses to the multi-core electric wires, and the electric pulses from the multi-core electric wires. A reflected wave measuring circuit that receives the reflected wave, the incident wave incident on the multi-core electric wire from the pulse generation circuit and the reflected wave generated inside the multi-core electric wire are measured by the reflected wave measuring circuit, and the reflected to the incident wave is measured A water leakage occurrence position detection method for detecting a water leakage occurrence position inside the water shielding structure by measuring the time until the occurrence of waves,
The water leakage occurrence position detection method according to claim 1, wherein the multi-core electric wires are separated at each interval by a water-impervious coating provided at intervals in the length direction of the multi-core electric wires.
請求項1に記載の漏水発生位置検出方式において、
前記多芯電線はツイスト線またはレッヘル線であることを特徴とする漏水発生位置検出方式。
In the water leak occurrence position detection system according to claim 1,
The water leak occurrence position detecting method, wherein the multi-core electric wire is a twisted wire or a Lecher wire.
請求項1または2に記載の漏水発生位置検出方式において、前記多芯電線は、前記遮水構造物の天端部と底部との間にわたる線が前記遮水構造物の幅方向に関して所定距離隔てて平行に存在するような略四角形状を描くように埋設され、
前記多芯電線に接続される前記入射波及び反射波の伝送経路に切替器を接続し、
該切替器は、前記多芯電線の2つの端部に対していずれか一方を前記パルス発生回路及び反射波測定回路に接続する切替え接続を交互に行うことにより、前記多芯電線の前記2つの端部からの漏水発生位置検出を行うことを特徴とする漏水発生位置検出方式。
3. The water leakage occurrence position detection method according to claim 1, wherein the multicore electric wire has a line extending between a top end portion and a bottom portion of the water shielding structure separated by a predetermined distance with respect to a width direction of the water shielding structure. Embedded in a substantially square shape that exists in parallel,
A switch is connected to the transmission path of the incident wave and the reflected wave connected to the multicore electric wire,
The switching unit alternately performs switching connection for connecting one of the two ends of the multi-core electric wire to the pulse generation circuit and the reflected wave measurement circuit, thereby A leak detection position detection method characterized by detecting the leak occurrence position from the end.
JP2003031243A 2003-02-07 2003-02-07 Water leak occurrence position detection method Expired - Fee Related JP3699708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031243A JP3699708B2 (en) 2003-02-07 2003-02-07 Water leak occurrence position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031243A JP3699708B2 (en) 2003-02-07 2003-02-07 Water leak occurrence position detection method

Publications (2)

Publication Number Publication Date
JP2004239839A JP2004239839A (en) 2004-08-26
JP3699708B2 true JP3699708B2 (en) 2005-09-28

Family

ID=32957899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031243A Expired - Fee Related JP3699708B2 (en) 2003-02-07 2003-02-07 Water leak occurrence position detection method

Country Status (1)

Country Link
JP (1) JP3699708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168293B2 (en) 2017-02-24 2019-01-01 InventionXT LLC Fluids leakage sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208834B2 (en) * 2009-03-31 2013-06-12 一般財団法人ファインセラミックスセンター Displacement detection device and piping displacement detection method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168293B2 (en) 2017-02-24 2019-01-01 InventionXT LLC Fluids leakage sensor

Also Published As

Publication number Publication date
JP2004239839A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US20100013497A1 (en) Remote sensor system for monitoring the condition of earthen structure and method of its use
JP6231582B2 (en) Method and system for monitoring civil engineering structures
US20110037483A1 (en) Mess-sensor
US6121894A (en) Low cost time domain reflectometry system for bridge scour detection and monitoring
US6100700A (en) Bridge scour detection and monitoring apparatus using time domain reflectometry (TDR)
Wang et al. A bundled time domain reflectometry‐based sensing cable for monitoring of bridge scour
JP2009008521A (en) Inspection method and device of casted concrete
KR101312072B1 (en) Measurement cable and measurement system using tdr having the same
JP3699708B2 (en) Water leak occurrence position detection method
US6526189B1 (en) Scour sensor assembly
TWI452267B (en) Tdr apparatus and method for liquid level and scour measurements
JP2004045218A (en) Detector and method for detecting leakage of water
KR101437959B1 (en) Extensometer Using Distributed Time Domain Reflectometery Sensor
JP2002350276A (en) Medium fluctuation detection method
Hayes et al. Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers
Tao et al. Real-time TDR field bridge scour monitoring system
CN209922080U (en) Oil leakage monitoring device at bottom of storage tank
KR101897905B1 (en) Pile integrity testing apparatus for using electromagnetic waves
JP4236771B2 (en) Light monitoring device
JP2004085285A (en) Detection system for leaking water generating position
CN112832301B (en) Electromagnetic cast-in-place pile and precast pile detection method based on cylindrical coordinate system
CN115655343A (en) Dam safety monitoring system and monitoring method based on distributed optical fiber sensing technology
JP4429419B2 (en) Optical fiber sensor
KR20070050615A (en) The pipe possible in detection of fluid leakage and crack and the detection system thereof
US20020190726A1 (en) System and methed for remotely monitoring an interface between dissimilar materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R150 Certificate of patent or registration of utility model

Ref document number: 3699708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees