JP3698107B2 - Novel separation membrane and method for producing the same - Google Patents

Novel separation membrane and method for producing the same Download PDF

Info

Publication number
JP3698107B2
JP3698107B2 JP2002038617A JP2002038617A JP3698107B2 JP 3698107 B2 JP3698107 B2 JP 3698107B2 JP 2002038617 A JP2002038617 A JP 2002038617A JP 2002038617 A JP2002038617 A JP 2002038617A JP 3698107 B2 JP3698107 B2 JP 3698107B2
Authority
JP
Japan
Prior art keywords
substituent
aromatic polyimide
sulfonic acid
separation membrane
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038617A
Other languages
Japanese (ja)
Other versions
JP2003236352A (en
Inventor
健一 岡本
徹治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002038617A priority Critical patent/JP3698107B2/en
Publication of JP2003236352A publication Critical patent/JP2003236352A/en
Application granted granted Critical
Publication of JP3698107B2 publication Critical patent/JP3698107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な膜及びガス分離膜に関し、特に、脱離した置換基に起因する分子レベルの空孔を含有し且つ芳香族ポリイミドに起因したイミド骨格を有する新規な膜及びガス分離膜、および、その製造方法に関する。
【0002】
【従来の技術】
ポリマーを素材とするガス分離膜は種々の用途で利用されている。特にポリイミドやポリスルホンなどのガラス状ポリマーからなるガス分離膜は分離度が高いので多用されている。しかしながら、ガラス状ポリマーガス分離膜には、ガスの分離度を高めるとガスの透過速度が低くなるので、ガス分離性能において改良の余地があった。
一方、例えば、特開昭60−179102号公報、特開平01−221518号公報などにおいて、ポリマー膜を高温で加熱処理して得られた、多孔性炭素膜が提案されている。このような多孔性炭素膜は、分子篩機構によるガス分離を可能にするものであり、改良されたガス分離性能が期待できるものであるが、多孔性炭化膜は極めて脆いものであり、実用的に使用することは容易でなかった。
特開平4−11933号公報、特開平04−193334号公報、特開平05−220360号公報には、芳香族ポリイミドからなる非対称性構造を有する中空糸膜を部分炭素化して、炭化膜に較べて機械的強度が改良された部分炭素化中空糸ガス分離膜が提案されている。
【0003】
【発明が解決しようとする課題】
本発明は、分子レベルの空孔による分子篩機構によって高性能ガス分離が可能であり且つ芳香族ポリイミドのイミド骨格を残存させることによって高い機械的強度を持った新規な膜及びガス分離膜を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものである。
すなわち、本発明は、脱離した置換基に起因する分子レベルの空孔を含有し且つ芳香族ポリイミドに起因したイミド骨格を有するガス分離膜に関し、脱離した置換基がスルホン酸基であること、置換基としてスルホン酸基を有する芳香族ポリイミド膜を置換基のスルホン酸基を脱離させ且つイミド骨格が残存するように加熱処理して得られたガス分離膜に関する。また、本発明は、加熱分解によって脱離し得る置換基を有する芳香族ポリイミド膜を置換基を脱離させ且つイミド骨格が残存するように加熱処理する工程、を含むことを特徴とする膜の製造方法に関し、脱離し得る置換基がスルホン酸基であること、加熱処理温度が300℃〜520℃であること、非酸化性雰囲気中で加熱処理をおこなうことに関する。
【0005】
【発明の実施の形態】
本発明のガス分離膜は、置換基を脱離させて形成した分子レベルの空孔を含有する膜であり、且つ、芳香族ポリイミドに起因したイミド骨格を有する新規なガス分離膜である。この膜は、分子レベルの空孔を含有しているために、分子篩機構により、すなわちガスをその分子の大きさによって分別してガス分離をおこなうことが可能である。また、芳香族ポリイミドに起因したイミド骨格を残存させているので、炭化膜のような脆さがなく、高い機械的強度を持っている。
【0006】
本発明のガス分離膜は、加熱分解によって脱離し得る置換基を有する芳香族ポリイミド膜を、置換基を加熱分解によって脱離させ且つイミド骨格は加熱分解しないで残存するように加熱することによって得ることができる。
剛直なマトリックスである芳香族ポリイミド膜から比較的低温で置換基が分解脱離することによって、置換基はガス透過チャンネル形成のためのテンプレート役を果たす。
本発明において、加熱分解によって脱離する置換基は比較的低温で分解してガスとして脱離するものでなければならない。本発明の脱離する置換基としてはスルホン酸基およびスルホン酸誘導体基が好適である。また、芳香族ポリイミドは、前記置換基が分解して脱離する加熱処理において、その形態を保持して置換基が有していた空間を空孔として保持できるものでなければならない。用いられる芳香族ポリイミドはTgが高いのもが好ましいが、加熱処理温度よりTgが低くても、分子鎖中に部分的に剛直なセグメントを有し、置換基の加熱分解温度において分子鎖の自由な動きを抑制して置換基が有していた空間を空孔として保持できるものであれば、構わない。脂肪族ポリイミドは、置換基を加熱分解して脱離したとき、置換基が有していた空間を空孔として保持できないので本発明のガス分離膜を得ることはできない。
【0007】
本発明において、脱離した置換基に起因する空孔は、より多数個であることが好ましい。したがって、加熱処理前の脱離し得る置換基を有する芳香族ポリイミドは、そのモノマー成分において、酸成分及び/又はジアミン成分の30モル%以上、更に50モル%以上、特に70モル%以上が一つ以上の前記置換基を有するものが好ましい。更に、加熱処理前の芳香族ポリイミド膜が有する脱離し得る置換基は、FTIRスペクトラムのピーク面積から換算して、少なくとも約20%以上が脱離すること好ましい。加熱処理前の芳香族ポリイミド膜が有する脱離し得る置換基は、より好ましくは、50%以上、更に約80%以上、特に約90%以上が脱離して空孔を形成することが好適である。一部の置換基が残存していても構わない。置換基を完全に脱離させようとすると、イミド骨格の一部が分解して機械的強度の低下がおこったり、加熱処理が効率的でなくなる場合がある。
【0008】
芳香族ポリイミドは、通常、加熱されると、より低温でイミド骨格が分解し次いでより高温で芳香環の分解が起る。本発明では、置換基を脱離させるための加熱処理時に、芳香族ポリイミドのイミド骨格が実質上保持されるようにおこなわれなければならない。芳香族ポリイミド鎖間の架橋反応やイミド骨格の一部の分解は、得られる分離膜の機械的強度が保持される範囲内で許容される。加熱処理前の芳香族ポリイミドに含有されていたイミド環のうち、FTIRスペクトラムのピーク面積から換算して、約70モル%以上好ましくは約90モル%以上のイミド環が保持されることが好ましい。
置換基を加熱分解して脱離するための加熱処理温度は、300℃〜520℃、好ましくは320℃〜500℃、更に好ましくは350℃〜480℃である。この温度範囲で加熱処理することによって、芳香族ポリイミドのイミド骨格を実質上保持しながら、スルホン酸基からなる置換基のほとんどを加熱分解して脱離させ、置換基に起因した空孔を形成することが可能になる。加熱処理温度が300℃未満では、スルホン酸基の脱離が十分におこなわれないためにガス分離性能を改良することができないし、また、加熱処理温度が520℃を越えると芳香族ポリイミドのイミド骨格が保持できなくなって、得られる分離膜は脆くなって実用的に使用することが困難になってくる。
また、置換基を加熱分解して脱離するための加熱処理は、酸化性雰囲気中でおこなうこともできるが、非酸化性雰囲気中、特に、HeガスやNガスなどの不活性ガスを加熱処理する芳香族ポリイミド膜に触れるように流して、発生する分解ガスを速やかに除去しながらおこなうことが好適である。
【0009】
本発明の、置換基としてスルホン酸基を有する芳香族ポリイミドは、ホモポリイミドでもコポリイミドでも構わない。また、前記スルホン酸基を有する芳香族ポリイミドの製造方法は特に限定はなく、特開平6−87957号公報、特開平8−333452号公報、特開平9−10567号公報、特開平10−168188号公報、特表2000−510511号公報などが開示している公知の方法によって得ることができる。
即ち、芳香族テトラカルボン酸類とスルホン酸基を持つ芳香族ジアミンを含むジアミンとを溶媒中で重合してポリアミド酸とし、これを加熱イミド化又は化学イミド化する方法や、芳香族テトラカルボン酸類とスルホン酸アンモニウム基を有する芳香族ジアミンとをフェノール溶媒中で重合イミド化し、これを酸処理してスルホン酸アンモニウム基をスルホン酸基に変換する方法や、芳香族ポリイミド直接スルホン化する方法などを用いることができる。
【0010】
本発明で用いられる置換基としてスルホン酸基を有する芳香族ポリイミドのテトラカルボン酸成分は、特に限定するものではないが、1,4,5,8−ナフタレンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ピロメリット酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、3,4,9,10−ペリレンテトラカルボン酸、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸、m−(ターフェニル)3,4,3’,4’−テトラカルボン酸またはそれらの酸二無水物やエステル化物を挙げることができる。
【0011】
また、本発明で用いられる置換基としてスルホン酸基を有する芳香族ポリイミドのジアミン成分は、特に限定するものではないが、2,2’−ベンジジンジスルホン酸(以下、BDSAと略記することもある。)、4,4’−オキシジアニリン−2,2’−ジスルホン酸(以下、ODADSと略記することもある。)、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン−ジスルホン酸(以下、BAHFDSと略記することもある。)、9,9−ビス(4−アミノフェニル)フルオレン−2,7−ジスルホン酸、4,4’−ビス(4−アミノフェノキシ)ビフェニル−3,3’−ジスルホン酸、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン−3,3’−ジスルホン酸およびそれらの塩を挙げることができる。
【0012】
本発明のガス分離膜は、平膜でも中空糸膜でも構わない。ガス分離膜として有効膜面積を高めるためには中空糸膜がより好適である。更に、均質膜でも不均質膜でも構わない。不均質膜としては、多孔性の基材と本発明の分離膜とを複合した複合膜でもよく、非対称膜でも構わない。ガス分離効率を考慮すると、本発明のガス分離膜は非対称中空糸膜が好ましい。
本発明において、置換基を有する芳香族ポリイミドで平膜や非対称中空糸膜の形態を形成したあとで、スルホン酸アンモニウム基をスルホン酸基に変換したり、加熱処理によって置換基を脱離させて本発明のガス分離膜とすることが好適である。製膜や中空糸膜の紡糸は従来公知の方法を用いることができる。
【0013】
【実施例】
以下実施例によって本発明を更に詳細に説明する。尚、本発明は以下の実施例に限定されるものではない。
【0014】
(実施例1)
BDSA8ミリモルと9,9−ビス(4−アミノフェニル)フルオレン(以下、BAPFと略記することもある。)2ミリモルとトリエチルアミン3.5ミリリットルとを、50ミリリットルのm−クレゾールに添加し、ジアミンが完全に溶解したあと、1,4,5,8−ナフタレンテトラカルボン酸二無水物(以下、NTDAと略記することもある。)10ミリモルと1.55gの安息香酸とを添加し、80℃で4時間、180℃で20時間加熱攪拌した。室温まで冷却後、溶液を多量のアセトンに投入し、析出した固体をろ過、乾燥した。得られた生成物の溶液粘度ηsp/c(溶媒:m−クレゾール)が10であった。この生成物を、また、m−クレゾールに溶解し、ガラス板上に流延し、120℃で10時間乾燥することによって、柔軟性を持ったスルホン酸トリエチルアミン塩型フィルムを得ることができた。これを60℃のメタノールに1時間浸漬し、次いで、1N−HCl水溶液に5時間浸漬し、プロトン交換した後、水洗し、150℃で10時間真空乾燥して、スルホン酸基を有する芳香族ポリイミドフィルムを得た。このフィルムの厚さは約20μmであった。このフィルムのIR吸収およびH−NMRスペクトルを測定し、トリエチルアミンのアルキル基のシグナルが完全に消滅していることを確認し、完全にプロトン交換されていることを確認した。
【0015】
Rigaku製 TG−8120とShimazu製 GCMS−QP5050を用いて、前記スルホン酸基を有する芳香族ポリイミドフィルムをHeガス雰囲気中5℃/分で昇温した時の、加熱減量と脱離したガスの分析をおこなった。結果を図1に示す。
110℃から450℃までで、15重量%の減量が観察された。この段階では、主に水分とスルホン酸基が加熱分解して生じると考えられるSOガスが発生するが、ポリイミド骨格が分解した場合に発生すると考えられるCOやCOの発生は極めて少ない。ポリイミドのイミド骨格の分解に起因すると考えられるCOやCOの発生は450℃以降増大し、580℃で最大になった。
【0016】
【図1】

Figure 0003698107
【0017】
前記スルホン酸基を有する芳香族ポリイミドフィルムを、Nガスが100ミリリットル/分で流れる雰囲気中で5℃/分で昇温し、450℃にて1.5時間加熱処理した。得られたフィルムは、加熱処理前のフィルムと同様に柔軟性をもっており容易に破損するものではなかった、また、そのFTIRスペクトラムを測定したところ、加熱処理前のフィルムで観察されたS=0に帰属する1099cm−1及び1031cm−1のピークがなくなっていたが、加熱処理前のフィルムで観察されたポリイミド骨格に帰属する吸収ピークはほぼそのまま観察された。
【0018】
前記の熱処理後のフィルムについて、CO、O、オレフィン、パラフィンの各純粋ガスのガス透過性能を、35℃、供給圧力1気圧にて、高真空タイムラグ法によって測定した。測定結果を表1に示した。
【0019】
(実施例2〜4)
表1に示したテトラカルボン酸成分とジアミン成分とからなる芳香族ポリイミドのフィルムを実施例と同様の方法にて作製し、更に、実施例1と同様の条件にて加熱処理した。得られたフィルムは、FTIRスペクトラム測定によって、スルホン酸基が脱離しており且つポリイミド骨格が残存していることを確認した。これらのフィルムのガス透過性能を実施例1と同様にして測定した。結果を表1に示した。
【0020】
(比較例1)
実施例1の加熱処理する前の、スルホン酸基を置換基として有する芳香族ポリイミドフィルムについて、実施例1と同様にしてガス透過性能を測定した。結果を表1に示した。
【0021】
【表1】
Figure 0003698107
尚、用いたテトラカルボン酸成分およびジアミン成分の化学構造式は以下のとおりである。
【化1】
Figure 0003698107
【化2】
Figure 0003698107
【0022】
表1から、本発明のガス分離膜は、加熱処理前のスルホン酸基含有ポリイミドに比較して、COガス、Oガス、及び、Cガスのガス透過速度が数百倍と極めて高いものであり、しかも、CガスとCガス、又、CガスとCガスのような通常のポリマーからなるガス分離膜では分離が極めて難しいガスの分離を容易するものである。
【0023】
【発明の効果】
本発明は、以上説明したようなものであるので、以下の効果を奏する。
即ち、本発明は、分子篩機構によるガス分離が可能であり、しかも、機械的強度が極めて優れた、高性能ガス分離膜を提供する。また、本発明は、脱離した置換基に起因する分子レベルの空孔を多数個含有し且つ芳香族ポリイミドに起因したイミド骨格を有する新規な膜を提供する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel membrane and a gas separation membrane, and in particular, a novel membrane and a gas separation membrane containing molecular-level vacancies resulting from a detached substituent and having an imide skeleton resulting from an aromatic polyimide, And it is related with the manufacturing method.
[0002]
[Prior art]
Gas separation membranes made of polymers are used in various applications. In particular, gas separation membranes made of glassy polymers such as polyimide and polysulfone are frequently used because of their high degree of separation. However, the glassy polymer gas separation membrane has room for improvement in gas separation performance because the gas permeation rate decreases when the degree of gas separation is increased.
On the other hand, for example, JP-A-60-179102 and JP-A-01-221518 propose a porous carbon film obtained by heat-treating a polymer film at a high temperature. Such a porous carbon membrane enables gas separation by a molecular sieving mechanism, and improved gas separation performance can be expected. However, a porous carbon membrane is extremely brittle and is practically used. It was not easy to use.
In Japanese Patent Laid-Open Nos. 4-11933, 04-193334, and 05-220360, a hollow fiber membrane having an asymmetric structure made of an aromatic polyimide is partially carbonized and compared with a carbonized membrane. A partially carbonized hollow fiber gas separation membrane with improved mechanical strength has been proposed.
[0003]
[Problems to be solved by the invention]
The present invention provides a novel membrane and a gas separation membrane capable of high-performance gas separation by a molecular sieving mechanism with pores at a molecular level and having high mechanical strength by leaving an imide skeleton of an aromatic polyimide. For the purpose.
[0004]
[Means for Solving the Problems]
The present invention has been made to achieve the above object.
That is, the present invention relates to a gas separation membrane that contains molecular-level vacancies due to a detached substituent and has an imide skeleton due to an aromatic polyimide, and the detached substituent is a sulfonic acid group. The present invention relates to a gas separation membrane obtained by subjecting an aromatic polyimide membrane having a sulfonic acid group as a substituent to heat treatment so that the sulfonic acid group of the substituent is eliminated and an imide skeleton remains. The present invention also includes a step of heat-treating an aromatic polyimide film having a substituent that can be removed by thermal decomposition so that the substituent is eliminated and the imide skeleton remains. Regarding the method, the detachable substituent is a sulfonic acid group, the heat treatment temperature is 300 ° C. to 520 ° C., and the heat treatment is performed in a non-oxidizing atmosphere.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The gas separation membrane of the present invention is a novel gas separation membrane that contains molecular-level vacancies formed by elimination of substituents and has an imide skeleton derived from aromatic polyimide. Since this membrane contains pores at the molecular level, it is possible to perform gas separation by a molecular sieving mechanism, that is, by separating the gas according to its molecular size. Moreover, since the imide skeleton resulting from the aromatic polyimide is left, it is not brittle like a carbonized film and has high mechanical strength.
[0006]
The gas separation membrane of the present invention is obtained by heating an aromatic polyimide membrane having a substituent that can be removed by thermal decomposition so that the substituent is removed by thermal decomposition and the imide skeleton remains without thermal decomposition. be able to.
Substituent groups decompose and desorb at a relatively low temperature from the aromatic polyimide film, which is a rigid matrix, so that the substituent groups serve as templates for gas permeable channel formation.
In the present invention, a substituent that is eliminated by thermal decomposition must be decomposed at a relatively low temperature and eliminated as a gas. As the leaving group of the present invention, a sulfonic acid group and a sulfonic acid derivative group are preferable. In addition, the aromatic polyimide must be able to retain the form and retain the space of the substituent as a void in the heat treatment in which the substituent is decomposed and eliminated. The aromatic polyimide used preferably has a high Tg, but even if the Tg is lower than the heat treatment temperature, it has a partially rigid segment in the molecular chain, and the molecular chain is free at the thermal decomposition temperature of the substituent. Any movement can be used as long as it can suppress the movement and retain the space of the substituent as a hole. The aliphatic polyimide cannot obtain the gas separation membrane of the present invention because when the substituent is thermally decomposed and removed, the space that the substituent has cannot be retained as a void.
[0007]
In the present invention, it is preferable that the number of vacancies resulting from the detached substituent is more. Therefore, the aromatic polyimide having a detachable substituent before the heat treatment is such that the monomer component contains at least 30 mol%, more preferably at least 50 mol%, particularly at least 70 mol% of the acid component and / or diamine component. Those having the above substituents are preferred. Furthermore, it is preferable that at least about 20% or more of the detachable substituents of the aromatic polyimide film before the heat treatment are desorbed in terms of the peak area of the FTIR spectrum. More preferably, the aromatic polyimide film before the heat treatment has a detachable substituent, preferably 50% or more, more preferably about 80% or more, particularly about 90% or more, to form vacancies. . Some substituents may remain. If an attempt is made to completely remove the substituent, a part of the imide skeleton may be decomposed to lower the mechanical strength, or the heat treatment may not be efficient.
[0008]
In general, when an aromatic polyimide is heated, the imide skeleton is decomposed at a lower temperature and then the aromatic ring is decomposed at a higher temperature. In the present invention, the imide skeleton of the aromatic polyimide must be substantially retained during the heat treatment for removing the substituent. Cross-linking reaction between aromatic polyimide chains and partial decomposition of the imide skeleton are allowed as long as the mechanical strength of the resulting separation membrane is maintained. Of the imide rings contained in the aromatic polyimide before the heat treatment, it is preferable that about 70 mol% or more, preferably about 90 mol% or more of imide rings are retained in terms of the peak area of the FTIR spectrum.
The heat treatment temperature for decomposing and desorbing the substituent is 300 ° C. to 520 ° C., preferably 320 ° C. to 500 ° C., more preferably 350 ° C. to 480 ° C. By heat-treating within this temperature range, while maintaining the imide skeleton of the aromatic polyimide, most of the substituents consisting of sulfonic acid groups are thermally decomposed and eliminated to form vacancies due to the substituents. It becomes possible to do. If the heat treatment temperature is less than 300 ° C., the sulfonic acid group is not sufficiently eliminated, so that the gas separation performance cannot be improved. If the heat treatment temperature exceeds 520 ° C., the imide of the aromatic polyimide Since the skeleton cannot be retained, the resulting separation membrane becomes brittle and difficult to use practically.
In addition, the heat treatment for decomposing and desorbing substituent groups can be performed in an oxidizing atmosphere, but in a non-oxidizing atmosphere, in particular, an inert gas such as He gas or N 2 gas is heated. It is preferable to flow while touching the aromatic polyimide film to be treated while promptly removing the generated decomposition gas.
[0009]
The aromatic polyimide having a sulfonic acid group as a substituent of the present invention may be a homopolyimide or a copolyimide. The method for producing the aromatic polyimide having a sulfonic acid group is not particularly limited, and JP-A-6-87957, JP-A-8-333352, JP-A-9-10567, and JP-A-10-168188. It can be obtained by a known method disclosed in Japanese Patent Publication No. 2000-510511.
That is, aromatic tetracarboxylic acids and a diamine containing an aromatic diamine having a sulfonic acid group are polymerized in a solvent to form a polyamic acid, which is heated imidized or chemically imidized, and aromatic tetracarboxylic acids and A method in which an aromatic diamine having an ammonium sulfonate group is polymerized and imidized in a phenol solvent, and this is acid-treated to convert an ammonium sulfonate group into a sulfonic acid group, or a method in which an aromatic polyimide is directly sulfonated is used. be able to.
[0010]
The tetracarboxylic acid component of the aromatic polyimide having a sulfonic acid group as a substituent used in the present invention is not particularly limited, but 1,4,5,8-naphthalenetetracarboxylic acid, 3,3 ′, 4 , 4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, pyromellitic acid, 2,2-bis (3 , 4-dicarboxyphenyl) propane, 3,4,9,10-perylenetetracarboxylic acid, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid, m- (terphenyl) 3,4,3 ′, 4 '-Tetracarboxylic acids or their acid dianhydrides and esterified products can be mentioned.
[0011]
Further, the diamine component of the aromatic polyimide having a sulfonic acid group as a substituent used in the present invention is not particularly limited, but may be abbreviated as 2,2′-benzidine disulfonic acid (hereinafter, BDSA). ), 4,4′-oxydianiline-2,2′-disulfonic acid (hereinafter sometimes abbreviated as ODADS), 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane -Disulfonic acid (hereinafter sometimes abbreviated as BAHFDS), 9,9-bis (4-aminophenyl) fluorene-2,7-disulfonic acid, 4,4'-bis (4-aminophenoxy) biphenyl- Mention may be made of 3,3′-disulfonic acid, 4,4′-bis (4-aminophenoxy) diphenylsulfone-3,3′-disulfonic acid and their salts. The
[0012]
The gas separation membrane of the present invention may be a flat membrane or a hollow fiber membrane. In order to increase the effective membrane area as a gas separation membrane, a hollow fiber membrane is more preferable. Further, it may be a homogeneous film or a heterogeneous film. The heterogeneous membrane may be a composite membrane obtained by combining a porous substrate and the separation membrane of the present invention, or an asymmetric membrane. Considering gas separation efficiency, the gas separation membrane of the present invention is preferably an asymmetric hollow fiber membrane.
In the present invention, after forming a flat membrane or an asymmetric hollow fiber membrane with an aromatic polyimide having a substituent, the ammonium sulfonate group is converted into a sulfonic acid group, or the substituent is eliminated by heat treatment. The gas separation membrane of the present invention is preferred. A conventionally known method can be used for film formation and spinning of the hollow fiber membrane.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.
[0014]
(Example 1)
8 mmol of BDSA and 2 mmol of 9,9-bis (4-aminophenyl) fluorene (hereinafter sometimes abbreviated as BAPF) and 3.5 ml of triethylamine are added to 50 ml of m-cresol, After complete dissolution, 10 mmol of 1,4,5,8-naphthalenetetracarboxylic dianhydride (hereinafter sometimes abbreviated as NTDA) and 1.55 g of benzoic acid are added, and the mixture is heated at 80 ° C. The mixture was stirred for 4 hours at 180 ° C. for 20 hours. After cooling to room temperature, the solution was poured into a large amount of acetone, and the precipitated solid was filtered and dried. The solution viscosity ηsp / c (solvent: m-cresol) of the obtained product was 10. This product was dissolved in m-cresol, cast on a glass plate, and dried at 120 ° C. for 10 hours to obtain a flexible sulfonic acid triethylamine salt type film. This is immersed in methanol at 60 ° C. for 1 hour, then immersed in 1N-HCl aqueous solution for 5 hours, exchanged with protons, washed with water, and vacuum-dried at 150 ° C. for 10 hours to obtain an aromatic polyimide having a sulfonic acid group. A film was obtained. The thickness of this film was about 20 μm. The IR absorption and H-NMR spectrum of this film were measured, and it was confirmed that the signal of the alkyl group of triethylamine was completely extinguished, and it was confirmed that the proton was completely exchanged.
[0015]
Using Rigaku TG-8120 and Shimazu GCMS-QP5050, analysis of heat loss and desorbed gas when the aromatic polyimide film having a sulfonic acid group was heated at 5 ° C./min in a He gas atmosphere. I did it. The results are shown in FIG.
A loss of 15% by weight was observed from 110 ° C. to 450 ° C. At this stage, SO 2 gas, which is considered to be generated mainly by thermal decomposition of moisture and sulfonic acid groups, is generated, but the generation of CO 2 and CO which are considered to be generated when the polyimide skeleton is decomposed is extremely small. The generation of CO 2 and CO, which is considered to be caused by the decomposition of the imide skeleton of polyimide, increased after 450 ° C. and reached a maximum at 580 ° C.
[0016]
[Figure 1]
Figure 0003698107
[0017]
The aromatic polyimide film having a sulfonic acid group was heated at 5 ° C./min in an atmosphere of N 2 gas flowing at 100 ml / min, and heat-treated at 450 ° C. for 1.5 hours. The obtained film was as flexible as the film before heat treatment and was not easily damaged. Further, when the FTIR spectrum was measured, S = 0 observed in the film before heat treatment was obtained. peak attribution to 1099cm -1 and 1031cm -1 were gone, but the absorption peak attributable to the polyimide skeleton observed in the film before the heat treatment was almost as observed.
[0018]
With respect to the film after the heat treatment, the gas permeation performance of each pure gas of CO 2 , O 2 , olefin, and paraffin was measured by a high vacuum time lag method at 35 ° C. and a supply pressure of 1 atm. The measurement results are shown in Table 1.
[0019]
(Examples 2 to 4)
An aromatic polyimide film composed of a tetracarboxylic acid component and a diamine component shown in Table 1 was produced in the same manner as in the example, and further heat-treated under the same conditions as in Example 1. The obtained film was confirmed by FTIR spectrum measurement to have a sulfonic acid group removed and a polyimide skeleton remaining. The gas permeation performance of these films was measured in the same manner as in Example 1. The results are shown in Table 1.
[0020]
(Comparative Example 1)
About the aromatic polyimide film which has a sulfonic acid group as a substituent before heat processing of Example 1, it carried out similarly to Example 1, and measured gas-permeation performance. The results are shown in Table 1.
[0021]
[Table 1]
Figure 0003698107
The chemical structural formulas of the tetracarboxylic acid component and the diamine component used are as follows.
[Chemical 1]
Figure 0003698107
[Chemical formula 2]
Figure 0003698107
[0022]
From Table 1, the gas separation membrane of the present invention has a gas permeation rate of CO 2 gas, O 2 gas, and C 2 H 4 gas several hundred times that of the sulfonic acid group-containing polyimide before heat treatment. Gas that is extremely high and difficult to separate with a gas separation membrane made of a normal polymer such as C 2 H 4 gas and C 2 H 6 gas, or C 3 H 6 gas and C 3 H 8 gas. Is easy to separate.
[0023]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained.
That is, the present invention provides a high-performance gas separation membrane capable of gas separation by a molecular sieving mechanism and having extremely excellent mechanical strength. In addition, the present invention provides a novel film containing a large number of molecular-level vacancies resulting from a detached substituent and having an imide skeleton resulting from an aromatic polyimide.

Claims (7)

脱離した置換基に起因する分子レベルの空孔を含有し且つ芳香族ポリイミドに起因したイミド骨格を有するガス分離膜。A gas separation membrane comprising molecular-level vacancies resulting from a detached substituent and having an imide skeleton resulting from an aromatic polyimide. 脱離した置換基がスルホン酸基である請求項1に記載のガス分離膜。The gas separation membrane according to claim 1, wherein the detached substituent is a sulfonic acid group. 置換基としてスルホン酸基を有する芳香族ポリイミド膜を、置換基のスルホン酸基を脱離させ且つイミド骨格が残存するように加熱処理して得られた請求項1〜2のいずれかに記載のガス分離膜。The aromatic polyimide film having a sulfonic acid group as a substituent is obtained by heat treatment so that the sulfonic acid group of the substituent is eliminated and the imide skeleton remains. Gas separation membrane. 加熱分解によって脱離し得る置換基を有する芳香族ポリイミド膜を、置換基を脱離させ且つイミド骨格が残存するように加熱処理する工程、を含むことを特徴とする膜の製造方法。A process for producing a film, comprising a step of heat-treating an aromatic polyimide film having a substituent that can be removed by thermal decomposition so that the substituent is eliminated and an imide skeleton remains. 脱離し得る置換基がスルホン酸基である請求項4に記載の膜の製造方法。The method for producing a membrane according to claim 4, wherein the detachable substituent is a sulfonic acid group. 加熱処理温度が300℃〜520℃である請求項4〜5のいずれかに記載の膜の製造方法。The method for producing a film according to any one of claims 4 to 5, wherein the heat treatment temperature is from 300C to 520C. 非酸化性雰囲気中で加熱処理をおこなうことを特徴とする請求項4〜6のいずれかに記載の膜の製造方法。The method for producing a film according to any one of claims 4 to 6, wherein the heat treatment is performed in a non-oxidizing atmosphere.
JP2002038617A 2002-02-15 2002-02-15 Novel separation membrane and method for producing the same Expired - Fee Related JP3698107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038617A JP3698107B2 (en) 2002-02-15 2002-02-15 Novel separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038617A JP3698107B2 (en) 2002-02-15 2002-02-15 Novel separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003236352A JP2003236352A (en) 2003-08-26
JP3698107B2 true JP3698107B2 (en) 2005-09-21

Family

ID=27779887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038617A Expired - Fee Related JP3698107B2 (en) 2002-02-15 2002-02-15 Novel separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3698107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891499B2 (en) 2006-11-29 2011-02-22 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2569081B1 (en) 2010-05-13 2017-08-23 Air Products and Chemicals, Inc. Polymers, polymer membranes and methods of producing the same
WO2023112803A1 (en) * 2021-12-14 2023-06-22 日東電工株式会社 Separation functional layer, separation membrane, and method for producing separation functional layer
WO2024014285A1 (en) * 2022-07-15 2024-01-18 日東電工株式会社 Separation membrane and method for manufacturing same
WO2024101000A1 (en) * 2022-11-11 2024-05-16 日東電工株式会社 Separation membrane and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891499B2 (en) 2006-11-29 2011-02-22 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003236352A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
Tullos et al. Thermal conversion of hydroxy-containing imides to benzoxazoles: polymer and model compound study
JP5265763B2 (en) Hollow fiber, dope solution composition for forming hollow fiber, and method for producing hollow fiber using the same
KR102205657B1 (en) Method of producing a thermally rearranged pbx, thermally rearranged pbx and membrane
JPH0829239B2 (en) Polyimide gas separation membrane
KR101466918B1 (en) Membranes for flue gas separation comprising crosslinked thermally rearranged poly(benzoxazole-co-imide) and preparation method thereof
JPS6153103B2 (en)
JPH01159024A (en) Gas separation membrane
CN108114615A (en) A kind of polyimide gas separating film material and preparation and application
JP3698107B2 (en) Novel separation membrane and method for producing the same
WO2017130604A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
KR20160011851A (en) Fluorinated thermally rearranged polymer gas separation membrane for separation of natural gas and preparation method thereof
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
KR102152278B1 (en) BCDA-based semi-alicyclic polyimide membrane materials for gas separation and the preparation method thereof
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
CN114591503B (en) Soluble poly (benzimidazole-co-imide) polymer and preparation and application thereof
KR20150144848A (en) Gas separation membrane for oxygen gas and nitrogen gas, and the method for preparing thereof
KR101572512B1 (en) Method for preparation of crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for flue gas separation and membranes for flue gas separation prepared thereby
KR20150004239A (en) Crosslinked thermally rearranged poly(benzoxazole-co-imide), gas separation membranes comprising the same and preparation method thereof
CN114797506A (en) Preparation method and application of ionized polyimide gas separation membrane
CN110655647A (en) Thermo-rearrangement poly (benzoxazole-co-amide) copolymer film and preparation and application thereof
KR100351628B1 (en) New polyimides and gas separation Membrane
KR101599898B1 (en) Method for preparation of crosslinked thermally rearranged poly(benzoxazole-co-imide) for gas separation and gas separation membranes prepared thereby
JPH0679151A (en) Polyimide separation film
KR101557363B1 (en) Membranes for flue gas separation comprising crosslinked thermally rearranged poly(benzoxazole-co-imide) and preparation method thereof
KR101772647B1 (en) Crosslinked thermally rearranged poly(benzoxazole-co-imide), gas separation membranes comprising the same and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees