JP3697860B2 - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP3697860B2
JP3697860B2 JP27456097A JP27456097A JP3697860B2 JP 3697860 B2 JP3697860 B2 JP 3697860B2 JP 27456097 A JP27456097 A JP 27456097A JP 27456097 A JP27456097 A JP 27456097A JP 3697860 B2 JP3697860 B2 JP 3697860B2
Authority
JP
Japan
Prior art keywords
variator
shaft
input
output
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27456097A
Other languages
Japanese (ja)
Other versions
JPH11108148A (en
Inventor
慎司 宮田
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP27456097A priority Critical patent/JP3697860B2/en
Publication of JPH11108148A publication Critical patent/JPH11108148A/en
Application granted granted Critical
Publication of JP3697860B2 publication Critical patent/JP3697860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば自動車用の変速機として用いるトロイダル形無段変速装置に関する。
【0002】
【従来の技術】
例えば自動車用変速機として用いるトロイダル形無段変速装置は、例えば、特表平5−502498号公報で知られている。これは駆動源により回転駆動される入力軸と、この入力軸の回転に基づく動力を取出す出力軸と、前記入力軸と前記出力軸との間に配置された速度比変更装置としてのバリエータと遊星歯車機構とを備えている。
【0003】
前記バリエータは、入力軸に嵌着された一対の入力ディスクと、一対の入力ディスクの間に入力軸に嵌合された状態に設けられた出力ディスクと、入力ディスクと出力ディスクに転接するパワーローラとから構成されている。
【0004】
前記特表平5−502498号公報のバリエータの入力ディスクと出力ディスクのトラクション部の有効径は略等しく、つまり、それぞれが対称の形をなしている。さらに、出力ディスクの外周縁にギヤが一体に設けられ、このギヤはチェーンを介して動力伝達軸に設けられたギヤと連動している。
【0005】
【発明が解決しようとする課題】
しかしながら、ギヤードニュートラル方式を採用したトロイダル形無段変速装置は、モードチェンジはバリエータの最大減速の時に起きるため、一般的には、特にFR車の場合には、バリエータの最大減速比の逆数と出力ディスクの間から遊星歯車機構に入力されるまでの歯車対のトータルの減速比が等しく設定されている。
【0006】
そこで、特表平5−502498号公報のように、バリエータの入力ディスクと出力ディスクのトラクション部の有効径は略等しく、それぞれが対称の形状の場合、出力ディスクの間から遊星歯車機構に入力されるまでの歯車対のトータルの減速比が小さくなる。つまり、大きな増速が必要となり、設計上の制約を受けるという問題がある。
【0007】
さらに、出力ディスクの外周縁にギヤを設けた場合、入力ディスクよりも出力ディスクが大径になってしまい、その分重量が増し、しかも歯車のピッチ円が大きくなるため、入力軸と動力伝達軸との軸間距離を大きくとらなければならず、トロイダル形無段変速装置が大型化するという問題がある。
【0008】
また、一般的には、バリエータは、減速側の方がトラクション部の面圧が大きくなるため、大トルク用の無段変速装置を設計する場合、対称形状のバリエータを設計を試みると、ディスクキャビティが大きくなるという問題がある。
【0009】
この発明は、前記事情に着目してなされたもので、その目的とするところは、バリエータの最大減速比が小さくなり、大きな増速比が必要としないため、設計上の制約を受けることが少なく、軽量、コンパクト化かを図ることができるトロイダル形無段変速装置を提供することにある。
【0010】
【課題を解決するための手段】
この発明は、前記目的を達成するために、請求項1は、駆動源により回転駆動される入力軸と、この入力軸の回転に基づく動力を取出す出力軸と、前記入力軸と前記出力軸との間に該入力軸および出力軸と同一軸線上に直列に配置されたバリエータおよび遊星歯車機構とを備え、前記バリエータは、一対の入力ディスクと、これら一対の入力ディスクの間に設けられた出力ディスクを有し、低速モードでは前記遊星歯車機構からカウンタ軸を介して前記バリエータに動力循環させ、高速モードで動力循環させないで前記入力軸を前記バリエータと前記カウンタ軸を介して前記遊星歯車機構に直結するトロイダル形無段変速装置において、前記出力ディスクの外径を前記入力ディスクの外径よりも小さくし、かつ、前記バリエータの変速比幅をλとしたとき、モードチェンジする際のバリエータの変速比の値を√λ未満としたことを特徴とする。
【0011】
請求項1によれば、モードチェンジする際のバリエータの変速比の値を√λ未満とすることにより、バリエータの最大減速比が小さくなり、出力ディスクから遊星歯車機構までの歯車対のトータルの減速比が1に近くなる。つまり、大きな増速比が必要とならない。
【0012】
【発明の実施の形態】
以下、この発明の各実施の形態を図面に基づいて説明する。
図1及び図2は第1の実施形態を示し、図1はダブルキャビティ式トロイダル形無段変速装置の系統図、図2はバリエータの縦断側面図である。図1は第1の実施形態のダブルキャビティ式ハーフトロイダル形無段変速装置の系統図である。図中1はトロイダル形無段変速装置であって、バリエータ2と遊星歯車機構3を備えている。バリエータ2は、固定部にベアリング等を介して回転自在に支持され、かつ一端側がエンジン等の駆動源4に連結される入力軸5を備えている。
【0013】
入力軸5にはローディングカム6が設けられている。このローディングカム6を介してバリエータ2に動力が伝達されるようになっている。バリエータ2にはローディングカム6と連動して回転する動力伝達軸7が設けられ、この動力伝達軸7に互いに対向する一対の入力ディスク8a,8bが設けられ、この一対の入力ディスク8a,8bの間には動力伝達軸7に対しては遊嵌状態の一対の出力ディスク9a,9bが同軸的に配置され互いに同期して回転するようになっている。
【0014】
そして、動力伝達軸7はバリエータ2を構成する入力ディスク8bから後方に突出しており、この動力伝達軸7の途中には低速用クラッチ28が設けられている。また、入力ディスク8a,8bと出力ディスク9a,9bとの間には傾転自在に転接された複数のパワーローラ10が設けられている。出力ディスク9a,9bは動力伝達軸7に対して遊嵌する遊嵌軸11を介して連結されている。
【0015】
バリエータ2は、動力伝達軸7に伝達された回転駆動力が入力ディスク8a,8b、パワーローラ10及び出力ディスク9a,9bを介して遊嵌軸11に伝達され、その速度比すなわち出力ディスク9a,9bの回転速度を入力ディスク8a,8bの回転速度で除した値がパワーローラ10の傾転角によって決定される。
【0016】
ここで、バリエータ2の変速比幅をλとしたとき、モードチェンジする際のバリエータ2の変速比の値を√λ未満としている。つまり、入力ディスク8a,8bのトラクション部の有効径をD1 、出力ディスク9a,9bのトラクション部の有効径をD2 とすると、D1 >D2 に形成され、バリエータ2の最大減速比を小さくしている。
【0017】
すなわち、入力ディスク8a,8bのトラクション部の有効径D1 と出力ディスク9a,9bのトラクション部の有効径をD2 とを非対称の形状としている。したがって、バリエータ2の最大減速比が小さくなり、出力ディスク9a,9bの間から遊星歯車機構3までの歯車対のトータルの減速比が1に近くなる。つまり、大きな増速比が必要とならない。
【0018】
すなわち、パワーローラ10が水平状態にあるときに、速度比が1の中立状態となり、これより各パワーローラ10の出力ディスク9a,9b側が動力伝達軸7から離れる方向に傾転するとこれに応じて速度比が低下し、逆に各パワーローラ10の出力ディスク9a,9b側が動力伝達軸7に接近する方向に傾転するとこれに応じて速度比が増加する。この遊嵌軸11には第1のギヤ12が嵌着され、この第1のギヤ12はカウンタ軸14に設けられた第2のギヤ13と噛合している。カウンタ軸14の他端部には第3のギヤ15が設けられ、この第3のギヤ15は第4のギヤ16を介して第5のギヤ17と噛合し、前記遊星歯車機構3と連動している。
【0019】
遊星歯車機構3は、太陽歯車22と、これに噛合する複数の遊星歯車23と、各遊星歯車23を連繋するキャリア24と、遊星歯車23に噛合するリング歯車25とを備えており、太陽歯車22が前記第5のギヤ17と連結され、キャリア24が中心軸26を介して低速用クラッチ28と連結されている。また、リング歯車25には出力軸27が設けられている。さらに、遊星歯車機構3のリング歯車25とキャリア24との間には両者を接離する高速用クラッチ29が設けられている。
【0020】
次に、前述した第1の実施形態の動作を説明する。
まず、低速用クラッチ28を接続し、高速用クラッチ29を解放すると、動力伝達軸7と中心軸26が連結状態となる。したがって、入力軸5の回転は、動力伝達軸7→低速用クラッチ28→中心軸26→遊星歯車機構3のキャリア24に伝達する経路と、油圧ピストン6→入力ディスク8a,8b→パワーローラ10→出力ディスク9a,9b→第1のギヤ12→第2のギヤ13→カウンタ軸14→第3のギヤ15→第4のギヤ16→第5のギヤ17→遊星歯車機構3の太陽歯車22に伝達する経路との2つの経路により遊星歯車機構3に伝達されることとなり、遊星歯車機構3の差動を用いてバリエータ2との組合わせにより無限大の変速比が得られる。
【0021】
また、このとき、回転している太陽歯車22とキャリア24の相対速度が「0」であれば、出力回転数は「0」となる。つまり、発進クラッチを必要とすることなく、車両を停止状態から発進させることが可能となり、相対速度を変えることにより、発進、後退が可能となる。
【0022】
一方、バリエータ2を減速側すなわちパワーローラ10をその出力ディスク9a,9b側が動力伝達軸7から遠ざかる方向に傾転させると、その傾転に応じてカウンタ軸14の回転速度が遅くなり、これに伴って遊星歯車機構3の太陽歯車22の回転速度が減少して出力軸27の回転速度が増加する。
【0023】
前述のような変速動作を行うと、低速時には太陽歯車22から、後退時にはキャリア24から動力循環する。すなわち、低速時における循環トルクは、第1のギヤ12に入った後、バリエータ2において第1循環トルクと第2循環トルクとに分かれる。第1循環トルクは、出力ディスク9a→パワーローラ10→入力ディスク8a→油圧ピストン6→入力軸5の経路で伝達される一方、第2循環トルクは、出力ディスク9b→パワーローラ10→入力ディスク8b→動力伝達軸7→油圧ピストン6→入力軸5の経路で伝達される。
【0024】
このようにバリエータ2に入力ディスク8a,8bからではなく、出力ディスク9a,9bから入力ディスク8a,8bにトルクが加わる、所謂動力循環状態となる。
【0025】
次に、高速用クラッチ29を接続して低速用クラッチ28を解放すると、入力軸5の回転は出力ディスク9a,9bを介して遊嵌軸11が回転し、第1のギヤ12、第2のギヤ13と動力伝達され、カウンタ軸14が回転し、カウンタ軸14の回転は第3のギヤ15、第4のギヤ16および第5のギヤ17を介して遊星歯車機構3の太陽歯車22に伝達される。
【0026】
太陽歯車22の回転は遊星歯車23を介してリング歯車25に伝達し、出力軸27に伝達される。したがって、入力軸5から出力軸27まで直結された状態となり、この状態を維持しながらバリエータ2を増速側すなわちパワーローラ10をその出力ディスク9a,9b側が動力伝達軸7に接近する方向に傾転させると、その傾転に応じてカウンタ軸14の回転速度が速くなり、これに伴って遊星歯車機構3の太陽歯車22の回転速度が増加して出力軸27の回転速度が増加し、トロイダル形無段変速装置1全体の速度比が増加する。
【0027】
図3は第2の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。本実施形態は、入力ディスク8aと8bとの間に1個の出力ディスク31を設け、この出力ディスク31の両側面に入力ディスク8a,8bに対向するトラクション部を設けるとともに、外周縁にギヤ部32を一体に設けたものである。
【0028】
本実施形態においても、入力ディスク8a,8bのトラクション部の有効径をD1 、出力ディスク31のトラクション部の有効径をD2 とすると、D1 >D2 に形成され、バリエータ2の最大減速比を小さくしている。すなわち、入力ディスク8a,8bのトラクション部の有効径D1 と出力ディスク31のトラクション部の有効径をD2 とを非対称の形状としている。
【0029】
すなわち、第1の実施形態と同様に、入力ディスク8a,8bのトラクション部の有効径D1 と出力ディスク31のトラクション部の有効径をD2 とを非対称の形状としている。したがって、バリエータ2の最大減速比が小さくなり、出力ディスク31から遊星歯車機構3までの歯車対のトータルの減速比が1に近くなる。つまり、大きな増速比が必要とならない。
【0030】
さらに、出力ディスク31の外径を小さくすることによって、外周縁にギヤ部32を設けても、入力ディスク8a,8bの外径より大きくならないため、バリエータ2の小型、軽量化を図ることができる。また、バリエータ2の最大減速の値が小さくなるため、トラクション部の面圧は大きくならず、ディスクキャビティを大きくする必要がないという効果がある。
【0031】
なお、前記実施形態においては、ダブルキャビティ式トロイダル形無段変速装置について説明したが、この発明は、シングルキャビティ式トロイダルでもよく、またハーフトロイダルCVT、フルトロイダルCVTに適用できる。
【0032】
【発明の効果】
以上説明したように、本発明によれば、低速モードでバリエータに動力循環させ、高速モードで動力循環させないで入力軸を遊星歯車機構に直結するトロイダル形無段変速装置において、前記バリエータおよび遊星歯車機構が入力軸および出力軸と同一軸線上に直列に配置され、出力ディスクの外径を入力ディスクの外径よりも小さくし、かつ、前記バリエータの変速比幅をλとしたとき、モードチェンジする際のバリエータの変速比の値を√λ未満としたことを特徴とする。したがって、バリエータの最大減速比が小さくなり、出力ディスクから遊星歯車機構までの間の歯車対のトータルの減速比が1に近くなる。つまり、大きな増速比が必要としないため、設計上の制約を受けることが少なく、装置の軽量、コンパクト化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】この発明の第1の実施形態における無段変速装置の系統図。
【図2】同実施形態におけるバリエータの縦断側面図。
【図3】この発明の第2の実施形態におけるバリエータの縦断側面図。
【符号の説明】
2…バリエータ
3…遊星歯車機構
4…駆動源
5…入力軸
8a.8b…入力ディスク
9a,9b…出力ディスク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a toroidal continuously variable transmission used as a transmission for an automobile, for example.
[0002]
[Prior art]
For example, a toroidal-type continuously variable transmission used as a transmission for an automobile is known, for example, in Japanese Patent Laid-Open No. 5-502498. This includes an input shaft that is rotationally driven by a drive source, an output shaft that extracts power based on the rotation of the input shaft, a variator and a planetary as a speed ratio changing device disposed between the input shaft and the output shaft. And a gear mechanism.
[0003]
The variator includes a pair of input disks fitted to the input shaft, an output disk provided in a state fitted to the input shaft between the pair of input disks, and a power roller that is in rolling contact with the input disk and the output disk. It consists of and.
[0004]
The effective diameters of the traction portions of the variator of the Japanese National Patent Publication No. 5-502498 are substantially equal, that is, each has a symmetrical shape. Further, a gear is integrally provided on the outer peripheral edge of the output disk, and this gear is interlocked with a gear provided on the power transmission shaft via a chain.
[0005]
[Problems to be solved by the invention]
However, in a toroidal-type continuously variable transmission employing a geared neutral system, the mode change occurs at the time of maximum deceleration of the variator, so in general, especially in the case of an FR vehicle, the reciprocal of the maximum reduction ratio of the variator and the output The total reduction ratio of the gear pair from the space between the disks to the input to the planetary gear mechanism is set equal.
[0006]
Therefore, as in Japanese Patent Laid-Open No. 5-502498, the effective diameters of the traction portions of the variator input disk and the output disk are substantially equal, and when each has a symmetrical shape, it is input to the planetary gear mechanism from between the output disks. The total reduction ratio of the gear pair until the time is reduced. That is, there is a problem that a large speed increase is required and the design is restricted.
[0007]
Further, when a gear is provided on the outer peripheral edge of the output disk, the output disk becomes larger in diameter than the input disk, which increases the weight and increases the pitch circle of the gear. Therefore, there is a problem that the toroidal continuously variable transmission is increased in size.
[0008]
In general, since the surface pressure of the traction part on the speed reduction side of the variator becomes larger, when designing a continuously variable transmission for large torque, when trying to design a symmetric variator, the disk cavity There is a problem that becomes larger.
[0009]
The present invention has been made by paying attention to the above circumstances, and the object of the present invention is that the maximum reduction ratio of the variator is reduced and a large speed increase ratio is not required. An object of the present invention is to provide a toroidal continuously variable transmission that can be made lighter and more compact.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an input shaft that is rotationally driven by a drive source, an output shaft that extracts power based on the rotation of the input shaft, the input shaft, and the output shaft. A variator and a planetary gear mechanism arranged in series on the same axis as the input shaft and the output shaft, the variator comprising a pair of input disks and an output provided between the pair of input disks In the low speed mode, the power is circulated from the planetary gear mechanism to the variator via the counter shaft, and the input shaft is not circulated from the planetary gear mechanism via the variator and the counter shaft in the high speed mode. In the directly connected toroidal continuously variable transmission, the outer diameter of the output disk is made smaller than the outer diameter of the input disk, and the speed ratio width of the variator is increased. When the the value of the speed ratio of the variator at the time of mode change, characterized in that it has less than √Ramuda.
[0011]
According to the first aspect of the present invention, by setting the value of the gear ratio of the variator when changing the mode to less than √λ, the maximum speed reduction ratio of the variator becomes small, and the total speed reduction of the gear pair from the output disk to the planetary gear mechanism. The ratio is close to 1. That is, a large speed increase ratio is not required .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 show a first embodiment, FIG. 1 is a system diagram of a double cavity type toroidal continuously variable transmission, and FIG. 2 is a longitudinal side view of a variator. FIG. 1 is a system diagram of a double cavity half-toroidal continuously variable transmission according to a first embodiment. In the figure, reference numeral 1 denotes a toroidal continuously variable transmission, which includes a variator 2 and a planetary gear mechanism 3. The variator 2 includes an input shaft 5 that is rotatably supported by a fixed portion via a bearing or the like, and one end side of which is connected to a drive source 4 such as an engine.
[0013]
A loading cam 6 is provided on the input shaft 5. Power is transmitted to the variator 2 through the loading cam 6. The variator 2 is provided with a power transmission shaft 7 that rotates in conjunction with the loading cam 6. The power transmission shaft 7 is provided with a pair of input disks 8a and 8b that are opposed to each other. A pair of loosely fitted output disks 9a and 9b are arranged coaxially with respect to the power transmission shaft 7 and rotate in synchronization with each other.
[0014]
The power transmission shaft 7 protrudes rearward from the input disk 8 b constituting the variator 2, and a low speed clutch 28 is provided in the middle of the power transmission shaft 7. In addition, a plurality of power rollers 10 that are in rolling contact with each other are provided between the input disks 8a and 8b and the output disks 9a and 9b. The output disks 9 a and 9 b are connected via a loosely fitted shaft 11 that is loosely fitted to the power transmission shaft 7.
[0015]
In the variator 2, the rotational driving force transmitted to the power transmission shaft 7 is transmitted to the loose fitting shaft 11 via the input disks 8a and 8b, the power roller 10 and the output disks 9a and 9b, and the speed ratio, that is, the output disk 9a, A value obtained by dividing the rotational speed of 9b by the rotational speed of the input disks 8a and 8b is determined by the tilt angle of the power roller 10.
[0016]
Here, when the speed ratio width of the variator 2 is λ, the value of the speed ratio of the variator 2 at the time of mode change is less than √λ. That is, if the effective diameter of the traction part of the input disks 8a and 8b is D 1 and the effective diameter of the traction part of the output disks 9a and 9b is D 2 , D 1 > D 2 and the maximum reduction ratio of the variator 2 is set. It is small.
[0017]
That is, the effective diameter D 1 of the traction portion of the input disks 8a and 8b and the effective diameter D 2 of the traction portion of the output disks 9a and 9b are asymmetric. Therefore, the maximum reduction ratio of the variator 2 becomes small, and the total reduction ratio of the gear pair from the output disks 9a and 9b to the planetary gear mechanism 3 becomes close to 1. That is, a large speed increase ratio is not required.
[0018]
That is, when the power roller 10 is in a horizontal state, the speed ratio becomes a neutral state of 1, and when the output disks 9a and 9b side of each power roller 10 is tilted away from the power transmission shaft 7, a corresponding change is made. When the speed ratio decreases and, conversely, when the output disks 9a and 9b of the power rollers 10 tilt in the direction approaching the power transmission shaft 7, the speed ratio increases accordingly. A first gear 12 is fitted to the loose fitting shaft 11, and the first gear 12 meshes with a second gear 13 provided on the counter shaft 14. A third gear 15 is provided at the other end of the counter shaft 14, and the third gear 15 meshes with the fifth gear 17 via the fourth gear 16, and interlocks with the planetary gear mechanism 3. ing.
[0019]
The planetary gear mechanism 3 includes a sun gear 22, a plurality of planetary gears 23 that mesh with the sun gear 22, a carrier 24 that links the planetary gears 23, and a ring gear 25 that meshes with the planetary gear 23. 22 is connected to the fifth gear 17, and the carrier 24 is connected to the low speed clutch 28 via the center shaft 26. The ring gear 25 is provided with an output shaft 27. Further, a high-speed clutch 29 that contacts and separates the ring gear 25 and the carrier 24 of the planetary gear mechanism 3 is provided.
[0020]
Next, the operation of the above-described first embodiment will be described.
First, when the low speed clutch 28 is connected and the high speed clutch 29 is released, the power transmission shaft 7 and the central shaft 26 are connected. Therefore, the rotation of the input shaft 5 is transmitted through the power transmission shaft 7 → the low speed clutch 28 → the central shaft 26 → the carrier 24 of the planetary gear mechanism 3 and the hydraulic piston 6 → the input disks 8a and 8b → the power roller 10 → Output disk 9a, 9b → first gear 12 → second gear 13 → counter shaft 14 → third gear 15 → fourth gear 16 → fifth gear 17 → transmitted to the sun gear 22 of the planetary gear mechanism 3 Are transmitted to the planetary gear mechanism 3 through two paths, and an infinite gear ratio is obtained by combining with the variator 2 using the differential of the planetary gear mechanism 3.
[0021]
At this time, if the relative speed between the rotating sun gear 22 and the carrier 24 is “0”, the output rotational speed is “0”. That is, it is possible to start the vehicle from a stopped state without requiring a starting clutch, and to start and reverse by changing the relative speed.
[0022]
On the other hand, if the variator 2 is tilted in the direction in which the output disk 9a, 9b side of the power roller 10 decelerates from the power transmission shaft 7, the rotational speed of the counter shaft 14 becomes slow according to the tilt. Along with this, the rotation speed of the sun gear 22 of the planetary gear mechanism 3 decreases and the rotation speed of the output shaft 27 increases.
[0023]
When the speed change operation as described above is performed, power is circulated from the sun gear 22 at low speed and from the carrier 24 at reverse. That is, the circulating torque at low speed is divided into the first circulating torque and the second circulating torque in the variator 2 after entering the first gear 12. The first circulating torque is transmitted through the path of output disk 9a → power roller 10 → input disk 8a → hydraulic piston 6 → input shaft 5, while the second circulating torque is output disk 9b → power roller 10 → input disk 8b. The power is transmitted through the path of the power transmission shaft 7 → the hydraulic piston 6 → the input shaft 5.
[0024]
Thus, the variator 2 is in a so-called power circulation state in which torque is applied from the output disks 9a, 9b to the input disks 8a, 8b, not from the input disks 8a, 8b.
[0025]
Next, when the high speed clutch 29 is connected and the low speed clutch 28 is released, the input shaft 5 rotates through the output disks 9a and 9b so that the loosely fitted shaft 11 rotates, and the first gear 12 and the second gear Power is transmitted to the gear 13, the counter shaft 14 rotates, and the rotation of the counter shaft 14 is transmitted to the sun gear 22 of the planetary gear mechanism 3 through the third gear 15, the fourth gear 16, and the fifth gear 17. Is done.
[0026]
The rotation of the sun gear 22 is transmitted to the ring gear 25 through the planetary gear 23 and is transmitted to the output shaft 27. Accordingly, the input shaft 5 is directly connected to the output shaft 27, and while maintaining this state, the variator 2 is tilted in the direction in which the speed increasing side, that is, the power roller 10 approaches the power transmission shaft 7 on the output disk 9a, 9b side. When rotating, the rotational speed of the counter shaft 14 is increased in accordance with the tilt, and accordingly, the rotational speed of the sun gear 22 of the planetary gear mechanism 3 is increased and the rotational speed of the output shaft 27 is increased. The speed ratio of the entire continuously variable transmission 1 increases.
[0027]
FIG. 3 shows a second embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, one output disk 31 is provided between the input disks 8a and 8b, traction portions facing the input disks 8a and 8b are provided on both side surfaces of the output disk 31, and a gear portion is provided on the outer peripheral edge. 32 is provided integrally.
[0028]
Also in this embodiment, when the effective diameter of the traction portion of the input disks 8a and 8b is D 1 and the effective diameter of the traction portion of the output disk 31 is D 2 , D 1 > D 2 is formed, and the maximum deceleration of the variator 2 is achieved. The ratio is reduced. That is, the input disc 8a, which 8b an effective diameter D 1 of the traction unit and the effective diameter of the traction portion of the output disc 31 and D 2 of the asymmetrical shape.
[0029]
That is, like the first embodiment, the input disc 8a, which 8b an effective diameter D 1 of the traction unit and the effective diameter of the traction portion of the output disc 31 and D 2 of the asymmetrical shape. Therefore, the maximum reduction ratio of the variator 2 becomes small, and the total reduction ratio of the gear pair from the output disk 31 to the planetary gear mechanism 3 becomes close to 1. That is, a large speed increase ratio is not required.
[0030]
Further, by reducing the outer diameter of the output disk 31, even if the gear portion 32 is provided on the outer peripheral edge, it does not become larger than the outer diameter of the input disks 8a and 8b, so that the variator 2 can be reduced in size and weight. . Further, since the maximum deceleration value of the variator 2 is reduced, the surface pressure of the traction portion is not increased, and there is an effect that it is not necessary to increase the disk cavity.
[0031]
Although the double cavity type toroidal continuously variable transmission has been described in the above embodiment, the present invention may be a single cavity type toroidal, and can be applied to a half toroidal CVT and a full toroidal CVT.
[0032]
【The invention's effect】
As described above, according to the present invention , in the toroidal continuously variable transmission in which the input shaft is directly connected to the planetary gear mechanism without power circulation in the variator in the low speed mode, the variator and the planetary gear are provided. The mode is changed when the mechanism is arranged in series on the same axis as the input shaft and the output shaft, the outer diameter of the output disk is made smaller than the outer diameter of the input disk, and the speed ratio width of the variator is λ. The value of the gear ratio of the variator at that time is less than √λ. Therefore, the maximum reduction ratio of the variator is reduced, and the total reduction ratio of the gear pair between the output disk and the planetary gear mechanism is close to 1. That is, since a large speed increase ratio is not required, there are few design restrictions, and there is an effect that the apparatus can be reduced in weight and size .
[Brief description of the drawings]
FIG. 1 is a system diagram of a continuously variable transmission according to a first embodiment of the invention.
FIG. 2 is a longitudinal side view of the variator in the same embodiment.
FIG. 3 is a longitudinal side view of a variator according to a second embodiment of the present invention.
[Explanation of symbols]
2 ... Variator 3 ... Planetary gear mechanism 4 ... Drive source 5 ... Input shaft 8a. 8b: input disk 9a, 9b: output disk

Claims (1)

駆動源により回転駆動される入力軸と、この入力軸の回転に基づく動力を取出す出力軸と、前記入力軸と前記出力軸との間に該入力軸および出力軸と同一軸線上に直列に配置されたバリエータおよび遊星歯車機構とを備え、前記バリエータは、一対の入力ディスクと、これら一対の入力ディスクの間に設けられた出力ディスクを有し、低速モードでは前記遊星歯車機構からカウンタ軸を介して前記バリエータに動力循環させ、高速モードで動力循環させないで前記入力軸を前記バリエータと前記カウンタ軸を介して前記遊星歯車機構に直結するトロイダル形無段変速装置において、前記出力ディスクの外径を前記入力ディスクの外径よりも小さくし、かつ、前記バリエータの変速比幅をλとしたとき、モードチェンジする際のバリエータの変速比の値を√λ未満としたことを特徴とするトロイダル形無段変速装置。  An input shaft that is rotationally driven by a drive source, an output shaft that extracts power based on the rotation of the input shaft, and the input shaft and the output shaft are arranged in series on the same axis as the input shaft and the output shaft The variator includes a pair of input disks and an output disk provided between the pair of input disks. In the low-speed mode, the planetary gear mechanism passes through the counter shaft. In the toroidal continuously variable transmission in which the input shaft is directly coupled to the planetary gear mechanism via the variator and the counter shaft without power circulation in the variator and without power circulation in the high speed mode, the outer diameter of the output disk is reduced. When the input disk is smaller than the outer diameter of the input disk and the speed ratio width of the variator is λ, the change of the variator during the mode change is performed. Toroidal type continuously variable transmission is characterized in that is less than √λ the value of the ratio.
JP27456097A 1997-10-07 1997-10-07 Toroidal type continuously variable transmission Expired - Fee Related JP3697860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27456097A JP3697860B2 (en) 1997-10-07 1997-10-07 Toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27456097A JP3697860B2 (en) 1997-10-07 1997-10-07 Toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH11108148A JPH11108148A (en) 1999-04-20
JP3697860B2 true JP3697860B2 (en) 2005-09-21

Family

ID=17543439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27456097A Expired - Fee Related JP3697860B2 (en) 1997-10-07 1997-10-07 Toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3697860B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0315408D0 (en) * 2003-07-01 2003-08-06 Torotrak Dev Ltd Continuously variable ratio transmission system
DE102005010913B4 (en) 2004-03-09 2018-10-04 Nsk Ltd. Continuously variable transmission device
GB201214316D0 (en) * 2012-08-10 2012-09-26 Torotrak Dev Ltd Infinitely-variable transmission for a vehicle

Also Published As

Publication number Publication date
JPH11108148A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP4062809B2 (en) Continuously variable transmission
US5888160A (en) Continuously variable transmission
US6171210B1 (en) Toroidal type continuous variable transmission system
US20060234823A1 (en) Continuously variable transmission appartus
JP2002139124A (en) Transmission structure
JP2002147558A (en) Toroidal type continuously variable transmission
JPH01169169A (en) Toroidal type continuously variable transmission
JP2778038B2 (en) Toroidal continuously variable transmission
JP4867540B2 (en) Continuously variable transmission
JP3391150B2 (en) Toroidal-type continuously variable transmission for four-wheel drive vehicles
US5967931A (en) Torodial traction transmission for all wheel vehicles
JP2015017664A (en) Drive device for electric vehicle
JP3702597B2 (en) Toroidal type continuously variable transmission
JP3697860B2 (en) Toroidal type continuously variable transmission
JP3744153B2 (en) Continuously variable transmission
JP3738535B2 (en) Toroidal type continuously variable transmission
JP3702598B2 (en) Half toroidal continuously variable transmission
JP3579981B2 (en) Infinitely variable transmission
JPH11280867A (en) Continously variable transmission
JP4085457B2 (en) Continuously variable transmission
JPH06174036A (en) Toroidal type continuously variable transmission
JPH06174033A (en) Toroidal type continuously variable transmission
JP3674264B2 (en) Continuously variable transmission
JP2008208927A (en) Continuously variable transmission device
JP2941991B2 (en) Vehicle power transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees