JP3698495B2 - Solar heat collector - Google Patents

Solar heat collector Download PDF

Info

Publication number
JP3698495B2
JP3698495B2 JP23511896A JP23511896A JP3698495B2 JP 3698495 B2 JP3698495 B2 JP 3698495B2 JP 23511896 A JP23511896 A JP 23511896A JP 23511896 A JP23511896 A JP 23511896A JP 3698495 B2 JP3698495 B2 JP 3698495B2
Authority
JP
Japan
Prior art keywords
vacuum
heat collecting
insulating layer
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23511896A
Other languages
Japanese (ja)
Other versions
JPH1082564A (en
Inventor
亮 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secom Co Ltd
Original Assignee
Secom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secom Co Ltd filed Critical Secom Co Ltd
Priority to JP23511896A priority Critical patent/JP3698495B2/en
Publication of JPH1082564A publication Critical patent/JPH1082564A/en
Application granted granted Critical
Publication of JP3698495B2 publication Critical patent/JP3698495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Sewage (AREA)
  • Thermal Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は太陽熱収集装置に関し、特に真空断熱層を有する太陽熱収集装置に関する。
【0002】
【従来の技術】
熱媒を収容した吸熱管の周囲を、太陽光を透過する外管で覆い、吸熱管(内管)と外管との間の空隙部内の空気を排除して真空断熱層を形成した太陽熱収集装置が一般に知られている。このような真空断熱層を有する太陽熱収集装置では、太陽熱を受けて高温になった熱媒から、吸熱管外壁を介して伝導や対流により熱が外気に放散することが防止されるため、効率的に太陽熱を収集することが可能となる。
【0003】
この種の太陽熱収集装置の例としては、例えば特公昭63−55618号公報に記載されたものがある。同公報の装置は、太陽熱を収集する集熱管と貯湯槽内に配置された熱交換器との間に熱媒を循環させる熱媒循環回路を備え、集熱管で高温になった熱媒により熱交換器を介して間接的に貯湯槽内の水を加熱する構成とされている。また、上記集熱管は、熱媒が循環する吸熱管(内管)の周囲をガラス製の外管で覆い、内管と外管との間の空隙部内の空気を排除して真空断熱層を形成している。
【0004】
従来、上記のような真空断熱層を有する太陽熱収集装置では、予め工場内で集熱管内の空隙部を真空にして密封したものを現地に搬入し、組み立て施工を行っていた。しかし、このような密封型の集熱管は、コストが高く、しかも現地での工事が複雑になる問題がある。また、密封型の集熱管は接続部から洩れる空気や内部に吸着されていたガスの放出等により、時間が経過すると内部の真空度が低下するため、断熱効果が低下する問題がある。
【0005】
上記公報の装置では、上記問題を解決するために熱媒循環回路にエジェクタを配置して常時循環する熱媒により真空断熱層内の空気やガスを排除するようにしている。これにより、現地で真空断熱層を形成することが可能となり、しかも常時真空断熱層の排気を行うことが可能となるため、真空断熱層の真空度を常に高く維持することが可能となる。
【0006】
【発明が解決しようとする課題】
ところが、上記特公昭63−55618号公報の装置は熱媒を作動流体とするエジェクタを用いて排気を行うため、必要な真空度を達成するためには常時比較的多量の熱媒を循環させる必要がある。上記公報の装置のように、熱交換器を介して熱媒により貯湯槽内の湯を間接的に加熱する間接加熱型の装置では、常時多量の熱媒を循環させることが可能であるため、エジェクタを用いて真空断熱層の真空度を維持することができる。しかし、集熱管で直接加熱した湯を各所に供給する直接加熱型の装置では、給湯量が一定せず、しかも給湯量自体がそれ程多くないため、上記公報の構成を採用した場合には真空断熱層の真空度を十分に高く維持できない問題が生じる。
【0007】
一方、エジェクタの代わりに、例えば電動式の真空ポンプを用いて真空断熱層の排気を行うことも可能であるが、この場合には常時真空ポンプを運転すると装置運転コストの上昇や真空ポンプの寿命低下等の問題が生じる。
また、上記公報の装置のように常時真空断熱層内の排気を行う装置では、複数の集熱管を配管を介して1つのエジェクタに接続し、同時に排気を行うような場合には、例えば1つの集熱管が破損して大量の空気が流入したような場合には、配管を通じて空気が他の集熱管にも流入してしまい、全部の集熱管の真空断熱層の真空度が低下してしまう問題がある。
【0008】
本発明は、上記問題に鑑み、エジェクタや真空ポンプを常時運転することなく常に真空断熱層の真空度を高く維持することが可能な太陽熱収集装置を提供することを目的としている。また、本発明は、更に、複数の集熱管の真空断熱層を同時に排気するような場合に、1部の集熱管における真空の破壊が他の集熱管の真空度の低下を生じることのない太陽熱収集装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
請求項1に記載の発明によれば、それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、前記各集熱管の真空断熱層に接続された配管と、前記各集熱管の真空断熱層に前記配管を介して接続された真空タンクと、前記各集熱管の真空断熱層に接続された前記配管のそれぞれに設けられ、前記配管を流通する空気流量が所定値以上になったとき当該配管の空気の流通を遮断する防止弁と、を備えた太陽熱収集装置が提供される。
【0011】
請求項2に記載の発明によれば、前記真空タンクは、タンク内の空気を排除する真空ポンプと、前記真空タンク内の圧力が予め定めた上限値以上に上昇したときに前記真空ポンプを作動させる真空度維持手段と、を備えた請求項1に記載の太陽熱収集装置が提供される。
請求項3に記載の発明によれば、それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、前記各集熱管の真空断熱層にそれぞれ接続された枝管と、前記各集熱管の真空断熱層に前記各枝管を介して接続された共通の配管と、前記各集熱管の真空断熱層に前記各枝管と前記共通の配管とを介して接続された真空タンクと、前記各集熱管の真空断熱層に接続された前記枝管のそれぞれに設けられ、前記枝管を流通する空気流量が所定値以上になったとき当該枝管に接続された前記真空断熱層と前記共通の配管との接続を遮断する防止弁と、を備えた太陽熱収集装置が提供される。
請求項4に記載の発明によれば、それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、前記各集熱管の真空断熱層にそれぞれ接続された枝管と、前記各集熱管の真空断熱層に前記各枝管を介して接続された共通の配管と、前記各集熱管の真空断熱層に前記各枝管と前記共通の配管とを介して接続された真空タンクと、前記各集熱管の真空断熱層に接続された前記枝管のそれぞれに設けられ、前記枝管を流通する空気流量が所定値以上になったとき当該枝管の空気の流通を遮断する防止弁と、を備えた太陽熱収集装置が提供される。
【0015】
請求項1の発明では、集熱管が複数配置され、各集熱管の真空断熱層が配管を経由して真空タンクに接続される。また、本発明では、各集熱管の真空断熱層と真空タンクとの間には防止弁が設けられており、真空断熱層から真空タンクに流入する空気流量が所定値以上になった場合に真空断熱層と真空タンクとを遮断するようになっている。これにより、例えば集熱管の破損等により1つの集熱管の真空断熱層に大量の空気が流入したような場合でも、流入した空気が配管を経由して他の集熱管の真空断熱層や真空タンクに流入することが防止される。このため、本発明では、1つの集熱管の真空の破壊により、全体の系の真空度が低下することが防止される。
【0016】
請求項2の発明では、請求項1の真空タンクは、タンク内の真空度が低下したときに自動的に作動してタンク内の真空度を回復する真空ポンプを備えている。これにより、常に系内の真空度が高く維持されるとともに、運転コストの上昇や真空ポンプの寿命低下が防止される。
請求項3及び請求項4の発明では、請求項1の発明と同様集熱管が複数配置され、各集熱管の真空断熱層は共通の配管を経由して真空タンクに接続される。また、本発明では、各集熱管の真空断熱層と共通配管との間には防止弁が設けられており、真空断熱層から共通配管に流入する空気流量が所定値以上になった場合に真空断熱層と共通配管とを遮断するようになっている。これにより、請求項1の発明と同様に、1つの集熱管の真空の破壊により、全体の系の真空度が低下することが防止される。
【0017】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
図1は、本発明の太陽熱収集装置の一実施形態の概略構成を示す図である。
図1において、参照符号1は集熱管を示す。集熱管1は、太陽光を透過する例えばガラス製の外管1aと吸熱管(内管)1bとを有する。また、内管1bには給水管3aと給湯管3bが接続されており、給水管3aから供給された水道水等の熱媒が内管1bを通過する際に太陽熱により加熱され、給湯管3bから流出する。集熱管1の、外管1aと内管1bとの間の環状空隙からなる真空断熱層1cには真空配管5を介して真空タンク7に接続されている。
【0018】
また、真空タンク7には、真空ポンプ9と圧力スイッチ11とが接続されている。本実施形態では、真空ポンプ9は後述するように比較的排気容量の小さいものが使用でき、10-5Torr程度の到達真空度のものが使用される。また、圧力スイッチ11は、真空ポンプ9の電源に接続され、真空タンク7内の圧力に応じて真空ポンプ9の発停を行う。本実施形態では、圧力スイッチ11は例えば真空タンク7の真空度が低下して(圧力が上昇して)10-3Torr程度になると真空ポンプ9を作動させ、真空度が10-5Torr程度まで回復すると真空ポンプ9を停止させる。
【0019】
本実施形態では、集熱管1の内部は工場出荷時には真空にせず大気圧のままで出荷する。そして、現地では、集熱管1と真空タンク7とを含む系全体の圧力は大気圧のままで組み立て工事を行う。このため、現地での装置の組み立てが容易に行われ、組み立て工数が低減される。組み立てが完了すると、系全体の気密確認後、真空ポンプ9を作動させ、集熱管1、配管5、真空タンク7を含めた系全体の排気を行う。この状態では、排気に要する時間の制限はないため、真空ポンプ9は大きな排気容量のものである必要はなく、比較的長い時間をかけて系内の排気を行う。
【0020】
系内の排気が完了し、系内真空度が10-5Torr程度になると真空ポンプ9は圧力スイッチ11に接続され、工事が完了する。一般に真空断熱層1cは圧力が10-3Torr以下の場合に大きな断熱効果を発揮する。しかし、集熱管1の各接続部から真空断熱層1c内に侵入する空気や、外管1aや内管1bの壁面に吸着されていた気体分子が圧力低下とともに真空断熱層1c内に放出されるようになるため、系内圧力は徐々に上昇するようになる。本実施形態では、比較的大容量の真空タンク7を設けているため、集熱管1を密封構造とした場合に較べてはるかに系内の圧力上昇速度は遅く、長期間の運転後も十分な真空度を維持することができる。
【0021】
また、長期間の運転後系内圧力が徐々に上昇して、例えば10-3Torr程度まで真空度が低下すると、圧力スイッチ11により真空ポンプ9の運転が開始され、10-5Torr程度の真空度が回復するまで真空ポンプ9の運転が継続される。前述したように、本実施形態では真空タンク7を設けたため系内の圧力上昇は極めて緩慢であり、このように真空ポンプ9が作動するのは、数週間から数カ月に1度程度、また作動時の運転時間も数時間程度である。このため、真空ポンプ9の作動頻度が極めて少なくなり、運転コストの上昇やポンプ寿命の低下が防止される。
【0022】
なお、本実施形態では、真空タンク7に常時真空ポンプ9を接続し、圧力スイッチ11により真空ポンプを自動発停させているが、上述のように真空ポンプ9の作動頻度は極めて少ないため必ずしも常時真空ポンプ9を真空タンク7に接続する必要はない。例えば、真空ポンプ9用の接続口を真空タンク7に設け、圧力スイッチ11の代わりにタンク7に真空計を設置し定期的にタンク7内の真空度を人間がチェックするようにしてもよい。この場合、真空度が低下した場合には可搬式の真空ポンプをタンクに接続して系内の排気を行って真空度を回復するようにすれば良い。
【0023】
次に、図2を用いて本発明の別の実施形態について説明する。図2は、本実施形態の装置概略構成を示す図である。図2において、図1と同じ参照符号は図1のものと同一の要素を示している。本実施形態では、図2に示すように複数の集熱管1(図2では4つ)が設けられており、それぞれの集熱管1の真空断熱層1cは、枝管5aを介して共通の真空配管5に接続されている。また、本実施形態では、枝管5aと各集熱管1の真空断熱層1cとの接続部には後述する防止弁20が配置されている点が図1の実施形態と相違している。
【0024】
本実施形態では、1つの真空タンク7を用いて複数の集熱管1の真空断熱層の真空度を維持する。この場合、装置の組み立て方法、排気方法及び真空タンク7、真空ポンプ9、圧力スイッチ11の作用は図1の実施形態で説明したものと同様になる。しかし、本実施形態のように、複数の集熱管を1つの真空タンクに接続する構成を採用した場合には問題が生じる可能性がある。すなわち、このような構成では、1つの集熱管が破損して真空断熱層部分に空気が侵入したような場合には侵入した空気が真空配管5やタンク7を介して他の集熱管の真空断熱層に流入することになり、1つの集熱管で真空が破壊されると全部の集熱管の真空度が低下してしまう問題が生じるのである。しかも、通常の排気による空気の流れ方向(集熱管から真空タンク)と集熱管の破損等により侵入する空気の流れ方向は同一であるため、通常の逆止弁等では系内への空気の侵入を防止することはできない。
【0025】
そこで、本実施形態では各集熱管1と枝管5aとの接続部に防止弁20を設けることにより、上記問題を解決している。
次に、本実施形態の防止弁20について説明する。本実施形態の防止弁は、集熱管1の外管1aの破損等により、集熱管1側から枝管5aに大量の空気が流入した場合にのみ、枝管5aを閉塞し、系内に大量の空気が流入することを防止するものである。一方、通常の真空断熱層1cの排気時には集熱管1から枝管5aに流入する空気を抵抗なく流通させる必要がある。そこで、本実施形態の防止弁20は、弁20を通過する気体流量が所定流量を越えた場合にのみ枝管5aを閉塞するようにしている。以下、防止弁20の構成例について説明する。
【0026】
図3は、防止弁20の一実施形態を示す概略構成図である。図3において、防止弁20は通常の電磁遮断弁として構成されている。また、図において21は、各集熱管の真空断熱層1cに設けられた圧力センサ、23は制御回路、25は警告灯を示す。本実施形態では、制御回路23は圧力センサ21からの圧力信号を入力し、例えば微分回路等により各集熱管1の真空断熱層1c内の圧力上昇速度を常に監視している。例えば、集熱管1の破損等が生じて多量の空気が真空断熱層1cに流入すると断熱層内の圧力は急激に上昇する。本実施形態では、制御回路23は真空断熱層1c内の圧力上昇速度が所定値以上になった場合には、その集熱管1に接続された防止弁(電磁弁)20を閉弁するとともに、警告灯25を点灯する。これにより、多量の空気が枝管5aに流入することが防止され、他の集熱管1の真空度の低下が防止される。なお、通常の排気においては、集熱管1の真空断熱層1c内圧力は低下(真空度が上昇)するため防止弁20が作動することはない。また、装置運転中には前述したように、接続部からの空気の侵入等により真空断熱層1c内圧力は徐々に上昇するが、この場合の圧力上昇速度は極めて小さいため防止弁20が作動することはない。更に、図3は、各集熱管1毎に制御回路23を設けた例を示しているが、制御回路23としてマイクロコンピュータ等を用いたような場合には、単一の制御回路で順次各集熱管1の圧力センサ21の出力を監視することが可能となるのはいうまでもない。
【0027】
図4は、防止弁20の構成の別の実施形態を説明する断面図である。本実施形態の防止弁20は、枝管5aにフランジ21、22を介して接続される円筒状ケーシング25と、該ケーシング25内に配置された弾性を有する円板状の弁体27とを備えている。図4に示すように、ケーシング25内周面には、等間隔に配置された複数の第1の突起25aと、該第1の突起25aから軸線方向に弁体27の厚さより大きい間隔を隔てて、同様にケーシング25内周面に等間隔に配置された第2の突起25bが設けられている。また、通常の状態では、弁体27は図4に示したように第1と第2の突起によりケーシング25内に保持されている。
【0028】
図5は、弁体27の形状を示す、図4のA−A線に沿った断面図である。本実施形態では、弁体27は通常の排気時に空気が通過する孔部27aを有している。孔部27は弁体27の中心から所定の距離をおいた円周状に配置されている。また、前述の第1と第2の突起の張出長さは、図4の状態でこの孔部27aを閉塞しない長さに設定されている。
【0029】
また、図4において、弁体27に対して集熱管1側に配置された第1の突起25aは真空タンク7側の第2の突起25bより張出長さが大きく設定されている。
前述のように、通常の状態では弁体27は突起25aと25bとに挟まれてケーシング内に保持される。この状態では弁体27の孔部27aは突起25a、25bによっては閉塞されないため、集熱管の真空断熱層1cに侵入した空気は、抵抗なく弁体27の孔部27aを通過して枝管5a、真空配管5を通って真空タンク7内に流入する。
【0030】
一方、図6は集熱管1が破損して真空断熱層1cに大量の空気が流入した場合の弁体27の位置を示している。集熱管1が破損して大量の空気が流入すると、弁体27の両側には大きな圧力差が生じる。弁体27は弾性を有する材料で形成されているため、この圧力差により撓みを生じ、この撓みのために弁体27は真空タンク7側の第2の突起25bを乗り越えて移動し、図6に示すようにケーシング25の真空タンク7側の端面25cに当接する。
【0031】
ケーシング25の端面cにおける枝管5aとの接続開口部25dの径は、孔部27aと弁体27の中心との距離より小さく設定されているため、この状態では接続開口部25dは弁体27の孔部27aより内側の部分27eによって閉塞される。この状態では、弁体27は流入する空気の圧力により端面25cに密着するため、流入した空気は枝管5aとの接続開口部25dには流入することはできず、破損した集熱管1から真空配管5や真空タンク7を経由して空気が他の集熱管1に流入することが阻止される。このため、1つの集熱管1の破損により、系全体の真空度が低下することが防止される。
【0032】
次に、防止弁20の別の実施形態について図7、図8を用いて説明する。本実施形態においても、図3の実施形態と同様に各集熱管1に接続される防止弁20は電磁遮断弁として構成される。しかし、本実施形態では、図3の実施形態のように各集熱管1に圧力センサを設けることなく、真空タンク7に単一の圧力センサ13が配置されている。本実施形態の制御回路23は、この圧力センサ13により検出された真空タンク7圧力に基づいて、集熱管1の破損等による大量の空気の侵入を検出して各防止弁20の操作を行う。
【0033】
図8は、制御回路23により実行される集熱管1の洩れ検出と防止弁20制御動作を示すフローチャートである。図8に示すように、本実施形態では制御回路23は、常時圧力センサ13により真空タンク7の圧力を監視しており、真空タンク7の圧力が所定値(例えば10-2Torr程度)以上に上昇した場合(ステップ10)には、一旦全部の防止弁20を閉弁して(ステップ20)真空ポンプ9を作動させる(ステップ30)。真空タンク7圧力が通常の制御範囲(10-5〜10-3Torr)を越えて大幅に上昇した場合には、いずれかの集熱管1の破損により大量の空気が流入しつつある可能性が高いからである。次いで、制御回路23は、各集熱管1の防止弁20を1つずつ開弁し(ステップ40、50)、防止弁20を開弁したときに真空タンク7内の圧力が所定値以上に上昇するものがあれば(ステップ60)、その防止弁20が接続されている集熱管1が破損していると判断し、その防止弁20を閉弁状態に保持する(ステップ70)。この操作を全部の集熱管1について繰り返すことにより(ステップ40)、破損等により洩れを生じている集熱管1の防止弁20のみを閉弁状態に保持することが可能となる。
【0034】
本実施形態によれば、各集熱管1に圧力センサを設ける必要がなく、簡易に集熱管1からの空気の洩れを検出できる利点がある。
【0035】
【発明の効果】
請求項1から4に記載の発明によれば、複数の集熱管を設け、単一の真空タンクにより各集熱管の真空断熱層の真空度を維持する場合に、1つの集熱管の破損等による真空度の低下が生じたときも他の集熱管の真空断熱層の真空度が低下することを防止することが可能となり、更に各集熱管に圧力センサを設ける必要がないため、簡易に真空度の低下を防止できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の太陽熱収集装置の一実施形態の概略構成を示す図である。
【図2】本発明の太陽熱収集装置の、図1とは異なる実施形態の概略構成を示す図である。
【図3】図2の防止弁の一実施形態を示す図である。
【図4】図2の防止弁の一実施形態を示す断面図である。
【図5】防止弁の弁体の形状を示す、図4のA−A線に沿った断面図である。
【図6】図4の防止弁の作用を説明する図である。
【図7】図2の防止弁の一実施形態を示す図である。
【図8】図7の防止弁の作用を説明するフローチャートである。
【符号の説明】
1…集熱管
1a…外管
1b…内管
1c…真空断熱層
5…真空配管
7…真空タンク
9…真空ポンプ
20…防止弁
23…制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar heat collector, and more particularly to a solar heat collector having a vacuum heat insulating layer.
[0002]
[Prior art]
Solar heat collection in which a vacuum heat insulating layer is formed by covering the periphery of the heat absorption tube containing the heat medium with an outer tube that transmits sunlight and eliminating air in the gap between the heat absorption tube (inner tube) and the outer tube Devices are generally known. In the solar heat collecting apparatus having such a vacuum heat insulating layer, heat is prevented from being dissipated to the outside air by conduction or convection through the outer wall of the heat absorption pipe from the heat medium that has been heated to high temperatures due to solar heat. It is possible to collect solar heat.
[0003]
An example of this type of solar heat collecting apparatus is described in, for example, Japanese Patent Publication No. 63-55618. The apparatus of the publication includes a heat medium circulation circuit that circulates a heat medium between a heat collection pipe that collects solar heat and a heat exchanger disposed in a hot water storage tank, and heat is generated by the heat medium that is heated by the heat collection pipe. It is set as the structure which heats the water in a hot water tank indirectly through an exchanger. In addition, the heat collecting tube covers the periphery of the heat absorption tube (inner tube) through which the heat medium circulates with a glass outer tube, eliminates air in the gap between the inner tube and the outer tube, and forms a vacuum heat insulating layer. Forming.
[0004]
Conventionally, in a solar heat collecting apparatus having a vacuum heat insulating layer as described above, a space sealed in a heat collecting tube in advance in a factory was brought into the field and carried into the field for assembly work. However, such a sealed-type heat collecting tube has a problem of high cost and complicated local construction. In addition, the sealed heat collecting tube has a problem that the heat insulation effect is lowered because the internal vacuum is lowered over time due to the release of air leaking from the connecting portion or the gas adsorbed inside.
[0005]
In the apparatus of the above publication, in order to solve the above problems, an ejector is disposed in the heat medium circulation circuit, and air and gas in the vacuum heat insulating layer are excluded by a heat medium that circulates constantly. As a result, it is possible to form a vacuum heat insulating layer locally, and it is possible to always evacuate the vacuum heat insulating layer, so that the vacuum degree of the vacuum heat insulating layer can always be maintained high.
[0006]
[Problems to be solved by the invention]
However, since the apparatus disclosed in Japanese Patent Publication No. 63-55618 performs exhaust using an ejector that uses a heat medium as a working fluid, it is necessary to circulate a relatively large amount of the heat medium at all times in order to achieve the required degree of vacuum. There is. In an indirect heating type device that indirectly heats hot water in a hot water tank with a heat medium via a heat exchanger, as in the device of the above publication, it is possible to circulate a large amount of heat medium at all times. The vacuum degree of a vacuum heat insulation layer can be maintained using an ejector. However, in a direct heating type apparatus that supplies hot water directly heated by a heat collecting pipe to various places, the amount of hot water supply is not constant, and the amount of hot water supply itself is not so large. The problem arises that the vacuum of the layer cannot be maintained sufficiently high.
[0007]
On the other hand, it is possible to evacuate the vacuum heat insulation layer using, for example, an electric vacuum pump instead of the ejector. In this case, if the vacuum pump is always operated, the operating cost of the apparatus is increased and the life of the vacuum pump is increased. Problems such as degradation occur.
Further, in an apparatus that always exhausts the vacuum heat insulating layer as in the apparatus of the above publication, when a plurality of heat collecting tubes are connected to one ejector via a pipe and exhausted at the same time, for example, When a large amount of air flows due to damage to a heat collection tube, air flows into other heat collection tubes through the piping, and the vacuum degree of the vacuum insulation layer of all the heat collection tubes decreases. There is.
[0008]
In view of the above problems, an object of the present invention is to provide a solar heat collecting apparatus that can always maintain a high degree of vacuum in a vacuum heat insulating layer without always operating an ejector or a vacuum pump. Further, the present invention further provides a solar heating system in which a vacuum break in one heat collecting tube does not cause a decrease in the degree of vacuum of other heat collecting tubes when the vacuum heat insulating layers of a plurality of heat collecting tubes are exhausted simultaneously. It aims to provide a collection device.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, each comprises an outer tube that transmits sunlight, an inner tube that contains a heat medium therein, and a vacuum heat insulating layer formed between the outer tube and the inner tube. A plurality of sets of heat collecting tubes, pipes connected to the vacuum heat insulating layers of the heat collecting tubes, a vacuum tank connected to the vacuum heat insulating layers of the heat collecting tubes via the pipes, and vacuum heat insulating of the heat collecting tubes Provided in each of the pipes connected to the layer, and provided with a prevention valve that shuts off the air flow of the pipe when the air flow rate flowing through the pipe exceeds a predetermined value. The
[0011]
According to a second aspect of the present invention, the vacuum tank operates a vacuum pump that excludes air in the tank, and operates the vacuum pump when the pressure in the vacuum tank rises above a predetermined upper limit value. The solar heat collecting apparatus according to claim 1 , further comprising: a vacuum degree maintaining unit that causes
According to invention of Claim 3 , each consists of the outer tube | pipe which permeate | transmits sunlight, the inner tube | pipe which accommodated the heat medium in the inside, and the vacuum heat insulation layer formed between the said outer tube | pipe and the inner tube | pipe. A plurality of sets of heat collecting pipes, branch pipes connected to the vacuum heat insulating layers of the heat collecting pipes, common pipes connected to the vacuum heat insulating layers of the heat collecting pipes through the branch pipes, A vacuum tank connected to the vacuum heat insulating layer of the heat collecting pipe via the branch pipes and the common pipe; and a branch tank connected to the vacuum heat insulating layer of the heat collecting pipe. Provided is a solar heat collecting apparatus including a prevention valve that cuts off the connection between the vacuum heat insulating layer connected to the branch pipe and the common pipe when the flow rate of air flowing through the pipe exceeds a predetermined value. .
According to invention of Claim 4, each consists of the outer tube | pipe which permeate | transmits sunlight, the inner tube | pipe which accommodated the heat medium inside, and the vacuum heat insulation layer formed between the said outer tube | pipe and an inner tube | pipe. A plurality of sets of heat collecting pipes, branch pipes connected to the vacuum heat insulating layers of the heat collecting pipes, common pipes connected to the vacuum heat insulating layers of the heat collecting pipes through the branch pipes, A vacuum tank connected to the vacuum heat insulating layer of the heat collecting pipe via the branch pipes and the common pipe; and a branch tank connected to the vacuum heat insulating layer of the heat collecting pipe. There is provided a solar heat collecting apparatus including a prevention valve that shuts off the air flow of the branch pipe when the flow rate of air flowing through the pipe exceeds a predetermined value.
[0015]
In the invention of claim 1, a plurality of heat collecting tubes are arranged, and the vacuum heat insulating layer of each heat collecting tube is connected to the vacuum tank via the pipe. Further, in the present invention, a prevention valve is provided between the vacuum heat insulating layer and the vacuum tank of each heat collecting tube, and when the air flow rate flowing into the vacuum tank from the vacuum heat insulating layer becomes a predetermined value or more, a vacuum is provided. The heat insulation layer and the vacuum tank are shut off. Thus, for example, even when a large amount of air flows into the vacuum heat insulation layer of one heat collection tube due to, for example, damage to the heat collection tube, the inflowed air passes through the piping to the vacuum heat insulation layer or vacuum tank of another heat collection tube. It is prevented from flowing into. Therefore, in the present invention, the destruction of one collecting heat pipe vacuum, the degree of vacuum in the whole system is prevented from deteriorating.
[0016]
According to a second aspect of the present invention, the vacuum tank of the first aspect includes a vacuum pump that automatically operates when the vacuum level in the tank is reduced and recovers the vacuum level in the tank. This ensures that, with the degree of vacuum in the system is kept high to normal, reduction of the service life of the rise and the vacuum pump operating costs can be prevented.
In the third and fourth aspects of the invention, a plurality of heat collecting tubes are arranged as in the case of the first aspect of the invention, and the vacuum heat insulating layers of the heat collecting tubes are connected to the vacuum tank via a common pipe. Further, in the present invention, a prevention valve is provided between the vacuum heat insulating layer of each heat collecting tube and the common pipe, and when the air flow rate flowing from the vacuum heat insulating layer into the common pipe becomes a predetermined value or more, a vacuum is provided. The heat insulation layer and the common pipe are cut off. Thus, as in the invention of claim 1, by disruption of one collecting heat pipe vacuum, the degree of vacuum in the whole system is prevented from deteriorating.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the solar heat collecting apparatus of the present invention.
In FIG. 1, reference numeral 1 indicates a heat collecting tube. The heat collecting tube 1 includes an outer tube 1a made of, for example, glass that transmits sunlight, and an endothermic tube (inner tube) 1b. Further, a water supply pipe 3a and a hot water supply pipe 3b are connected to the inner pipe 1b. When a heat medium such as tap water supplied from the water supply pipe 3a passes through the inner pipe 1b, it is heated by solar heat, and the hot water supply pipe 3b. Spill from. A vacuum heat insulating layer 1 c formed of an annular gap between the outer tube 1 a and the inner tube 1 b of the heat collecting tube 1 is connected to a vacuum tank 7 through a vacuum pipe 5.
[0018]
A vacuum pump 9 and a pressure switch 11 are connected to the vacuum tank 7. In the present embodiment, as described later, a vacuum pump 9 having a relatively small exhaust capacity can be used, and a vacuum pump having an ultimate vacuum of about 10 −5 Torr is used. The pressure switch 11 is connected to the power source of the vacuum pump 9 and starts and stops the vacuum pump 9 according to the pressure in the vacuum tank 7. In the present embodiment, for example, the pressure switch 11 operates the vacuum pump 9 when the vacuum degree of the vacuum tank 7 decreases (the pressure increases) and becomes about 10 −3 Torr, and the degree of vacuum reaches about 10 −5 Torr. When recovered, the vacuum pump 9 is stopped.
[0019]
In the present embodiment, the inside of the heat collecting tube 1 is shipped at atmospheric pressure without being evacuated at the time of factory shipment. Then, at the site, assembly work is performed with the pressure of the entire system including the heat collecting tube 1 and the vacuum tank 7 kept at atmospheric pressure. For this reason, the assembly of the apparatus on site is easily performed, and the number of assembling steps is reduced. When the assembly is completed, after confirming the airtightness of the entire system, the vacuum pump 9 is operated to exhaust the entire system including the heat collecting pipe 1, the pipe 5, and the vacuum tank 7. In this state, since there is no restriction on the time required for exhaust, the vacuum pump 9 does not need to have a large exhaust capacity, and exhausts the system over a relatively long time.
[0020]
When evacuation in the system is completed and the degree of vacuum in the system reaches about 10 −5 Torr, the vacuum pump 9 is connected to the pressure switch 11 and the construction is completed. Generally, the vacuum heat insulating layer 1c exhibits a large heat insulating effect when the pressure is 10 −3 Torr or less. However, air that enters the vacuum heat insulating layer 1c from each connection portion of the heat collecting tube 1 and gas molecules adsorbed on the wall surfaces of the outer tube 1a and the inner tube 1b are released into the vacuum heat insulating layer 1c as the pressure decreases. As a result, the system pressure gradually increases. In this embodiment, since the vacuum tank 7 having a relatively large capacity is provided, the pressure increase rate in the system is much slower than when the heat collecting tube 1 has a sealed structure, which is sufficient even after a long period of operation. The degree of vacuum can be maintained.
[0021]
In addition, when the internal pressure gradually increases after long-term operation and the degree of vacuum decreases to, for example, about 10 −3 Torr, the operation of the vacuum pump 9 is started by the pressure switch 11 and a vacuum of about 10 −5 Torr. The operation of the vacuum pump 9 is continued until the degree is recovered. As described above, in this embodiment, since the vacuum tank 7 is provided, the pressure increase in the system is extremely slow, and the vacuum pump 9 operates in this manner once every few weeks to several months. The operation time is about several hours. For this reason, the operating frequency of the vacuum pump 9 is extremely reduced, and an increase in operating cost and a decrease in pump life are prevented.
[0022]
In this embodiment, the vacuum pump 9 is always connected to the vacuum tank 7, and the vacuum pump is automatically started and stopped by the pressure switch 11, but as described above, the operation frequency of the vacuum pump 9 is extremely low, so it is not always necessary. There is no need to connect the vacuum pump 9 to the vacuum tank 7. For example, a connection port for the vacuum pump 9 may be provided in the vacuum tank 7, and a vacuum gauge may be installed in the tank 7 instead of the pressure switch 11 so that a person can periodically check the degree of vacuum in the tank 7. In this case, when the degree of vacuum decreases, a portable vacuum pump may be connected to the tank and the system may be exhausted to recover the degree of vacuum.
[0023]
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram illustrating a schematic configuration of the apparatus according to the present embodiment. 2, the same reference numerals as those in FIG. 1 denote the same elements as those in FIG. In the present embodiment, a plurality of heat collecting tubes 1 (four in FIG. 2) are provided as shown in FIG. 2, and the vacuum heat insulating layer 1c of each heat collecting tube 1 is a common vacuum via the branch tube 5a. It is connected to the pipe 5. Moreover, in this embodiment, the point which the prevention valve 20 mentioned later is arrange | positioned in the connection part of the branch pipe 5a and the vacuum heat insulation layer 1c of each heat collecting pipe 1 is different from embodiment of FIG.
[0024]
In the present embodiment, the vacuum degree of the vacuum heat insulating layers of the plurality of heat collecting tubes 1 is maintained using one vacuum tank 7. In this case, the assembling method, the exhausting method, and the operation of the vacuum tank 7, the vacuum pump 9, and the pressure switch 11 are the same as those described in the embodiment of FIG. However, there may be a problem when a configuration in which a plurality of heat collecting tubes are connected to one vacuum tank as in the present embodiment. That is, in such a configuration, when one heat collecting tube breaks and air enters the vacuum heat insulating layer portion, the invading air is vacuum insulated from other heat collecting tubes via the vacuum pipe 5 or the tank 7. If the vacuum is broken by one heat collecting tube, the vacuum degree of all the heat collecting tubes is lowered. In addition, since the flow direction of air due to normal exhaust (from the heat collection tube to the vacuum tank) and the flow direction of air that enters due to damage to the heat collection tube, etc. are the same, the normal check valve, etc., intrudes air into the system. Cannot be prevented.
[0025]
Therefore, in the present embodiment, the above-described problem is solved by providing the prevention valve 20 at the connection portion between each heat collecting pipe 1 and the branch pipe 5a.
Next, the prevention valve 20 of this embodiment is demonstrated. The prevention valve of the present embodiment closes the branch pipe 5a only when a large amount of air flows into the branch pipe 5a from the heat collection pipe 1 side due to breakage of the outer pipe 1a of the heat collection pipe 1, etc. This prevents air from flowing in. On the other hand, at the time of exhausting the normal vacuum heat insulating layer 1c, it is necessary to circulate air flowing from the heat collecting pipe 1 into the branch pipe 5a without resistance. Therefore, the prevention valve 20 of the present embodiment is configured to close the branch pipe 5a only when the gas flow rate passing through the valve 20 exceeds a predetermined flow rate. Hereinafter, a configuration example of the prevention valve 20 will be described.
[0026]
FIG. 3 is a schematic configuration diagram showing an embodiment of the prevention valve 20. In FIG. 3, the prevention valve 20 is configured as a normal electromagnetic cutoff valve. In the figure, 21 indicates a pressure sensor provided in the vacuum heat insulating layer 1c of each heat collecting tube, 23 indicates a control circuit, and 25 indicates a warning light. In the present embodiment, the control circuit 23 receives the pressure signal from the pressure sensor 21, and constantly monitors the pressure increase rate in the vacuum heat insulating layer 1c of each heat collecting tube 1 by, for example, a differential circuit. For example, when the heat collecting tube 1 is damaged and a large amount of air flows into the vacuum heat insulating layer 1c, the pressure in the heat insulating layer rapidly increases. In the present embodiment, the control circuit 23 closes the prevention valve (electromagnetic valve) 20 connected to the heat collecting pipe 1 when the pressure increase rate in the vacuum heat insulating layer 1c becomes a predetermined value or more, The warning lamp 25 is turned on. Thereby, a large amount of air is prevented from flowing into the branch pipe 5a, and a decrease in the degree of vacuum of the other heat collecting pipes 1 is prevented. In normal exhaust, the pressure in the vacuum heat insulating layer 1c of the heat collecting tube 1 decreases (the degree of vacuum increases), so the prevention valve 20 does not operate. Further, as described above, during operation of the apparatus, the pressure in the vacuum heat insulating layer 1c gradually increases due to the intrusion of air from the connection portion, etc., but in this case, the pressure increase rate is extremely small, so the prevention valve 20 operates. There is nothing. Further, FIG. 3 shows an example in which a control circuit 23 is provided for each heat collecting tube 1. However, when a microcomputer or the like is used as the control circuit 23, each of the heat collecting tubes 1 is sequentially arranged with a single control circuit. Needless to say, the output of the pressure sensor 21 of the heat pipe 1 can be monitored.
[0027]
FIG. 4 is a cross-sectional view illustrating another embodiment of the configuration of the prevention valve 20. The prevention valve 20 of this embodiment includes a cylindrical casing 25 connected to the branch pipe 5a via flanges 21 and 22, and a disc-shaped valve body 27 having elasticity disposed in the casing 25. ing. As shown in FIG. 4, a plurality of first protrusions 25 a arranged at equal intervals on the inner peripheral surface of the casing 25, and an interval larger than the thickness of the valve element 27 in the axial direction from the first protrusions 25 a. Similarly, second protrusions 25b arranged at equal intervals on the inner peripheral surface of the casing 25 are provided. In the normal state, the valve element 27 is held in the casing 25 by the first and second protrusions as shown in FIG.
[0028]
FIG. 5 is a cross-sectional view taken along line AA of FIG. In this embodiment, the valve body 27 has a hole 27a through which air passes during normal exhaust. The hole 27 is arranged in a circular shape with a predetermined distance from the center of the valve body 27. The overhanging length of the first and second protrusions is set to a length that does not block the hole 27a in the state shown in FIG.
[0029]
In FIG. 4, the first protrusion 25 a arranged on the heat collecting tube 1 side with respect to the valve body 27 is set to have a longer overhang than the second protrusion 25 b on the vacuum tank 7 side.
As described above, in the normal state, the valve body 27 is held between the protrusions 25a and 25b and held in the casing. In this state, the hole 27a of the valve body 27 is not blocked by the projections 25a and 25b, so that air that has entered the vacuum heat insulating layer 1c of the heat collecting tube passes through the hole 27a of the valve body 27 without resistance and flows into the branch pipe 5a. And flows into the vacuum tank 7 through the vacuum pipe 5.
[0030]
On the other hand, FIG. 6 shows the position of the valve element 27 when the heat collecting tube 1 is broken and a large amount of air flows into the vacuum heat insulating layer 1c. When the heat collecting tube 1 is damaged and a large amount of air flows in, a large pressure difference is generated on both sides of the valve body 27. Since the valve body 27 is formed of an elastic material, the pressure difference causes a deflection, and the deflection causes the valve body 27 to move over the second protrusion 25b on the vacuum tank 7 side, and FIG. As shown in FIG. 4, the casing 25 abuts against the end face 25c on the vacuum tank 7 side.
[0031]
Since the diameter of the connection opening 25d with the branch pipe 5a on the end face c of the casing 25 is set to be smaller than the distance between the hole 27a and the center of the valve body 27, the connection opening 25d is in this state the valve body 27. Is closed by a portion 27e inside the hole 27a. In this state, the valve body 27 is in close contact with the end face 25c due to the pressure of the inflowing air, so the inflowing air cannot flow into the connection opening 25d with the branch pipe 5a, and the damaged heat collecting tube 1 is vacuumed. Air is prevented from flowing into the other heat collecting pipe 1 via the pipe 5 or the vacuum tank 7. For this reason, it is prevented that the vacuum degree of the whole system falls by the failure | damage of the one heat collecting tube 1. FIG.
[0032]
Next, another embodiment of the prevention valve 20 will be described with reference to FIGS. Also in this embodiment, the prevention valve 20 connected to each heat collecting tube 1 is configured as an electromagnetic shut-off valve as in the embodiment of FIG. However, in this embodiment, the single pressure sensor 13 is arrange | positioned at the vacuum tank 7, without providing a pressure sensor in each heat collecting tube 1 like embodiment of FIG. The control circuit 23 according to the present embodiment operates each of the prevention valves 20 by detecting intrusion of a large amount of air due to breakage of the heat collecting tube 1 based on the pressure of the vacuum tank 7 detected by the pressure sensor 13.
[0033]
FIG. 8 is a flowchart showing the leak detection of the heat collecting tube 1 and the control operation of the prevention valve 20 executed by the control circuit 23. As shown in FIG. 8, in this embodiment, the control circuit 23 constantly monitors the pressure in the vacuum tank 7 by the pressure sensor 13, and the pressure in the vacuum tank 7 exceeds a predetermined value (for example, about 10 −2 Torr). When it rises (step 10), all the prevention valves 20 are once closed (step 20), and the vacuum pump 9 is operated (step 30). If the pressure in the vacuum tank 7 rises significantly beyond the normal control range (10 −5 to 10 −3 Torr), there is a possibility that a large amount of air is flowing in due to the breakage of one of the heat collecting tubes 1. Because it is expensive. Next, the control circuit 23 opens the prevention valves 20 of the heat collecting tubes 1 one by one (steps 40 and 50), and when the prevention valve 20 is opened, the pressure in the vacuum tank 7 increases to a predetermined value or more. If there is something to do (step 60), it is determined that the heat collecting pipe 1 to which the prevention valve 20 is connected is damaged, and the prevention valve 20 is held in a closed state (step 70). By repeating this operation for all the heat collecting tubes 1 (step 40), it becomes possible to keep only the prevention valve 20 of the heat collecting tube 1 that has leaked due to breakage or the like in the closed state.
[0034]
According to the present embodiment, there is no need to provide a pressure sensor in each heat collecting tube 1, and there is an advantage that air leakage from the heat collecting tube 1 can be easily detected.
[0035]
【The invention's effect】
According to the invention described in claims 1 to 4, when a plurality of heat collecting tubes are provided and the vacuum degree of the vacuum heat insulating layer of each heat collecting tube is maintained by a single vacuum tank, the heat collecting tube is damaged. Even when the degree of vacuum is reduced, it is possible to prevent the vacuum degree of the vacuum heat insulation layer of other heat collecting tubes from decreasing, and it is not necessary to provide a pressure sensor for each heat collecting tube. The effect that the fall of can be prevented is produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a solar heat collecting apparatus of the present invention.
FIG. 2 is a diagram showing a schematic configuration of an embodiment different from FIG. 1 of the solar heat collecting apparatus of the present invention.
FIG. 3 is a view showing an embodiment of the prevention valve of FIG. 2;
4 is a cross-sectional view showing an embodiment of the prevention valve of FIG. 2. FIG.
5 is a cross-sectional view taken along line AA in FIG. 4, showing the shape of the valve body of the prevention valve.
6 is a diagram for explaining the operation of the prevention valve of FIG. 4;
7 is a view showing an embodiment of the prevention valve of FIG. 2. FIG.
FIG. 8 is a flowchart illustrating the operation of the prevention valve of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat collecting pipe 1a ... Outer pipe 1b ... Inner pipe 1c ... Vacuum heat insulation layer 5 ... Vacuum piping 7 ... Vacuum tank 9 ... Vacuum pump 20 ... Prevention valve 23 ... Control circuit

Claims (4)

それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、A plurality of sets of heat collecting tubes each composed of an outer tube that transmits sunlight, an inner tube that contains a heat medium therein, and a vacuum heat insulating layer formed between the outer tube and the inner tube;
前記各集熱管の真空断熱層に接続された配管と、Piping connected to the vacuum heat insulating layer of each heat collecting tube;
前記各集熱管の真空断熱層に前記配管を介して接続された真空タンクと、A vacuum tank connected to the vacuum heat insulating layer of each heat collecting tube via the pipe;
前記各集熱管の真空断熱層に接続された前記配管のそれぞれに設けられ、前記配管を流通する空気流量が所定値以上になったとき当該配管の空気の流通を遮断する防止弁と、A preventive valve that is provided in each of the pipes connected to the vacuum heat insulating layer of each of the heat collecting pipes, and shuts off the air flow of the pipes when the flow rate of air flowing through the pipes exceeds a predetermined value;
を備えた太陽熱収集装置。Solar heat collecting device with.
前記真空タンクは、タンク内の空気を排除する真空ポンプと、前記真空タンク内の圧力が予め定めた上限値以上に上昇したときに前記真空ポンプを作動させる真空度維持手段と、を備えた請求項1に記載の太陽熱収集装置。The vacuum tank includes: a vacuum pump that excludes air in the tank; and a degree of vacuum maintaining unit that operates the vacuum pump when the pressure in the vacuum tank rises to a predetermined upper limit value or more. Item 2. The solar heat collector according to Item 1. それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、A plurality of sets of heat collecting tubes each composed of an outer tube that transmits sunlight, an inner tube that contains a heat medium therein, and a vacuum heat insulating layer formed between the outer tube and the inner tube;
前記各集熱管の真空断熱層にそれぞれ接続された枝管と、A branch pipe connected to each vacuum heat insulating layer of each heat collecting pipe;
前記各集熱管の真空断熱層に前記各枝管を介して接続された共通の配管と、A common pipe connected to the vacuum heat insulating layer of each heat collecting pipe via each branch pipe; and
前記各集熱管の真空断熱層に前記各枝管と前記共通の配管とを介して接続された真空タンクと、A vacuum tank connected to the vacuum heat insulating layer of each of the heat collecting tubes via the branch pipes and the common pipe;
前記各集熱管の真空断熱層に接続された前記枝管のそれぞれに設けられ、前記枝管を流通する空気流量が所定値以上になったとき当該枝管に接続された前記真空断熱層と前記共通の配管との接続を遮断する防止弁と、Provided in each of the branch pipes connected to the vacuum heat insulating layer of each heat collecting pipe, and when the air flow rate flowing through the branch pipe exceeds a predetermined value, the vacuum heat insulating layer connected to the branch pipe and the A prevention valve that cuts off the connection with the common piping;
を備えた太陽熱収集装置。Solar heat collecting device with.
それぞれが太陽光を透過する外管と内部に熱媒を収容した内管と前記外管と内管との間に形成された真空断熱層とから成る複数組の集熱管と、A plurality of sets of heat collecting tubes each composed of an outer tube that transmits sunlight, an inner tube that contains a heat medium therein, and a vacuum heat insulating layer formed between the outer tube and the inner tube;
前記各集熱管の真空断熱層にそれぞれ接続された枝管と、A branch pipe connected to each vacuum heat insulating layer of each heat collecting pipe;
前記各集熱管の真空断熱層に前記各枝管を介して接続された共通の配管と、A common pipe connected to the vacuum heat insulating layer of each heat collecting pipe via each branch pipe; and
前記各集熱管の真空断熱層に前記各枝管と前記共通の配管とを介して接続された真空タンクと、A vacuum tank connected to the vacuum heat insulating layer of each of the heat collecting tubes via the branch pipes and the common pipe;
前記各集熱管の真空断熱層に接続された前記枝管のそれぞれに設けられ、前記枝管を流通する空気流量が所定値以上になったとき当該枝管の空気の流通を遮断する防止弁と、A prevention valve provided in each of the branch pipes connected to the vacuum heat insulating layer of each heat collecting pipe, and shuts off the flow of air in the branch pipe when the air flow rate through the branch pipe exceeds a predetermined value; ,
を備えた太陽熱収集装置。Solar heat collecting device with.
JP23511896A 1996-09-05 1996-09-05 Solar heat collector Expired - Fee Related JP3698495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23511896A JP3698495B2 (en) 1996-09-05 1996-09-05 Solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23511896A JP3698495B2 (en) 1996-09-05 1996-09-05 Solar heat collector

Publications (2)

Publication Number Publication Date
JPH1082564A JPH1082564A (en) 1998-03-31
JP3698495B2 true JP3698495B2 (en) 2005-09-21

Family

ID=16981329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23511896A Expired - Fee Related JP3698495B2 (en) 1996-09-05 1996-09-05 Solar heat collector

Country Status (1)

Country Link
JP (1) JP3698495B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318809C (en) * 2003-06-04 2007-05-30 孟范中 Solar water heater
KR100803614B1 (en) 2007-04-26 2008-02-19 제주대학교 산학협력단 Non-glass solar vacuum tube collector
CN105776387A (en) * 2014-12-18 2016-07-20 哈尔滨市三和佳美科技发展有限公司 Special straight-through solar vacuum tube for seawater desalination

Also Published As

Publication number Publication date
JPH1082564A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US4450868A (en) Freeze protection apparatus for solar collectors
JP2008255923A (en) Exhaust heat utilizing device for internal combustion engine
KR940702587A (en) CRYOGENIC PUMP
JP3698495B2 (en) Solar heat collector
JP2009133451A (en) Abnormality monitoring device of drain discharge device
US20170219251A1 (en) Method and Device for Discharging a Hydrogen Storage System in Parabolic Trough Receivers
CN107331911B (en) Battery thermal management device and power battery
WO1989008780A1 (en) Cryogenic adsorption pump
KR100931135B1 (en) Vacuum system and its operation method
CN210770611U (en) Valve leak protection alarm device
KR101806362B1 (en) Ground source heat pump system with control for disater
JP2009115352A (en) Hot water storage type water heater
JP4393285B2 (en) Underground equipment in groundwater heat utilization facilities
JP2002228794A (en) Heat supplying atomic power plant
JP3210353B2 (en) Superconducting rotor
JPS593337Y2 (en) solar thermal system
CN216430796U (en) Water conservancy is with pipeline connecting device who has infiltration alarm structure
CN218914564U (en) Low-temperature safety valve pipeline
US5123679A (en) Connection together of pipes by breakable welded joint
CN217130743U (en) Vacuum heat insulation pipeline capable of maintaining interlayer vacuum degree for long time
CN115312363A (en) High vacuum system for low-temperature transmission line in accelerator tunnel
KR20230086287A (en) Manufacturing method for heat pipe
JPS5833195A (en) Radioactive gaseous waste processing device
CN118309941A (en) Hydrogen leakage control device and method
JPH01295641A (en) Abnormality detector of cooling water circulation system for rotary electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees