JP3698301B2 - Frequency sweep type electric field strength measuring device - Google Patents

Frequency sweep type electric field strength measuring device Download PDF

Info

Publication number
JP3698301B2
JP3698301B2 JP35952999A JP35952999A JP3698301B2 JP 3698301 B2 JP3698301 B2 JP 3698301B2 JP 35952999 A JP35952999 A JP 35952999A JP 35952999 A JP35952999 A JP 35952999A JP 3698301 B2 JP3698301 B2 JP 3698301B2
Authority
JP
Japan
Prior art keywords
circuit
frequency
field strength
electric field
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35952999A
Other languages
Japanese (ja)
Other versions
JP2001174494A (en
Inventor
芳明 垂澤
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP35952999A priority Critical patent/JP3698301B2/en
Publication of JP2001174494A publication Critical patent/JP2001174494A/en
Application granted granted Critical
Publication of JP3698301B2 publication Critical patent/JP3698301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電波利用設備の周辺電界強度を測定する周波数掃引形電界強度測定装置に関するものである。特に、当該地点の電界強度を電波防護規格(例えば、社団法人電波産業会の電波防護標準規格STD−38)で定められた基準値に対する割合として測定する周波数掃引形電界強度測定装置に関する。
【0002】
【従来の技術】
例えば、30MHz帯から3GHz帯に及ぶような広い周波数範囲における電界強度測定は、図8に示すような構成の電界強度測定装置で行なうことが一般的である。この電界強度測定装置は、広帯域アンテナ2と検波回路4および表示回路5から構成されている。このような従来の電界強度測定装置は周波数選択機能は無く、広帯域アンテナに誘起される全周波数成分に対する電界強度の合成値を表示する。
【0003】
【発明が解決しようとする課題】
電波防護規格(例えば、社団法人電波産業会の電波防護標準規格STD−38)では、電波利用設備周辺の電波の強度の基準値を定めている。この限度値は電界強度または電力密度として表されており、その基準値は周波数帯により異なっている。
当該地点の電界強度が電波防護規格値のそれに対してどの程度の強度であるかを調べるためには、初めに電波の周波数を調べ、次にその周波数における電界強度を測定して、電波防護規格値と比較する。
【0004】
従来の電界強度測定装置は周波数選択機能が無いため、上記のような電波防護規格値と当該地点の電界強度値の比較が困難である。
さらに、従来の電界強度測定装置の感度は0.1V/m程度であり、これより小さい電界強度の測定は不可能である。このため0.1V/m以下の電界強度の場合、電波防護規格値に対して何分の1であるかの判定はできなかった。
【0005】
【課題を解決するための手段】
上記のような従来の電界強度測定装置の問題点を解決するために、スーパーヘテロダイン方式の受信回路を基本とし、受信周波数の掃引とともに受信出力を積分するようにした。また、雑音電力の積分による測定誤差を小さくするために、レベル判定回路を設けた。
電界強度を測定しようとする当該地点において、支配的に強い電波の周波数が既知である場合は、従来の電界強度測定装置において電界強度を測定することにより電波防護規格との比較ができた。しかし、一般の環境では支配的に強い電波の周波数は不明である。このため、本発明の電界強度測定装置は、制御回路から局部発振回路に発振周波数を次々に命令することにより受信周波数の掃引を行なうと共にミクサ回路で中間周波数に変換し、中間周波数増幅回路で増幅し、さらに検波回路で検波し、この出力を積分する積分回路を備えることにより周波数帯に定められた電波防護規格値と当該地点の電波強度の比較ができるようになった。
【0006】
【発明の実施の形態】
の発明の実施例の基本構成を図1に示す。
広帯域アンテナ2で受信した信号はミクサ回路7で中間周波数に変換し、変換された信号は帯域制限フィルタ8で周波数帯域制限する。この後に、中間周波数増幅回路9で所要のレベルまで増幅される。広帯域アンテナ2としては、微小ダイポールアンテナ、ログペロオディックアンテナ、バイコニカルアンテナ、コニカルスパイラルアンテナ等を使用する。例えば、ログペリオディックアンテナにおいて、アンテナ素子の最大の長さを1mとすれば300MHz〜3GHz程度の周波数範囲の電界強度測定に使用できる。
【0007】
検波回路4は中間周波数増幅回路9の出力信号の電力または電圧に比例した信号を検出する。さらに、検出した信号に補正係数を乗じて電界強度または電力密度を求める。通常広帯域アンテナ2はアンテナ係数と呼ばれる補正係数が測定により得られているので、このアンテナ係数を利用して電界強度または電力密度が得られる。例えば、アンテナ端子における開放受信電圧をV、アンテナ係数をAとすれば、電界強度Eは
E=AV (1)
のように得られる。
【0008】
また、電力密度Sは、
【0009】
【数1】

Figure 0003698301
のように得られる。
積分回路12は、周波数の掃引に対して測定された電界強度の自乗の値または電力密度を以下の演算規則に従って積分する。例えば、社団法人電波産業会の電波防護標準規格によれば、電界強度または電力密度の限度値は周波数に依存した値が基準値として決められている。この規格によれば、異なる周波数の電波が複数ある場合、
【0010】
【数2】
Figure 0003698301
fn:受信周波数fnの電界強度
gn:周波数fn に対する電波防護標準規格の電界強度基準値
または、
【0011】
【数3】
Figure 0003698301
S fn:受信周波数fn の電力密度
S gn:周波数fn に対する電波防護標準規格の電力密度基準値
で計算されるPが1以下であることとしている。図1に記載の積分回路12は(3)式又は(4)式の積分を行なう。積分に必要な周波数情報は制御回路15から得る。このような積分回路12は、図2に示すように、A/D変換回路12-1と数値演算回路12-2で実現できる。A/D変換回路12-1は、検波回路4の出力信号をデジタル符号に変換する。数値演算回路12-2は、このデジタル符号を入力値として(3)式および(4)式の演算を行なう。また、積分回路12は、検波回路4の各周波数間隔毎の検波回路出力電圧から電界強度あるいは電力密度を演算し、単に積分するものでもよい。
【0012】
表示回路5は、(1)式および(2)式で示される電界強度または電力密度の周波数スペクトルを表示する。また、(3)式または(4)式で計算したPの値を表示する。
以上のような構成により、各周波数に対する電界強度または電力密度を測定できるので、電波防護標準規格で定められている基準値と当該地点の電磁界強度を容易に比較できる。また、中間周波数増幅回路9の利得を高くすることにより、従来の電界強度測定装置より感度を向上できる。
一部を具体化したこの発明の実施例を図6に示す。
【0013】
x軸アンテナ2-1、y軸アンテナ2-2、z軸アンテナ2-3の3本のアンテナとアンテナ切替回路20を備えている点が図1の構成と異なっている。制御回路15は、局部発振回路11に対する周波数の指定とともにアンテナの切替え制御を行なう。
x軸アンテナ2-1で受信した電界強度または電力密度をEx,Sx、y軸アンテナ2-2で受信した電界強度または電力密度をEy,Sy、z軸アンテナ2-3で受信した電界強度または電力密度をEz,Szとした場合、積分回路は
【0014】
【数4】
Figure 0003698301
または、
S=Sx+Sy+Sz (6)
の演算を行なった後、図1中に示した積分回路と同様に、(3)式または(4)式の積分を行なう。
【0015】
3本のアンテナとしては、例えば、直交座標のx軸、y軸、z軸に沿って配置したダイポールアンテナを用いる。このような3本のアンテナを使用して、(5)式または(6)式の演算を行なえば、アンテナ全体の指向特性を等方向にできる。このため、任意の方向から到来する電波に対して電界強度または電力密度を測定できる。
更に一部具体化したこの発明の実施例を図3に示す。
【0016】
検波回路4と積分回路12の間にレベル判定回路17を挿入している点が図1の構成と異なる。
検波回路出力は、この信号受信系の雑音指数で決まる雑音を生じる。この雑音は、(3)式および(4)式で示す積分値の誤差の原因となる。この誤差を小さくするため、レベル判定回路17を設ける。
雑音レベルの電界強度への換算値をEnoise、また電力密度への換算値をSnoiseとした場合、レベル判定回路17は、測定した電界強度Em、電力密度SmがEnoiseまたはSnoiseより大きいか否かを判定する。積分回路12は、この判定結果が、
Em>Enoise (7)
Sm>Snoise (8)
の時だけ、(3)式および(4)式で示す積分を行なう。図4に示すように、レベル判定回路17は演算増幅器17-1、スイッチ17-2等で構成できる。演算増幅器17-1の非反転入力に接続する基準電圧17-3としては、EnoiseまたはSnoise以上の時にスイッチ17-2を閉じる。このようなレベル判定は、図5に示すようにレベル判定回路と積分回路を数値演算回路で構成することにより実現できる。この構成はA/D変換回路19-1で検波回路出力信号をデジタル符号に変換した後に、レベル判定用数値演算回路19-2で(7)式および(8)式で示すレベル判定を行なう。積分用数値演算回路19-3は、EnoiseまたはSnoise以上の時だけ、(3)式および(4)式で示す積分を行なう。
【0017】
このようなレベル判定を行なうことにより、雑音レベルの積分を行なわないよにできるので、積分値の誤差を小さくできる。
の発明の実施例の全体構成を図7に示す。
検波回路4と積分回路12の間にレベル判定回路17を設けている点が図6に示した構成とは異なる。
この構成のレベル判定回路17は、図3に示したレベル判定回路17と同様に、測定した電界強度Em、電力密度Smが、EnoiseまたはSnoiseより大きいか否かを判定する。積分回路は、
Em>Enoise (7)
Sm>Snoise (8)
の時だけ、(3)式および(4)式で示す積分を行なう。
【0018】
3本のアンテナ2-1,2-2,2-2を用いた場合でも、このようなレベル判定を行なうことにより、雑音レベルの積分を行なわないようにできるので、積分値の誤差を小さくできる。
【0019】
【発明の効果】
当該地点に到来する電波の周波数成分が不明であっても、本発明の電界強度測定装置により電波防護規格で定める電波強度と当該地点の電波強度の比較ができる。
また、本発明の電界強度測定装置は、スーパーヘテロダイン受信方式の受信回路を基本構成としているので、ダイレクト受信方式の従来の電界強度計より受信感度が高いため、弱い電波においても電波防護規格値との比較が可能となる。
【図面の簡単な説明】
【図1】 の発明の基本構成例を示すブロック図。
【図2】 積分回路の構成例を示すブロック図。
【図3】 請求項3記載の発明の実施例を示すブロック図。
【図4】 レベル判定回路の構成例を示すブロック図。
【図5】 レベル判定回路と積分回路を数値演算回路で構成する例を示すブロック図。
【図6】 請求項2記載の発明の実施例を示すブロック図。
【図7】 請求項3記載の発明の他の実施例を示すブロック図。
【図8】 電界強度測定装置の従来例を示すブロック図。
【符号の説明】
2 広帯域アンテナ
4 検波回路
5 表示回路
7 ミクサ回路
8 帯域制限フィルタ
9 中間周波数増幅回路
11 局部発振回路
12 積分回路
15 制御回路
17 レベル判定回路
20 切替回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frequency sweep type electric field strength measuring apparatus for measuring the electric field strength around a radio wave utilization facility. In particular, the present invention relates to a frequency sweep type electric field strength measuring apparatus that measures the electric field strength at the point as a ratio with respect to a reference value defined by a radio wave protection standard (for example, a radio wave protection standard STD-38 of the Japan Radio Industry Association).
[0002]
[Prior art]
For example, electric field strength measurement in a wide frequency range extending from the 30 MHz band to the 3 GHz band is generally performed by an electric field strength measuring apparatus having a configuration as shown in FIG. This electric field strength measuring apparatus is composed of a broadband antenna 2, a detection circuit 4 and a display circuit 5. Such a conventional electric field strength measuring apparatus does not have a frequency selection function, and displays a combined value of electric field strengths for all frequency components induced in the broadband antenna.
[0003]
[Problems to be solved by the invention]
In the radio wave protection standard (for example, the radio wave protection standard STD-38 of the Japan Radio Industry Association), a reference value for the intensity of radio waves around the radio wave use facility is defined. This limit value is expressed as electric field strength or power density, and the reference value varies depending on the frequency band.
To find out how strong the electric field strength at that point is relative to that of the radio wave protection standard value, first examine the frequency of the radio wave, then measure the electric field strength at that frequency, Compare with the value.
[0004]
Since the conventional electric field strength measuring apparatus does not have a frequency selection function, it is difficult to compare the radio wave protection standard value as described above and the electric field strength value at the point.
Furthermore, the sensitivity of the conventional electric field strength measuring device is about 0.1 V / m, and it is impossible to measure electric field strength smaller than this. For this reason, when the electric field intensity was 0.1 V / m or less, it was not possible to determine the fraction of the radio wave protection standard value.
[0005]
[Means for Solving the Problems]
In order to solve the problems of the conventional field strength measuring apparatus as described above, a superheterodyne receiver circuit is used as a basis, and the received output is integrated with the sweep of the reception frequency. In addition, a level determination circuit is provided in order to reduce the measurement error due to the integration of noise power.
If the frequency of the dominant strong radio wave is known at the point where the electric field strength is to be measured, it can be compared with the radio wave protection standard by measuring the electric field strength with a conventional electric field strength measuring device. However, the frequency of radio waves that are dominantly strong in the general environment is unknown. For this reason, the field strength measuring device of the present invention sweeps the reception frequency by instructing the oscillation frequency one after another from the control circuit to the local oscillation circuit, converts it to the intermediate frequency by the mixer circuit, and amplifies it by the intermediate frequency amplification circuit In addition, by providing an integration circuit that detects the signal with a detection circuit and integrates the output, it is possible to compare the radio wave protection standard value set for the frequency band with the radio wave intensity at the point.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The basic structure of the embodiment of this invention shown in FIG.
The signal received by the broadband antenna 2 is converted to an intermediate frequency by the mixer circuit 7, and the converted signal is frequency band limited by the band limiting filter 8. Thereafter, the signal is amplified to a required level by the intermediate frequency amplifier circuit 9. As the broadband antenna 2, a minute dipole antenna, log perodic antenna, biconical antenna, conical spiral antenna, or the like is used. For example, in a log periodic antenna, if the maximum length of the antenna element is 1 m, it can be used for electric field strength measurement in a frequency range of about 300 MHz to 3 GHz.
[0007]
The detection circuit 4 detects a signal proportional to the power or voltage of the output signal of the intermediate frequency amplifier circuit 9. Further, the electric field strength or power density is obtained by multiplying the detected signal by a correction coefficient. In general, since the broadband antenna 2 has a correction coefficient called an antenna coefficient obtained by measurement, electric field strength or power density can be obtained using this antenna coefficient. For example, if the open reception voltage at the antenna terminal is V and the antenna coefficient is A, the electric field strength E is E = AV (1)
Is obtained as follows.
[0008]
The power density S is
[0009]
[Expression 1]
Figure 0003698301
Is obtained as follows.
The integrating circuit 12 integrates the squared value of the electric field strength or the power density measured with respect to the frequency sweep according to the following calculation rule. For example, according to the radio wave protection standard of the Japan Radio Industry Association, the limit value of the electric field strength or power density is determined as a reference value depending on the frequency. According to this standard, if there are multiple radio waves with different frequencies,
[0010]
[Expression 2]
Figure 0003698301
E fn : Electric field intensity at the reception frequency f n E gn : Electric field intensity reference value of the radio wave protection standard for the frequency f n , or
[0011]
[Equation 3]
Figure 0003698301
S fn : power density of the reception frequency f n
S gn : P calculated by the power density reference value of the radio wave protection standard for the frequency f n is 1 or less. The integration circuit 12 shown in FIG. 1 performs the integration of the equation (3) or (4). Frequency information necessary for integration is obtained from the control circuit 15. Such an integration circuit 12 can be realized by an A / D conversion circuit 12-1 and a numerical operation circuit 12-2 as shown in FIG. The A / D conversion circuit 12-1 converts the output signal of the detection circuit 4 into a digital code. The numerical operation circuit 12-2 performs the calculations of the equations (3) and (4) using this digital code as an input value. Further, the integration circuit 12 may calculate the electric field strength or power density from the detection circuit output voltage at each frequency interval of the detection circuit 4 and simply integrate it.
[0012]
The display circuit 5 displays the frequency spectrum of the electric field strength or power density represented by the equations (1) and (2). Further, the value of P calculated by the expression (3) or (4) is displayed.
With the configuration as described above, the electric field strength or power density for each frequency can be measured, so that the reference value defined in the radio wave protection standard can be easily compared with the electromagnetic field strength at the point. Further, by increasing the gain of the intermediate frequency amplifier circuit 9, the sensitivity can be improved as compared with the conventional electric field strength measuring device.
Examples of the invention of this embodying some shown in FIG.
[0013]
1 is different from the configuration of FIG. 1 in that three antennas, an x-axis antenna 2-1, a y-axis antenna 2-2, and a z-axis antenna 2-3, and an antenna switching circuit 20 are provided. The control circuit 15 performs antenna switching control together with designation of the frequency for the local oscillation circuit 11.
The field strength or power density received by the x-axis antenna 2-1 is Ex, Sx, and the field strength or power density received by the y-axis antenna 2-2 is Ey, Sy, the field strength received by the z-axis antenna 2-3 or When the power density is Ez, Sz, the integration circuit is [0014]
[Expression 4]
Figure 0003698301
Or
S = S x + S y + S z (6)
After the calculation of (3) or (4) is performed in the same manner as the integration circuit shown in FIG .
[0015]
As the three antennas, for example, dipole antennas arranged along the x-axis, y-axis, and z-axis of orthogonal coordinates are used. If such three antennas are used to perform the calculation of equation (5) or (6), the directivity characteristics of the entire antenna can be made equal. Therefore, the electric field strength or power density can be measured for radio waves coming from any direction.
Further illustrates an embodiment of the invention the part embodying this in FIG.
[0016]
1 is different from the configuration of FIG. 1 in that a level determination circuit 17 is inserted between the detection circuit 4 and the integration circuit 12.
The detection circuit output generates noise determined by the noise figure of the signal reception system. This noise causes an error in the integral value represented by the equations (3) and (4). In order to reduce this error, a level determination circuit 17 is provided.
When the converted value of the noise level to the electric field strength is E noise and the converted value to the power density is S noise , the level judgment circuit 17 has the measured electric field strength Em and the electric power density Sm larger than E noise or S noise. It is determined whether or not. The integrating circuit 12 determines that this determination result is
Em> E noise (7)
Sm> S noise (8)
Only during the integration, the integration shown by the equations (3) and (4) is performed. As shown in FIG. 4, the level determination circuit 17 can be composed of an operational amplifier 17-1, a switch 17-2, and the like. As the reference voltage 17-3 connected to the non-inverting input of the operational amplifier 17-1, the switch 17-2 is closed when E noise or S noise is exceeded. Such level determination can be realized by configuring the level determination circuit and the integration circuit with numerical operation circuits as shown in FIG. In this configuration, the A / D conversion circuit 19-1 converts the detection circuit output signal into a digital code, and then the level determination numerical operation circuit 19-2 performs the level determination shown by the equations (7) and (8). The numerical operation circuit for integration 19-3 performs integration shown by the equations (3) and (4) only when E noise or S noise or more.
[0017]
By performing such level determination, it is possible to prevent the noise level from being integrated, so that the error of the integrated value can be reduced.
The overall structure of the real施例of this invention is shown in FIG.
6 is different from the configuration shown in FIG. 6 in that a level determination circuit 17 is provided between the detection circuit 4 and the integration circuit 12.
Similar to the level determination circuit 17 shown in FIG. 3, the level determination circuit 17 having this configuration determines whether the measured electric field strength Em and power density Sm are larger than E noise or S noise . The integration circuit is
Em> E noise (7)
Sm> S noise (8)
Only during the integration, the integration shown by the equations (3) and (4) is performed.
[0018]
Even when three antennas 2-1, 2-2, and 2-2 are used, by performing such level determination, it is possible to prevent the noise level from being integrated, so that the error of the integrated value can be reduced. .
[0019]
【The invention's effect】
Even if the frequency component of the radio wave arriving at the point is unknown, the radio field intensity determined by the radio wave protection standard can be compared with the radio wave intensity at the point with the electric field intensity measuring device of the present invention.
In addition, since the field strength measuring device of the present invention is based on a superheterodyne reception type reception circuit, the reception sensitivity is higher than that of a conventional field strength meter of the direct reception type. Can be compared.
[Brief description of the drawings]
1 is a block diagram showing an example of the basic configuration of the invention of this.
FIG. 2 is a block diagram illustrating a configuration example of an integration circuit.
FIG. 3 is a block diagram showing an embodiment of the invention according to claim 3;
FIG. 4 is a block diagram illustrating a configuration example of a level determination circuit.
FIG. 5 is a block diagram illustrating an example in which a level determination circuit and an integration circuit are configured by numerical operation circuits.
FIG. 6 is a block diagram showing an embodiment of the invention according to claim 2;
FIG. 7 is a block diagram showing another embodiment of the invention as set forth in claim 3;
FIG. 8 is a block diagram showing a conventional example of a field strength measuring device.
[Explanation of symbols]
2 Broadband antenna 4 Detection circuit 5 Display circuit 7 Mixer circuit 8 Band limiting filter 9 Intermediate frequency amplifier circuit
11 Local oscillator circuit
12 Integration circuit
15 Control circuit
17 Level judgment circuit
20 switching circuit

Claims (1)

x軸アンテナ、y軸アンテナ、z軸アンテナの3本の広帯域アンテナと、
前記x軸アンテナ、前記y軸アンテナ、前記z軸アンテナから一本のアンテナを選択する切替え回路と、
前記切替え回路により選択された一本の広帯域アンテナの出力信号を中間周波数の信号に変換するためのミクサ回路と、
外部からの周波数制御信号に従った周波数の信号を前記ミクサ回路の局部信号として供給する局部発振回路と、
前記ミクサ回路の出力信号のうち特定の周波数成分の信号を通過する帯域制限フィルタと、
前記帯域制限フィルタの出力信号を増幅する中間周波数増幅回路と、
前記中間周波数増幅回路の出力信号の電圧または電力に比例した電圧を発生する検波回路と、
前記制御回路の命令した周波数間隔毎の前記検波回路の出力電圧から前記3本のアンテナの電界強度の自乗和の平方あるいは電力密度の和を演算し、前記電界強度の自乗和の平方が雑音レベルの電界強度への換算値あるいは前記電力密度の和が雑音レベルの電力密度への換算値以下か否かを判定し、換算値以下でない電界強度の自乗和の平方あるいは電力密度の和を出力するレベル判定回路と、
指定された下限周波数から上限周波数まで指定された周波数間隔で前記局部発振回路を動作させるための命令を行い、前記x軸アンテナ、前記y軸アンテナ、前記z軸アンテナを順次選択する制御回路と、
前記制御回路の命令した周波数間隔毎の前記判定回路から電界強度の自乗和の平方あるいは電力密度の和を、前記周波数間隔毎の電界強度基準値あるいは電力密度基準値で除算して積分する積分回路と、
前記積分結果を表示する表示回路から構成されること
を特徴とする周波数掃引形電界強度測定装置。
three broadband antennas, an x-axis antenna, a y-axis antenna, and a z-axis antenna;
A switching circuit for selecting one antenna from the x-axis antenna, the y-axis antenna, and the z-axis antenna;
A mixer circuit for converting the output signal of one wide-band antenna selected by the switching circuit into an intermediate frequency signal;
A local oscillation circuit that supplies a signal having a frequency according to an external frequency control signal as a local signal of the mixer circuit;
A band limiting filter that passes a signal of a specific frequency component of the output signal of the mixer circuit;
An intermediate frequency amplification circuit for amplifying the output signal of the band limiting filter;
A detection circuit that generates a voltage proportional to the voltage or power of the output signal of the intermediate frequency amplifier circuit;
It calculates the sum of the square root or power density of the sum of the squares of the field strength of the three antennas from the output voltage of the detection circuit for each frequency interval and command of the control circuit, the square root of the square sum of the electric field intensity the sum of the converted value or the power density of the field strength of the noise level is determined whether the following conversion value of the noise level to the power density, the sum of the square root or power density of the sum of the squares of the electric field intensity not less conversion value A level determination circuit that outputs
A control circuit that performs an instruction to operate the local oscillation circuit at a specified frequency interval from a specified lower limit frequency to an upper limit frequency, and sequentially selects the x-axis antenna, the y-axis antenna, and the z-axis antenna;
Wherein the sum of the square root or power density of the sum of the squares of the electric field intensity from the determination circuit of each instruction to the frequency intervals of the control circuit, for integrating and dividing the field strength reference value or power density reference value for each of the frequency interval integral Circuit,
A frequency sweep type electric field strength measuring device comprising a display circuit for displaying the integration result.
JP35952999A 1999-12-17 1999-12-17 Frequency sweep type electric field strength measuring device Expired - Fee Related JP3698301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35952999A JP3698301B2 (en) 1999-12-17 1999-12-17 Frequency sweep type electric field strength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35952999A JP3698301B2 (en) 1999-12-17 1999-12-17 Frequency sweep type electric field strength measuring device

Publications (2)

Publication Number Publication Date
JP2001174494A JP2001174494A (en) 2001-06-29
JP3698301B2 true JP3698301B2 (en) 2005-09-21

Family

ID=18464976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35952999A Expired - Fee Related JP3698301B2 (en) 1999-12-17 1999-12-17 Frequency sweep type electric field strength measuring device

Country Status (1)

Country Link
JP (1) JP3698301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829580B2 (en) * 2005-09-28 2011-12-07 アンリツ株式会社 Electric field strength measuring device
CN114034939B (en) * 2021-11-09 2022-09-23 南京大学 Low-frequency broadband electric field instrument based on charge induction
CN115236419B (en) * 2022-09-19 2022-12-02 中汽研新能源汽车检验中心(天津)有限公司 Electric field intensity calibration method for actual electromagnetic environment signal

Also Published As

Publication number Publication date
JP2001174494A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
KR100785079B1 (en) Impedance matching system and method thereof and network analyzer
US8073641B2 (en) Electromagnetic field distribution measuring method, apparatus for the method, computer program and information recording medium
US20070024293A1 (en) Method and apparatus of electromagnetic measurement
CN107959515B (en) Method and device for measuring noise power of multiple antennas
US9544070B2 (en) Frequency-converting sensor and system for providing a radio frequency signal parameter
US20060223440A1 (en) Low frequency noise source and method of calibration thereof
JP3698301B2 (en) Frequency sweep type electric field strength measuring device
JP2002296310A (en) Device and method for controlling display of electric power distribution
JP3374154B2 (en) Spectrum analyzer
CN111999567B (en) Radiation emission RE test equipment and test method
CN101598751B (en) Measuring method and measuring device of dynamic impedance of high-power radio-frequency module
JP5776495B2 (en) Gain measuring circuit, gain measuring method and communication apparatus
KR100540248B1 (en) Method for measuring gps air sensitivity and mobile terminal having function of measuring gps air sensitivity
CN210578575U (en) Wireless signal detection unit, detection system and detection instrument
Millenaar et al. SSSM system design considerations
JP2003315395A (en) Vector network analyzer and phase measuring method
JP2006322873A (en) Identifying method and system of propagation direction of conductive interference wave
KR100971767B1 (en) Automatic gain control apparatus and method
WO2014108204A1 (en) Impedance measurement system and mobile communication device comprising an impedance measurement system
KR101043789B1 (en) Power Detector and Power Detecting Method using Digital Signal Processing, and Recording Media Recording Program for Implementation thereof
KR20020054616A (en) Apparatus for gausing Voltage Standing Wave Ratio
CN216526050U (en) Radio comprehensive measuring device for detecting earth-satellite alignment
JPH0753317Y2 (en) Test adjuster
Omori et al. Integrated RF tunable filter based on recursive architecture and its application
CN111049538A (en) Method for improving antenna radiation based on antenna tuner output current detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees